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a b s t r a c t

The Locator/ID Separation Protocol (LISP) limits the growth of the Default-Free Zone routing

tables by creating a highly aggregatable and quasi-static Internet core. However, LISP pushes

the forwarding state to edge routers whose timely operation relies on caching of location to

identity bindings. In this paper we develop an analytical model to study the asymptotic scal-

ability of the LISP cache. Under the assumptions that (i) long-term popularity can be modeled

as a Generalized Zipf distribution, independent of Internet and LISP site growth and (ii) tem-

poral locality is predominantly determined by long-term popularity, we find that LISP cache

miss rate scales O(1) with respect to the amount of prefixes (Internet growth) and users (LISP

site growth). We validate the model and discuss the accuracy of our assumptions using several

one-day-long packet traces.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The growth of the Default-Free Zone (DFZ) routing ta-

bles [1] and associated churn observed in recent years has

led to much debate as to whether the current Internet in-

frastructure is architecturally unable to scale. Sources of the

problem were found to be partly organic, generated by the

ongoing growth of the topology, but also related to opera-

tional practices which seemed to be the main drivers be-

hind prefix deaggregation within the Internet’s core. Diverg-

ing opinions as to how the latter could be solved triggered

a significant amount of research that finally materialized

in several competing solutions (see [2] and the references

therein).

In this paper we focus on location/identity separation

type of approaches in general, and consider the Locator/ID

Separation Protocol (LISP) [3] as their particular instanti-

ation. LISP semantically decouples identity from location,
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currently overloaded by IP addresses, by creating two sep-

arate namespaces that unambiguously address end-hosts

(identifiers) and their Internet attachment points (locators).

This new indirection level has the advantage that it sup-

ports the implementation of complex operational practices

(e.g., traffic engineering mechanisms) but at the same time

enables the locator space to remain quasi-static and highly

aggregatable [4].

Although generally accepted that such solutions alleviate

the scalability limitations of the DFZ, they also introduce new

network elements, chiefly a mapping-system, and querying

mechanisms needed for obtaining dynamic bindings (map-

pings) between the two new namespaces. To avoid growing

router memory requirements with the size of the identity

namespace, as is the case today, routers retrieve mappings

according to user traffic. Therefore, to speed-up packet

forwarding and to avoid generating floods of resolution

requests, routers must store in use mappings in map-caches.

This then begs the question: does the newly introduced LISP

edge cache scale?

A considerable number of studies have empirically evalu-

ated map-cache performance, however these results cannot

be extrapolated to provide insight into what traffic param-

eters affect cache performance nor quantify their impact
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Fig. 1. Example packet exchange between EIDSRC and EIDDST with LISP. Fol-

lowing intra-domain routing, packets reach xTRA which obtains a mapping

binding EIDDST to RLOCB1 and RLOCB2 from the mapping-system (steps 1–3).

From the mapping, xTRA chooses RLOCB1 as destination and then forwards

toward it the encapsulated packets over the Internet’s core (step 4). xTRB

decapsulates the packets and forwards them to their intended destination.
[5,6,7,8,9]. Additionally, in [10] and [11] we showed how

the working-set [12] can be leveraged to estimate temporal

locality of real network traces and finally to build a model

that links miss rate and cache size. Nevertheless, despite

its predictive power, the model is also unable to uncover

locality sources and, ultimately, unable to predict by itself

how map-cache performance is to scale.

This paper complements our work in [11] and provides

an answer to the previous question by analyzing map-cache

miss rate scalability with respect to Internet and LISP site

growth. To this end we leverage well known results that char-

acterize temporal locality of reference strings [13,14] to show

that the relation between cache size and miss rate depends

only on the popularity distribution of destinations. Notably,

the result holds only if (i) long-term popularity can be mod-

eled as a constant Generalized Zipf [15] and (ii) temporal

locality is predominantly determined by long-term popular-

ity. This further enables us to conclude that, for a given miss

rate, cache size should scale constantly, O(1), with respect to

the growth of the Internet and LISP site size, if popularity

is independent of the two. We believe this result is crucial

for LISP’s deployment since it ensures that if a map-cache is

provisioned for a certain performance point, its performance

should not degrade over time. If, however, the property does

not hold, then the miss rate scales linearly, O(N), with respect

to the number of destinations in the Internet. To support

our results, we analyzed the popularity distribution of des-

tination prefixes in several one-day-long, real-world packet

traces, from two different networks and spanning a period of

3.5 years. All assumptions were empirically validated using

the traces.

