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Extra operations

�hashing & store (payload packets)

�hash lookup (header packets)

�mapping lookup (LISP specific)

Implementation

Sender: Packet stream generator with raw sockets

ITR: Linux 2.6 kernel module – Netfilter hook

Hash function used: SHA1

Experimental setup

�P4, 3 GHz machines with Intel Gigabit cards (Debian GNU/Linux, kernel 2.6.26)

�7 sets of experiments with n x 1429 clients each set (we call n scaling factor)

�20 repetitions/iteration averaged

Results

As expected, CoreCast incurs higher CPU usage that simple unicast packet 

forwarding. However, the increase is about 52% on average. Taking into account 

that our implementation is not optimized compared to the unicast forwarding 

code in the Linux kernel, which has been tuned for several years we can safely 

conclude that the processing overhead of the CoreCast is not a problem for a 

router. A production router could easily have software or hardware optimizations 

implemented for the new operations introduced by CoreCast. 
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Unicast
CoreCast

Bandwidth Savings

�Depends on the distribution of clients in AS-es: the more clients/AS the bigger 

the savings

�We used 2 P2P live streaming traffic trace sets for comparison

�Set 1: collected at multiple capture points in France and Japan using  TVAnts – 

qualifying soccer match for the Olympics, China vs. Vietnam on August 23, 2007

�Set 2: collected at the Technical University of Cluj-Napoca during the memorial 

service of Michael Jackson, using the PPLive client software on July 7, 2009

�Distribution of clients in ASes can be seen in the figures below

�A few top ranking ASes would have benefited greatly if using CoreCast, because 

the large number of clients per AS

�In Set 2, the first 3 ASes were holding over 50% of the total 23713 clients

�Clients where traffic was captured had the following traffic distribution:

�To estimate savings we assumed all clients have the same traffic profile

�We estimated intra- and inter-domain traffic exchanged in the P2P overlays

�Then, we calculated the traffic generated by CoreCast for the same stream, 

which is about 130 GB in the inter-domain case and 900 GB for intra-domain traffic

Summary
�Window of opportunity to add scalable multicast support to the future Internet

�Important bandwidth savings: reduces the ISP's access link bandwidth 

consumption by an order of magnitude compared to existing P2P streaming 

services

�CoreCast is a simple protocol: zero-configuration, small amount of state

�Small processing overhead

�Because of its architecture, it allows independent Service Level Agreements to 

be established between Content Providers and ISPs.  The latter property implies 

that it can be considered a reliable live streaming solution, for which content 

providers or ISPs can charge subscription fees.

�The only equipment that has to upgraded to support CoreCast is the same that 

has to support LISP – core routers untouched

Future Work
�Deploy CoreCast in PlanetLab and perform scalability experiments

�Implement and test CoreCast in the live LISP testbed (see lisp4.net)

Sender ITR Receiver

Main idea:  take advantage of the likely introduction of the Locator/Identifier Separation Protocol to “fix” multicast

Design goals: simple live streaming protocol, with minimal state, incrementally deployable

Gains: important bandwidth savings when clients cluster well in autonomous systems (ASes)
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Media Server
For each multimedia stream (channel) that it is broadcasting, the media server maintains a data structure called chanDstList which 

contains a list of EIDs that are currently receiving that stream. After a successful connection, a new client is added to the requested 

channel's destination list. Each domain reserves an EID with local scope only for CoreCast streams. This is required because the first 

demultiplexing point is located on a busy border router, which should forward regular packets at line speed, and only work with 

CoreCast packets in the slow path. Since the destination EID is always examined, CoreCast uses the reserved EID to trigger examination 

of its protocols fields, and leave all other packets in the fast path. For each channel, the media server divides multimedia data into 

chunks of payload in such a way, that packet size is maximized, but the MTU is not exceeded on the path to the destination. For each 

chunk, it first sends a packet with the payload, setting the destination address to the reserved special CoreCast EID. After the payload 

packet is sent, the media server iterates through chanDstList, and sends a header packet for each of the destinations listed. The process 

is then repeated at regular time intervals, determined by the bandwidth required for the stream. For example, sending a 384 Kbps 

stream, broken down into fixed sized payloads of 1200 bytes would require a payload packet to be sent every 25 ms. The above 

mechanism sets an upper limit of how many destinations CoreCast can support. This limit is function of the transmission medium's 

capacity, the bandwidth required by the stream, and payload size: MaxClients = (C x T) / 8H = (C x P) / (H x BW), where C is line rate in bits 

per second, T is time between payloads in seconds, P is payload size in bytes, H is header packet size in bytes, and BW the bandwidth 

required by the stream in bits per second. CoreCast's gain in terms of maximum number of supported clients depends on the ratio 

between the payload size and the header size: P / H.
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ITR
The ITR is the first of the two CoreCast stream demultiplexing points. In order to process CoreCast packets it maintains a 

payloadBuffer data structure, which holds the current payload data of each stream. To avoid keeping too much state, only one 

payload per stream is stored at a time, identified by hash(payload). Each of the entries points to a structure storing the list of 

RLOCs (servedRLOC), which have already received the current payload. For each CoreCast header packet, the ITR identifies the 

channel using the reserved destination EID in the IP header, extracts the client EID and the hash from the CoreCast header and 

looks up the RLOC associated to the client EID. This lookup of the client EID to destination RLOC is a function already provided by 

LISP. Using the hash from the CoreCast header, it checks for the existence of the associated payload data in the payloadBuffer, 

checks if the RLOC has already received the payload using the servedRLOC list and forwards the header to the ETR, doing the 

usual LISP encapsulation. In the case no payload was yet sent a particular RLOC, a payload packet is generated before forwarding 

the header packet.

ETRs
The ETR is the second and last demultiplexing point, and it works similar to the ITR, storing the payload for each received stream. 

But instead of forwarding headers, it has to expand them to regular unicast packets that get delivered within the AS to their final 

destinations, by retrieving and adding the corresponding payload data from the payloadBuffer.
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Trace IPs ASes IDT [GB] IAT [GB]

FR1 1855 209 3881 505

FR2 1865 204 2944 391

FR3 1769 201 3523 456

FR4 1888 207 3948 536

JP1 1856 201 3509 452

JP2 1863 197 3291 431

JP3 1878 194 3681 496

Estimated bandwidth usage in the P2P overlay
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