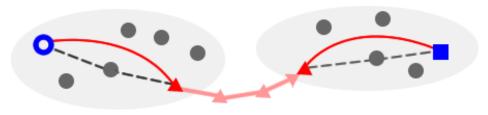
Barcelona, December 2008

An overlay solution to support multimedia services over sparse MANETs

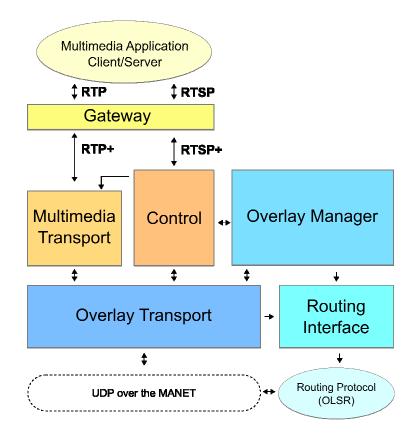
Sergio Cabrero Barros Xabiel García Pañeda

Group of Networking and Telematics Services University of Oviedo - Spain

Motivation


- Emergencies, disasters...
- No infrastructure (destroyed or not deployed)

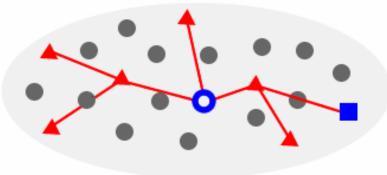
- Rescue personnel with small devices could deploy a sparse MANET...
- ...and send audio/video over it
- Problems: disconnections, partitions, scarce resources, shared medium, protocols performance, etc.


Design guidelines

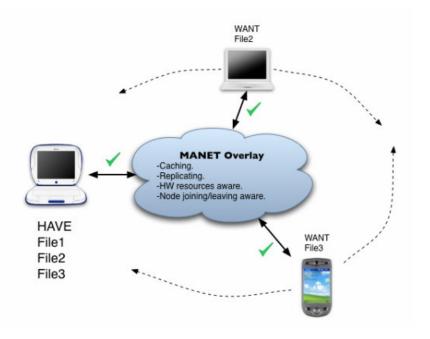
- Off-the-self applications: RTSP/RTP
- Use existent transport and routing protocols
 - UDP and OLSR
- Overlay network

- Resource management
- Session nodes: store-carry-forward, add reliability
- Overlay routes
- Put resources on important content
 - Control messages, important frames...
- Real prototype: emulation and real devices

Architecture



Middleware architecture


- Client/Server above
- Network below
- Division in components
 - Independent evolution
 - Flexibility
- Cross-layer communication

Overlay transport & routing

- Over UDP
 - Bad performance of TCP over MANETs
- Store-carry-forward
 - Overcome disconnections, partitions...
- Reliability: ACKs, checks connectivity, controls flow
- Priority classes: heterogeneous messages (Control, audio, video, overlay management)
 - Important messages are sent first
- Overlay Routes: efficient message sending to several nodes
 - Use network topology
 - E.g. send a control message

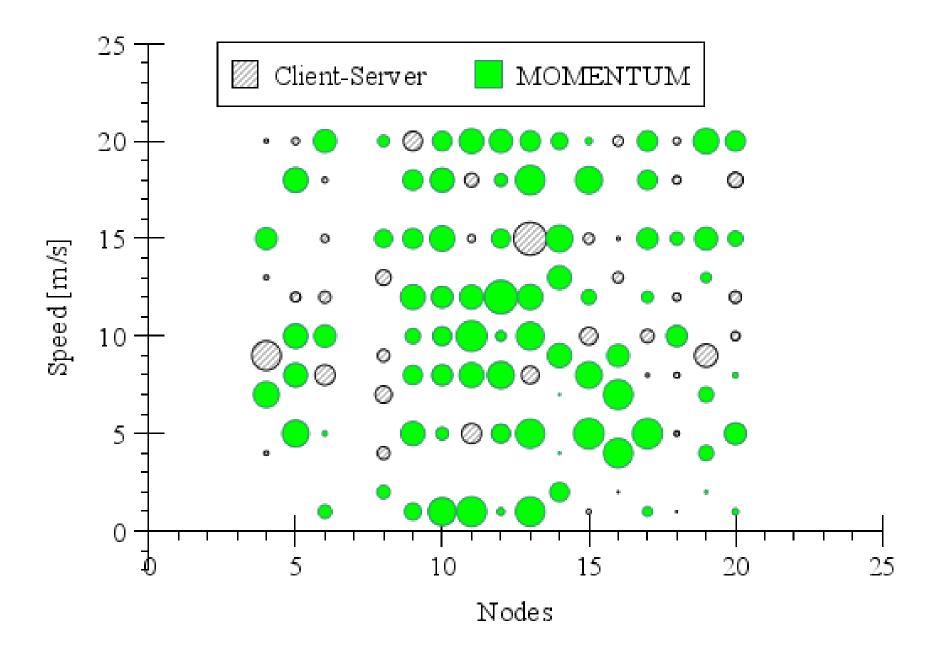
Overlay network management

- A permanent overlay
 - Share status/resources
 - Global system's view
 - Support many sessions
 - Avoid overloading

- Sessions are established in the Overlay Network
 - Session nodes are selected using resources, topology, predictions...

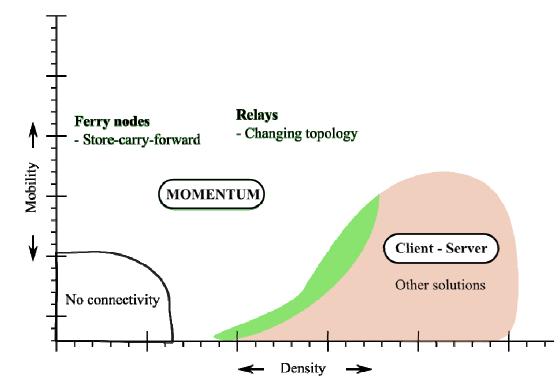
Multimedia Transport & Control

- Tasks directly related with multimedia
 - Adaptation, caching, proxy...
- Control: inspired in RTSP, but distributed
 - Manages sessions
 - Session nodes also need control
 - Messages: Setup, Play, Pause, Stop...
- Multimedia Transport: inspired in RTP, but distributed
 - Manages streams
 - Assigns priorities to the multimedia content


Gateway and routing interface

- Gateway
 - shields applications
 - Connected to Delay tolerant
 - Translate protocols
- Routing Interface
 - Connects with the network routing protocol
 - Extracts topology information
 - Topology, neighbors...
 - Adapts to multiple protocols

Evaluation


- MOMENTUM: A real prototype with the core ideas
- NEMAN as emulation tool
- Compare it with raw client-server solution
- Scenarios:
 - Live video | 1000 x 600 m² | 1000 seconds
 - # nodes: 2 to 20 nodes | Range: 250 m
 - Avg. Speed: 0 to 20 m/s | Random Waypoint
 - Without background traffic, collisions, physical layer, etc.

Results: video received

Conclusions

- Just with the core ideas, our solution delivers more video on sparse MANETs
 - Delay Tolerant ideas can be applied for video distribution
 - An overlay with session nodes helps in the distribution
- The architecture is valid for further stages
- We have detected our weak points and know how to solve them
- Our solution works where no others can

Future work

- Full implementation and evaluation of our ideas
- Improve some key aspects:
 - Session node selection
 - Multimedia protocols
- Include other routing protocols (reactive)
- Other evaluation environments and real test-beds
- Heterogeneous networks
 - Stream from/to a sparse MANET to/from Internet
- Other network technologies

Questions?