The rest of the paper is structured as follows. We provide a

brief overview of LISP in Section 2. In Section 3 we derive the

cache model under a set of assumptions and thereafter dis-

cuss its predictions and implications for LISP. In Section 4 we

present empirical evidence that supports our assumptions

and evaluate the model, while in Section 5 we discuss the

related work. Finally, we conclude the paper in Section 6.

2. LISP background

LISP [3] belongs to the family of proposals that implement

a location/identity split in order to address the scalability

concerns of the current Internet architecture. The protocol

specification has recently undergone IETF standardiza-

tion [16], however development and deployment efforts are

still ongoing. They are supported by a sizable community

spanning both academia and industry and rely for testing on

a large experimental network, the LISP-beta network [17].

The goal of splitting location and identity is to insulate

core network routing that should ideally only be aware of

location information (locators), from the dynamics of edge

networks, which should be concerned with the delivery of

information based on identity (identifiers). To facilitate the

transition from the current infrastructure, LISP numbers both

namespaces using the existing IP addressing scheme, thus

ensuring that routing within both core and stub networks

stays unaltered. However, as locators and identifiers bear rel-

evance only within their respective namespaces, a form of

conversion from one to the other must be performed. LISP
makes use of encapsulation [18] and a directory service to

perform such translation.

Prior to forwarding a host generated packet, a LISP router

maps the destination address, or Endpoint IDentifier (EID),

to a corresponding destination Routing LOCator (RLOC) by

means of a LISP specific mapping system [8,19]. Once a map-

ping is obtained, the border router tunnels the packet from

source edge to corresponding destination edge network by

means of an encapsulation with a LISP-UDP-IP header. The

outer IP header addresses are the RLOCs pertaining to the

corresponding border routers (see Fig. 1). At the receiv-

ing router, the packet is decapsulated and forwarded to its

intended destination. In LISP parlance, the source router,

that performs the encapsulation, is called an Ingress Tunnel

Router (ITR) whereas the one performing the decapsulation

is named the Egress Tunnel Router (ETR). One that performs

both functions is referred to as an xTR.

Since the packet throughput of an ITR is highly depen-

dent on the time needed to obtain a mapping, but also to

avoid overloading the mapping-system, ITRs are provisioned

with map-caches that store recently used EID-prefix-to-

RLOC mappings. Stale entries are avoided with the help of

timeouts, called time to live (TTL), that mappings carry as

attributes. Whereas, consistency is ensured by proactive LISP

mechanisms through which the xTR owner of an updated

mapping informs its peers of the change. Intuitively, the

map-cache is most efficient in situations when destination

EIDs present high temporal and/or spatial locality and its

size depends on the diversity of the visited destinations.

As a result, performance depends entirely on map-cache

provisioned size, traffic characteristics and the eviction

policy set in place.

3. Cache model

We start this section by discussing some of the funda-

mental properties of network traffic that may be exploited

to gain a better understanding of cache performance. Then,

assuming these properties are characteristic to real network

traces we devise a cache model. Finally we analyze and dis-

cuss the predictions of the model. Table 1 gives an overview

of the main parameters and variables used in defining the

cache model.
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Table 1

Cache model variables and parameters.

Variable Description

N Length of the reference string (number of packets in

a trace)

D Set of destination IP-prefixes

ri Reference at the ith unit of time

t Time, measured in packets

ν Frequency

pν Probability of object with frequency ν in reference

string

d(t, ν) Number of times the inter-reference distance for an

object with frequency ν is t

r and q Exponents that control GZipf power law slopes in the

two regimes

λ and μ Constants that control the frequency for which GZipf

undergoes the crossover

f(t) Inter-reference distance density function

m(t) Working-set miss rate

s(t) Average working-set size

H(n, m) The generalized harmonic number of order n of m

�(n, z) The incomplete Gamma function

ζ (s, a) The Hurwitz Zeta function
3.1. Sources of temporal locality in network traffic

We consider the following formalization of packet level

traffic throughout the rest of the paper. Let D be a set of ob-

jects (i.e., destination IP-prefixes). Then, we consider traffic

to be a strings of references r1, r2, . . . , ri . . . where ri = o ∈ D

is a reference at the ith unit of time that has as destination,

or requests, object o. Generally, we consider the length of the

reference string to be N. Also, note that we use object and

destination interchangeably.

