

Delay Tolerant Streaming Contradiction, Fiction, or Science? Vera Goebel & Thomas Plagemann

UNIVERSITETET

Acknowledgement to our Funding Agencies

- Ad-Hoc InfoWare:
 - Norwegian Research Council, IKT2010 Program
 - Project Nr. 152929/431
- DT-Stream:
 - Norwegian Research Council, VerdIKT Program
 - Project Nr. 183312/S10
- CONTENT:
 - EU 6th Framework IST
 - Contract no. IST-FP6-0384239

19. desember 2008

3

About us.....

- Collaboration between University of Oviedo and University of Oslo
 - Visits from Xabiel García Pañeda
 - Erasmus Master Students worked towards very first prototype: Sergio Cabrero Barros, Francisco Javier Campa Lus, Jorge Suárez Rivaya
- DT-Stream received funding:
 - PhDs: Morten Lindeberg, Stein Kristiansen, Daniel Rodriguez
 - PostDoc: Ovidiu Drugan
- Xabiel received funding in Asturias:
 - PhD: Sergio Cabrero Barros
- Active Master Students:
 - Jorge Sentis, Lars Olav Dybsjord, Cristobal Emilio Dabed, Jon Anders Skorpen, Kim Sørhus

19. desember 2008

Outline

Background

- Application domain
- Delay Tolerant Networking
- Putting it together
- DT-Stream project
- Research ideas and approach
 - Synchronous and asynchronous modes
 - Overlay
- Preliminary results
 - Streaming on small mobile devices
 - MOMENTUM → Sergio
 - Red Cross traces
- Conclusions

Application Domain

[Source: applica.no]

The Mobile Wireless Space

Idea and Approach in Ad-Hoc InfoWare

 Combine Mobile Ad-Hoc Network solutions with Delay Tolerant approaches

Ad Hoc InfoWare – Overview

DT-Stream

Can we do video/audio streaming over such networks?

DT-Stream

- Pre-project:
 - 2007 four Master Students
- Funding:
 - Norwegian Research Council (3PhDs & 1 PostDoc, +)
 - Spanish Governement (1PhD)
- Project participants:
 - University of Oslo
 - University of Oviedo
 - Paradial

19. desember 2008

11

DT- Stream Goals

- Delay tolerant streaming applications that do not break when network partitions occur, but instead adapt their functionality, and which seamlessly proceed when connectivity is back
- A self-adaptive overlay that caches AV data at selected nodes to increase the resilience and performance of the AV services
- Autonomic resource management to discover, monitor and manage resources through distributed admission control and multi-path routing protocols.

Basic Approach

ίĤ

		Temporary sufficient	
	Insufficient resources	resources	Sufficient resources
No connectivity	Not solvable	Reduce problem	Reduce problem
Temporary connectivity	Reduce problem	Develop new solutions	Develop new solutions
Full connectivity	Reduce problem	Develop new solutions	State-of-the-Art

Synchronous and asynchronous mode

Delay Tolerant AV Streaming Applications

Adaptive Overlay for Delay Tolerant Streaming

Feasability Study for DT-Stream

Can mobile devices be used for video streaming in Manets?

Master Student Magnus Halvorsen at the University of Oslo Supervisors: Thomas Plagemann & Matti Siekkinen

Transparencies provided by Magnus – Thanks!

Nokia Internet Tablets

• N770

- CPU: 252MHz TI OMAP 1710
- Display:
 - 800x480x16
 - touch-screen
- Connectivity:
 - 802.11g WLAN
 - Bluetooth 1.2
- Memory and storage:
 - 64 MB RAM
 - 128MB flash
 - up to 1GB RS-

19. desember 2008 MMCMemory and storage:

- N800
 - CPU: 320 MHz TI OMAP
 - Display:
 - 800x480x16
 - touch-screen
 - Connectivity:
 - 802.11g WLAN
 - Bluetooth 2.0
 - Memory and storage:
 - 128 MB DDR DRAM
 - 256MB flash
 - up to 8GB microSD

Experiment video clips

- MPEG-1, MPEG-4
- 1000, 500, 200 Kbps
- Low action and high action clip

Choice of video clip parameters

Resolution

- Small screen size
- 800x480 (15:9) screen resolution
- Full screen playback
- 400x240 and 200x144 pixels scales well
- Bandwidth
 - 1000, 500 and 200
 Kbps
 - High to relatively low B/W requirements
 - Related to choice of resolution

- Encoding
 - MPEG-1 and MPEG-4 ASP
 - Widespread
 - Supported by both server and client
- Clip content
 - Low-action clip
 - High-action clip
 - To see impact of clip content on results
- No audio
 - Focus on video stream

Video experiments

- Local playback on the Nokia 770
- One-hop streaming, Nokia 770 to Nokia 770
- Multi-hop streaming with 3 Nokia 770s, using OLSR
- Local playback on the N800

Node-to-node streaming setup

Wireless sniffer

Streaming server

- -

Streaming client

UNIVERSITETET I OSLO Intermediate node

CPU Utilization at Server

19. desember 2008

CPU Utilization at Forwarding Node

19. desember 2008

24

CPU Utilization at Client

Action clip 400x240 1000Kbps MPEG-4

19. desember 2008

25

Multi-hop streaming – CPU utilization 240x144 200 Kbps MPEG-4 action clip

CPU utilization

- CPU utilization is obviously an issue
 - Particularly on the client side
 - But streaming adds little processing overhead on the client
- Resource consumption on intermediate node increases more than on server, when video bit rate increases
- Perceived quality of the video stream was the same in the node-to-node and multi-hop scenarios
- 240x144 500 Kbit MPEG-4 video seems to represent a good tradeoff between resource requirements and quality on the Nokia 770

Advantages of cross-layer monitoring - case study

- 1. Visible effect
 - Playback freezes then resumes after 30 seconds
- 2. CPU utilization
 - Drops at all nodes (as previously seen on earlier slide)
- 3. Network transfer statistics
 - Client node halts reception
 - Intermediate node halts reception and transmission
 - Server halts transmission
- 4. OLSR logs
 - Route breaks between intermediate and client node
- 5. Wireless link statistics
 - Drop in link quality at intermediate node
- Conclusion: Playback froze as a consequence of the route breaking between the intermediate and client nodes due to low quality of the wireless link

Advantages of cross-layer monitoring – finding the cause

Network transfer statistics

Magnus' Results and Insights

- Successfully created a working MANET streaming solution for Nokia 770
- Performed cross-layer monitoring of the solution
- Created a live test-bed for wireless, multi-hop streaming
- Playback consumes large amount of resources on client
- Intermediate node consumes twice as much CPU resources as server
 - both receiving and forwarding
- Server supports 4-5 simulatenous 1000 Kbps streams

19. desember 2008

Towards real-world mobility traces

- Collaboration with Research Institute of the Vienna Red Cross late 2007 and early 2008
- PDA's equipped with wireless connectivity and GPS technology
- Log traces / movements for MANET simulations

Conclusions

- Streaming in real MANETs is possible, but requires strong resource management solutions
- Overlay structures can combine MANETs and DTNs and be used for streaming
- How to do realistic simulation
 - "Ongoing" work collect traces from real emergency and rescue operations together with Vienna Red Cross
- A lot of research needs to be done .. but the project just started
- Do we see meaningful collaborations under the CONTENT hood++?

19. desember 2008