Two of the defining properties of reference strings, im-

portant in characterizing cache performance, are the heavy

tailed popularity distribution of destinations and the temporal

locality exhibited by the requests pattern. We discuss both in

what follows.

Popularity distribution: Copious amounts of studies in

fields varied as linguistics [15,20], Web traffic [13,21], video-

on-demand [22], p2p overlays [23] and flow level traffic [24]

found the probability distribution of objects to have a posi-

tive skew. Generally, such distributions are coined Zipf-like,

i.e., they follow a power law; whereby the probability of ref-

erence is inversely proportional to the rank of an object. Gen-

erally, the relation is surmised as: ν(k) = �
kα where ν is the

frequency, or number of requests observed for an object, k is

the rank, � = 1/H(n, α) is a normalizing constant and H(n,

α) is the nth generalized harmonic number.

It is interesting to note that although Zipf’s law has its ori-

gins in linguistics, it was found to be a poor fit for the statis-

tical behavior of words frequencies with low or mid-to-high

values of the rank variable. That is, it does not fit the head

and tail of the distribution. Furthermore, its extension due to

Mandelbrot (often called the Zipf–Mandelbrot law) only im-

proves the fitting for the head of the distribution. Such dis-

crepancies were also observed for Web based and p2p refer-

ence strings. Often the head of the distribution is flattened,

i.e., frequency is less than the one predicted by the law, or

the tail has an exponential cutoff or a faster power law decay
[15,23]. But these differences are usually dismissed on the

basis of poor statistics in the high ranks region correspond-

ing to objects with a very low frequency.

Nevertheless, Montemurro solved recently the problem in

linguistics by extending the Zipf–Mandelbrot law such that

for high ranks the tail undergoes a crossover to an expo-

nential or larger exponent power-law decay. Surprisingly, he

found this features, i.e. deviations from the Zipf-like behav-

ior, to hold especially well when very large corpora [15] are

considered. We further refer to this model as the General-

ized Zipf law or GZipf and, in light of these observations, we

assume the following:

Assumption 1. The popularity distribution of destination IP-

prefix reference strings can be approximated by a GZipf dis-

tribution.

Temporal locality: It can be informally defined as the

property that a recently referenced object has an increased

probability of being re-referenced. One of the well estab-

lished ways of measuring the degree of locality of reference

strings is the inter-reference distance distribution.

Breslau et al. found in [13] that strings generated accord-

ing to the Independent Reference Model (IRM) from a popu-

larity distribution, that is, assuming that references are inde-

pendent and identically distributed random variables, have

an inter-reference distance distribution similar to that of the

original string. Additionally, they inferred that the probabil-

ity of an object being re-referenced after t units of time is

proportional to 1/t. Later, Jin and Bestavros proved that in

fact temporal locality emerges from both long-term popu-

larity and short-term correlations. However, they found that

the inter-reference distance distribution is mainly induced

through long-term popularity and therefore is insensitive to

the latter. Additionally, they showed that by ignoring tempo-

ral correlations and assuming a Zipf-like popularity distribu-

tion, an object’s re-reference probability after t units of time

is proportional to 1/t(2−1/α). These observations then lead to

our second assumption:

Assumption 2. Temporal locality in destination IP-prefix

reference strings is mainly due to the prefix popularity

distribution.

We contrast the two assumptions with the properties of

several packet-level traces in Section 4. In what follows we

are interested in characterizing the inter-reference distribu-

tion of a GZipf distribution and further on the cache miss rate

using the two statements as support.

3.2. GZipf generated inter-reference distribution

In this section we compute the inter-reference distance

distribution for a GZipf popularity. The result is an extension

of the one due to Jin and Bestavros for a Zipf-like popular-

ity [14]. As a first step we compute the inter-reference dis-

tribution for a single object and then by integration obtain

the average for the whole reference string, which we denote

by f(t).
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If ν is the normalized frequency, namely, the number of

reference to an object divided by the length of the reference

string N, then, as shown in [15] the probability of observing

objects with frequency ν in the reference string is:

pν(ν) ∝ 1

μνr + (λ − μ)νq
(1)

where 1 ≤ r < q are the exponents that control the slope of

the power laws in the two regimes and μ and λ are two con-

stants that control the frequency for which the tail undergoes

the crossover.

From Assumption 2 it follows that references to an ob-

ject are independent whereby the inter-reference distance

t is distributed exponentially with expected value of 1/ν .

Then, if we denote by d(t, ν) the number of times the inter-

reference distance for an object with frequency ν is t, we can

write:

d(t, ν) ∼ (νN − 1)νe−νt (2)

If νmin and νmax are the minimum and respectively the

maximum normalized frequency observed for the reference

string, we can compute the inter-reference distance for the

whole string as:

f (t) ∼
∫ νmax

νmin

pν(ν) d(t, ν)dν

=
∫ 1

0

(νN − 1)νe−νt

μνr + (λ − μ)νq
dν (3)

Unfortunately, the integral is unsolvable, nevertheless, we

can still characterize the properties of f(t) in the two regimes

of the GZipf distribution. In the high frequency region, where

term having q as exponent dominates the denominator we

can write:

fq(t) ∼
∫ 1

νk

ν2 e−νt

νq
dν

= �(3 − q, νkt)

t3−q
(4)

where, �(n, z) = ∫ ∞
z xn−1e−xdx is the incomplete Gamma

function. νk = (μ/(λ − μ))1/(q−r) is the frequency for which

the two terms that make up the denominator are equal. It is

useful to note that for low t values that correspond to high

frequencies the nominator presents a constant plateau that

quickly decreases, or bends, at the edge as t → 1/νk. There-

fore, we can approximate:

fq(t) ∼ 1

t3−q
(5)

Similarly, it may be shown that for low frequencies, that

is, in the region where term with r as exponent dominates:

fr(t) ∼ 1

t3−r
(6)

Finally, we conclude that the inter-reference distance dis-

tribution can be approximated by a piece-wise power-law.

Our result is similar to the single sloped power-law obtained

by Jin under the assumption of Zipf distributed popularity or

the empirical observations by Breslau et. al in [13] for Web

reference strings. However, due to its general form it should

be able to capture the properties of more varied workloads.

In the following section we use the inter-reference distance

distribution together with the working-set theory to deduce

the miss rate of an LRU cache.
3.3. A cache model

Denning proposed the use of the working-set as a tool

to capture the set of pages a program must store (cache)

in memory such that it may operate at a desired level of

efficiency [12]. The idea is to estimate a program’s locality, or

in-use pages, with the help of a sliding window of variable

length looking into the past of the reference string. In their

seminal work characterizing the properties of the working-

set [25], Denning and Schwartz showed that the average

inter-reference distance is the slope of the average miss rate,

which at its turn is the slope of the average working-set

size, both taken as functions of the window size. The result

is of particular interest as it provides a straightforward link

between the properties of the reference string and the per-

formance of a cache that uses the least recently used (LRU)

eviction policy, but whose size is variable. To understand

the latter, consider that the working-set evicts entries that

have not been recently referenced and that the size of the

working-set for a given window size depends on the variable

number of unique destinations within the window. Given

the constraint that the reference string is obtained using

IRM, the working-set size is in fact normally distributed and

has a low variance that we can approximate as being zero. Fi-

nally, because of the traffic’s statistical properties, the cache

modeled by the working-set becomes an LRU of fixed size.

We leverage in what follows the result above to deduce

miss rate of an LRU cache when fed by a reference string

obtained using IRM and a GZipf popularity distribution. The

miss rate for the upper part of f(t) is:

mq(t) = −
∫

C

t3−q
dt = −C

tq−2

q − 2
(7)

where, t < 1/νk, 1 < q < 2 and C is a normalizing constant

which ensures that
N−1∑
t=1

C f (t) = 1. We can further compute

the average working-set size as:

sq(t) =
∫

C
tq−2

q − 2
dt = −C

tq−1

(q − 1)(q − 2)
(8)

To obtain the miss rate as a function of the cache size, not

of the inter-reference distance, we take the inverse of sq and

replace it in (7). For s < sq(1/νk) we get:

mq(s) = C

1

q − 1 (2 − q)
−

1

q − 1 (q − 1)

q − 2

q − 1 s

q − 2

q − 1

∝ s
1−

1

q − 1 (9)

This suggests that the asymptotic miss rate as a function

of cache size is a power law of the cache size with an ex-

ponent dependent on the slope of the popularity distribu-

tion. Similarly, for large inter-reference distances, when s >

sr(1/νk):

mr(s) ∝ s
1−

1

r − 1 (10)

Then, for a reference string whose destinations have a

GZipf popularity distribution and where the references to ob-

jects are independent, we find that the miss rate presents two

power-law regimes with exponents only dependent on the
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exponents of the popularity distribution and the cache size.

We test the ability of the equations to fit empirical observa-

tions in Section 4.4.

3.4. Cache performance analysis

We now investigate how cache size varies with respect to

the parameters of the model if the miss rate is held constant.

By inverting (9) and (10) we obtain the cache size as a func-

tion of the miss rate:

s(m) =

⎧⎪⎨
⎪⎩

g(q) m
1−

1

2 − q , m ≤ mk

g(r) m
1−

1

2 − r , m > mk

(11)

with g(x) = −C
1

2−x
(2 − x)

x−1
x−2

2 − 3x + x2
, mk = C

νr−2
k

(2 − r)
,

νk =
(

μ

λ − μ

)q−r

and 0 < m < 1.

We see that s(m) is independent of both the number of

packets N and the number of destinations D and is sensi-

ble only to changes of the slopes of the popularity distri-

bution q, r and the frequency at which the two slopes in-

tersect, νk. We do note that C does depend analytically on

N as it can be seen by considering C’s defining expression

(see discussion of (7)): 1/C = H(1/νk, 3 − q) − ζ (3 − r, N) +
ζ (3 − r, 1/νk) where H(n, m) =

n∑
k=1

1/km is the generalized

harmonic number of order n of m and ζ (s, a) =
∞∑

k=0

1/(k + a)s

the Hurwitz Zeta function. However, the first and last terms

of the expression depend only on popularity parameters

while the middle one quickly converges to a constant as N

grows. Whereby it is safe to assume C constant with respect

to N and consequently that the number of packets does not

influence s(m).

On the other hand, if the parameters of the popularity dis-

tribution are modified, some interesting dependencies can

be uncovered. For brevity, we explore only the case when q

and r vary but still respect the constraint that 1 < r < q < 2.

When both exponents jointly change, the cache size required

to maintain the miss rate will qualitatively vary as depicted in

Fig. 2. Specifically, as their value approach 1, that is, when the

popularity distribution is strongly skewed, cache size asymp-

totically goes to a low value constant, whereas when the ex-

ponent approaches 2, the required cache size grows very fast,

notice the superlinear growth in the log–log scale. Despite
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e
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Fig. 2. Cache size as a function of a GZipf exponent for a fixed miss rate.
not being indicated by (11), s(m) is defined when q or r are 2,

that is, it does not grow unbounded. The expression can be

obtained if we replace q by 2 in (7) and recompute all equa-

tions:

s(m) = (C + m) e− m
C (12)

3.5. Discussion of asymptotic cache performance and impact

Using the results of the analysis performed in the previ-

ous section we are now interested to characterize the asymp-

totic scalability of the LISP cache size with respect to (i) the

number of users in a LISP site (ii) the size of the EID space and

(iii) the parameters of the popularity distribution. To simplify

the discussion, we assume there are no interactions between

the first two and the third:

Assumption 3. The destination prefix popularity distribu-

tion is independent of the number of users in a LISP site and

the size of the EID space.

Whereby (i) contemplates the variation of the number of

packets, N (ii) the variation of the number of destinations D

and (iii) the variation of the GZipf parameters q, r, μ and λ,

independently. We acknowledge that the popularity distri-

bution may be influenced by a multitude of factors, and in

particular by the growth of the users generating the refer-

ence string. Nonetheless, we argue that our assumption does

make practical sense. For instance, a typical LISP router is

expected to serve hundreds to thousands of clients so fluc-

tuations proportional to the size of the user set should not

affect overall homogeneity and popularity distribution. Ad-

ditionally, although user interest in content quickly changes,

the same is not necessarily true for the content sources, i.e.,

prefixes from where the content is served, which the user

cannot typically select. This split between content and its lo-

cation can result in relatively stable popularity distribution

of the prefixes despite the dynamic popularity of actual con-

tent. We show an example network where this assumption

holds in Section 4.2.

In the previous section we found that when the param-

eters of the popularity distribution are held constant, the

cache size is independent of both the number of packets and

destinations. As a result, cache size scales constantly, O(1),

with the number of users within a LISP site and the size

of EID-prefix space for a fixed miss rate. This observation

has several fundamental implications for LISP’s deployment.

First, caches for LISP networks can be designed and deployed

for a desired performance level which subsequently does not

degrade with the growth of the site and the growth of the In-

ternet address space. Second, splitting traffic between mul-

tiple caches (i.e., routers) for operational purposes, within a

large LISP site, does not affect cache performance. Finally, sig-

naling, i.e., the number of map-request exchanges, grows lin-

early with the number of users if no hierarchies or cascades

of caches are used. This because the number of resolution re-

quests is m(s) N.

If the previous assumption does not hold, then, in the

worst case, the cache size scales linearly, O(N), with |D|. This

follows if we consider that, as the growth of N and D flat-

ten the distribution, thus leading to a uniform popularity,

the cache size for a desired miss rate becomes proportional
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Table 2

Datasets statistics.

UPC 2009 UPC 2011 UPC 2012 CESCA 2013

Date 2009-05-26 2011-10-19 2012-11-21 2013-01-24

Packets 6.5B 4.05B 5.57B 20B

Average packets/s 75.3k 46.9k 64.4k 232k

Prefixes 92.8k 94.9k 109.4k 143.7k

Average prefixes/s 2.3k 1.95k 2.1k 2.56k

Table 3

Routing tables statistics.

UPC 2009 UPC 2011 UPC 2012 CESCA 2013

BGPRT 288k 400k 450k 455k

BPGφ 142k 170k 213k 216k

ρ 0.65 0.55 0.51 0.66
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Fig. 3. Destination prefix popularity distribution.
to the |D|. This then explains the very high miss rates ob-

served in [11] for cache polluting attacks, since scanning at-

tacks, whereby an attacker enumerates all possible destina-

tions at a high packet rate, finally result in a flat popularity

distribution.

4. Empirical evidence of temporal locality

In this section we verify the accuracy of our assumptions

regarding the popularity distribution of destination prefixes

and the sources of locality in network traffic. We also verify

the accuracy of the predictions regarding the performance of

the LISP cache empirically. But first, we present our datasets

and experimental methodology.

4.1. Packet traces and cache emulator

We use four one-day packet traces that only consist of

egress traffic for our experiments. Three were captured at

the 2 Gbps link that connects our University’s campus net-

work to the Catalan Research Network (CESCA) and span a

period of 3.5 years, from 2009 to 2012. The fourth was cap-

tured at the 10 Gbps link connecting CESCA to the Spanish

academic network (RedIris) in 2013. UPC campus has about

36k users consisting generally of students, academic staff and

auxiliary personnel while CESCA provides transit services for

89 institutions that include the public Catalan schools, hospi-

tals and universities. The important properties of the datasets

are summarized in Table 2. It should be noted that this traffic

traces have also been used to evaluate the map-cache model

proposed in [11]. For convenience, we reproduce here as well

some of the most important statistics.

At the time of this writing there exists no policy as to how

EID-prefixes are to be allocated. However, it is expected and

also the practice today in the LISP-beta network to allocate

EIDs in IP-prefix-like blocks. Consequently we performed our

analysis considering EID-prefixes to be of BGP-prefix granu-

larity. For each packet within a trace we find the associated

prefix using BGP routing tables downloaded from the Route-

Views archive [26] that match the trace’s capture date. We

filtered out the more specific prefixes from the routing ta-

bles as they are generally used for traffic engineering and

LISP offers a more efficient management of these operational

needs. Table 3 gives an overview of the original (BGPRT ), and

filtered BGPφ routing table sizes as well as the ratio (ρ) be-

tween the filtered routing table size and the number of pre-

fixes observed within each trace. Both UPC and CESCA visit

daily more than half of the prefixes within BGPφ .

Apart from the popularity and temporal locality analysis

we also implemented an LISP ITR emulator to estimate LRU
map-cache performance using the traces and the routing ta-

bles as input. We compare the predictions of our cache model

with the empirical results in Section 4.4.

4.2. Popularity distribution

Fig. 3 presents the frequency-rank distributions of our

datasets for both absolute and normalized frequency. A few
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Fig. 4. Empirical and IRM generated inter-reference distance distributions

for the four traces.
observations are in place. First, although clearly not accu-

rately described by Zipf’s law, they also slightly deviate from

a GZipf. Namely, the head of the distribution presents two

power-law regimes followed by a third that describes the tail

as it can be seen in Fig. 3 (down). This may be either because

a one day sample is not enough to obtain accurate statistics

in the Zipf–Mandelbrot head region, or because popularity

for low ranks follows a more complex law. Still, we find that

for all traces the frequencies of higher ranks (above 2000)

are accurately characterized by two power-law regimes (see

Fig. 5).

Secondly, the frequency-rank curves for the UPC datasets

are remarkably similar. Despite the 50% increase of BGPφ (i.e.,

D), changes in the Internet content provider infrastructure

over a 3.5 years period, and perhaps even changes in the local

user set, the popularity distributions are roughly the same.

Finally, the normalized frequency plots for all traces are

similar, in spite of the large difference in number of packets

between CESCA and UPC datasets. These observations con-

firm our assumption that growth of the number of users

within the site or of the destination space do not necessar-

ily result in a change of the popularity distribution.

To confirm that these results are not due to a bias of pop-

ularity for larger prefixes sizes, that is, larger prefixes are

more probable to receive larger volumes of traffic because

they contain more hosts, we checked the correlation between

prefix length and frequency. However, we did not find any ev-

idence in support of this hypothesis (not shown here).

4.3. Prefix inter-reference distance distribution

We now check if knowledge about the popularity distri-

bution suffices to accurately characterize the inter-reference

distance distribution or if short-term correlations must also

be taken into account. To achieve this, we use a methodology

similar to the one used in [14] for Web page traffic. We first

generate random versions of our traces according to the IRM

model, i.e., by considering only the popularity distribution

and geometric inter-reference times, and then compare the

resulting inter-reference distance distributions to the origi-

nals. Results are shown in Fig. 4. We find that for all traces,

popularity alone is able to account for the greater part of

the inter-reference distance distribution, like in the case of

Web requests. The only disagreement is in the region with

distances lower than 100 where short-term correlations are

important and IRM traces underestimate the probability by a

significant margin.

A rather interesting finding is that the short-term corre-

lations in all traces are such that the power-law behavior

observed for higher distances (t > 100) is extended up to

distance 1. In this region, the exact inter-reference distance

equation (4) is a poor fit to reality as it follows the IRM curve.

However, the empirical results are appropriately described

by our approximate inter-reference model (5) which avoids

IRM’s bent by assuming equation (4)’s numerator constant.

4.4. Cache performance

Having found that our assumptions regarding network

traffic properties hold in our datasests we now if the cache
model (see (9) and (10)) is able predict real world LRU cache

performance.

As mentioned in Section 4.2 and as it may be seen in Fig. 5,

the head of the popularity distribution exhibits two power-

law regimes instead of one. Then, two options arise, we can

either use the model disregarding the discrepancies or adapt

it to consider the low rank region behavior. For completeness,

we choose the latter in our evaluation. This only consists in

approximating pν (ν) (see (1)) as having three regions, each

dominated by an exponent αi. Recomputing (10) we get that

the miss rate has three regions, each characterized by an αi.

Choosing the first option would only result in an overestima-

tion of cache miss rates for low cache sizes.

To contrast the model with the empirical observations,

we performed a linear least squares fit of the three regions

of the popularity distribution. This allowed us to determine

the exponents αi, computed as 1 + 1/si where si is the slope

of the ith segment, and to roughly approximate the frequen-

cies νk1 and νk2 at which the segments intersect. Using them

as input to (9) we get a cache miss rate estimate as shown

in Fig. 7. Generally, we see that the model is a remarkably

good fit for the large cache sizes but constantly underesti-

mates the miss rate for sizes lower than 1000. This may be

due to the poor fit of the popularity for low ranks. Neverthe-

less a more elaborate fitting of νk1 and νk2 should provide

better results as it may be seen in Fig. 6 where we performed

a linear least squares fit of the three power law regions of the

cache miss rate. Knowing that the slope of the cache miss rate
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is si = 1 − 1/(αi − 1) (see (7)), we computed the exponents

as depicted in the figure. Comparison with those computed

in Fig. 5 shows they are very similar. Overall, we can conclude

that the model accurately predicts cache performance.

5. Related work

Denning was first to recognize the phenomenon of tem-

poral locality in his definition of the working-set [12] and

together with Schwartz established the fundamental prop-

erties that characterize it [25]. Although initially designed

for the analysis of page caching in operating systems, the

ideas were later reused in other fields including Web page

and route caching.

In [13] Breslau et al. argued that empirical evidence indi-

cates that Web requests popularity distribution is Zipf-like of

exponent α < 1. Using this finding and the assumption that

temporal locality is mainly induced through long-term pop-

ularity, they showed that the asymptotic miss rates of an LFU

cache, as a function of the cache size, is a power law of expo-

nent 1 − α. In this paper we argue that GZipf with exponents

greater than 1 is a closer fit to real popularity distributions

and obtain a more general LRU cache model. We further use

the model to determine the scaling properties of the cache.

Jin and Bestavros showed in [14] that the inter-reference

distribution is mainly determined by the long-term popu-

larity and only marginally by short-term correlations. They
also proved that the inter-reference distribution of a refer-

ence string with Zipf-like popularity distribution is propor-

tional to 1/t2−1/α . We build upon their work but also extend

their results by both considering a GZipf popularity distribu-

tion and by using them to deduce an LRU cache model.

In the field of route caching, Feldmeier [27] and Jain [28]

were among the first to evaluate the possibility of performing

destination address caching by leveraging the locality of traf-

fic in network environments. Feldmeier found that locality

could be exploited to reduce routing table lookup times on a

gateway router while Jain, discovered that deterministic pro-

tocol behavior limits the benefits of locality for small caches.

The works, though fundamental, bear no practical relevance

today as they were carried two decades ago, a time when the

Internet was still in its infancy.

Recently, Kim et al. [7] performed a measurement study

within the operational confinement of an ISP’s network and

showed the feasibility of route caching. They show by means

of an experimental evaluation that LRU cache eviction pol-

icy performs close to optimal and better than LFU. Also, they

found that prefix popularity distribution is very skewed and

that working-set size is generally stable with time. These are

in line with our empirical findings and provide practical con-

firmation for our assumption that the popularity distribution

can be described as a GZipf.

Several works [5,29] have previously looked at cache

performance in loc/id split scenarios considering LISP as a
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Fig. 7. Empirical miss rate with cache size together with a fit by (9) and (10).
reference implementation (for a complete set of references

see [11] and the references therein). Although methodologies

differ between the various papers, in all cases the observed

LISP cache miss rates were found to be relatively small. This,

again, indirectly confirms the skewness of the popularity dis-

tribution and its stability at least for short time scales.

Finally, in [10] and [11] we show how the working-set

can be leveraged to estimate network traffic temporal local-

ity and thereafter how it can be leveraged to link cache size

and miss rate. We further exploit the result to study the vul-

nerability to scanning attacks and to perform an in-depth,

over time analysis of cache performance. In contrast, here we

seek to understand what fundamental traffic parameters in-

fluence the average working-set size, instead of empirically

measuring it. Ultimately our goal is to find the link between

popularity distribution, size of LISP site and EID namespace,

on the one hand, and map-cache miss rate, on the other.

6. Conclusions

LISP offers a viable solution to scaling the core routing in-

frastructure of the Internet by means of a location/identity

split. However this forces edge domain routers to cache lo-

cation to identity bindings for timely operations. In this pa-

per we answer the following question: does the newly intro-

duced LISP edge cache scale?

Our findings show that the miss rate scales constantly,

O(1), with the number of users as well as with the num-

ber of destinations. The result is crucial for operational
environments and should remove all doubts about LISP’s

scalability, since it implies map-cache provisioned miss rate

should not degrade over time. To reach this conclusion, we

start from two assumptions: (i) the popularity of destination

prefixes is described by a GZipf distribution and (ii) temporal

locality is predominantly determined by long-term popular-

ity. Fundamentally, these assumptions are often observed to

hold in the Internet [7,24] but also in other fields such as web

traffic [13], on-demand video [22] or even linguistics [20]. Ar-

guably, they are inherent to human nature and, as such, are

expected to hold in the foreseeable future. In addition, we

show that the result is valid only if, as observed for our traf-

fic traces, (iii) popularity is not influenced by the number of

users and the number of destinations. Nevertheless, we also

show that if the assumptions do not hold, then cache size

scales linearly, O(N), with the number of destinations.

At the time of this writing there is an open debate on how

the Internet should look like in the near future and in this

context, it is important to analyze the scalability of the var-

ious future Internet architecture proposals. This paper fills

this gap, particularly for the Locator/ID split architecture. Fur-

thermore, our results show that edge networks willing to

deploy LISP will not face map-cache size scaling issues—as

long as the assumptions hold—even if the edge network it-

self becomes larger (i.e., more users) or the Internet grows

(i.e., more prefixes).
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