
IEEE Communications Magazine • July 2015 2010163-6804/15/$25.00 © 2015 IEEE

Alberto Rodriguez-Natal
and Albert Cabellos-
Aparicio are with
Technical University of
Catalonia.

Marc Portoles-Comeras,
Vina Ermagan, Darrel
Lewis, and Fabio Maino
are with Cisco Systems,
San Jose, CA.

Dino Farinacci is with
lispers.net.

INTRODUCTION

 The Locator/ID Separation Protocol (LISP) [1]
decouples identity from location on current IP
addresses by creating two separate namespaces:
endpoint identifiers to identify hosts, and routing
locators to route packets. The original purpose
of LISP was to solve the scalability issues of the
Internet default-free zone (DFZ) routing tables
by pushing traffic engineering practices to the
identifiers space while keeping the locators
space quasi-static and highly aggregatable. At
the time of this writing LISP has been deployed
in a pilot network (lisp4.net) that includes more
than 20 countries and hundreds of institutions.
LISP hardware and software are also widely
available, both in open-source (lispmob.org,
openlisp.org) and proprietary implementations
(lisp.cisco.com).

Since its inception, LISP has gained signifi-
cant traction in both industry and academia. As
a result of LISP standardization and research
efforts, the protocol has grown architecturally
and has been applied to use cases beyond its
original purpose. There is a growing interest in

the role of LISP in Software Defined Network-
ing (SDN) [2]. LISP is already becoming part of
SDN solutions, such as the OpenDaylight con-
troller (opendaylight.org). In this article we ana-
lyze the relation between the LISP architecture
and the SDN paradigm.

There are two well-defined parts in any SDN
deployment: the northbound and the south-
bound interfaces. The northbound offers a high-
level application programming interface, where
control applications can be deployed. The south-
bound is a low-level interface used to operate
with the raw network elements. Currently, there
is ongoing effort to define the high level abstrac-
tion interface (see Frenetic [3] or Procera [4] as
examples). There are also several options with
respect to the southbound interface, with Open-
Flow [5] attracting the most interest from industry.

The main contribution of this article is to
analyze LISP as a southbound SDN protocol.
For this, the article presents a systematic analysis
of the fundamental SDN requirements, inferred
from the literature [2–10], and how such require-
ments can be fulfilled by the LISP architecture
and components. The analysis results in a set of
qualitative advantages and drawbacks as well as
recommended potential improvements to over-
come the identified issues. In order to validate
the analysis, we build and test a prototype using
the LISPmob open-source implementation (lisp-
mob.org).

BACKGROUND: LISP OVERVIEW
The Locator/ID Separation Protocol (LISP)
decouples host identity from its location. It cre-
ates two different namespaces: endpoint identi-
fiers (EIDs) and routing locators (RLOCs).
Hosts are identified by an EID, and their point
of attachment to the network by an RLOC. To
keep LISP incrementally deployable, in its very
basic form EIDs and RLOCs are syntactically
identical to current IPv4 and IPv6 addresses.
However, the protocol allows arbitrary address
families (e.g. MAC) to be used.

Figure 1 depicts the LISP common operation.
Packets are routed based on EIDs within host
sites and on RLOCs on transit networks. Since
host A and host B are in different sites (e.g. two
offices geographically separated), the packets
from A to B have to traverse a transit network

ABSTRACT

The Locator/ID Separation Protocol (LISP)
splits current IP addresses overlapping semantics
of identity and location into two separate names-
paces. Since its inception the protocol has gained
considerable attention from both industry and
academia, motivating several new use cases to be
proposed. Despite its inherent control-data
decoupling and the abstraction and flexibility it
introduces into the network, little has been said
about the role of LISP on the SDN paradigm. In
this article we try to fill that gap and analyze if
LISP can be used for SDN. The article presents
a systematic analysis of the relevant SDN
requirements and how such requirements can be
fulfilled by the LISP architecture and compo-
nents. This results in a set of benefits (e.g. incre-
mental deployment, scalability, flexibility,
interoperability, and inter-domain support) and
drawbacks (e.g. extra headers and some initial
delay) of using LISP for SDN. In order to vali-
date the analysis, we have built and tested a pro-
totype using the LISPmob open-source
implementation.

ACCEPTED FROM OPEN CALL

Alberto Rodriguez-Natal, Marc Portoles-Comeras, Vina Ermagan, Darrel Lewis, Dino Farinacci,

Fabio Maino, Albert Cabellos-Aparicio

LISP: A Southbound SDN Protocol?

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 201

IEEE Communications Magazine • July 2015202

(e.g. the Internet). To allow transit between the
EID and RLOC spaces, LISP follows a map-
and-encap approach performed by LISP tunnel
routers deployed at edge points. In the image,
tunnel router X receives the packet from host A
addressed to host B (1). It knows that host B is
in a different EID site, but it does not know
where to reach that site (i.e. its RLOC). Tunnel
router X requests this information to the map-
ping system (2). The LISP mapping system is a
distributed database that stores EID to RLOC
mappings. Tunnel router Y has previously regis-
tered its location and the set of EIDs it is in
charge of in one of the mapping system internal
servers. The mapping system routes the request
internally (3) to find that server, and eventually
it replies back with the requested location (4).
Tunnel router X gets this information and caches
it for future use. From now on, all EID packets
from host A to host B will be encapsulated into
an RLOC packet in tunnel router X and routed
toward tunnel router Y (5). Upon arrival at the
destination, tunnel router Y will decapsulate the
packets and forward them natively to host B (6).

LISP: AN SDN ARCHITECTURE?
In this section we analyze if the LISP architec-
ture, in its current form, can fulfill the require-
ments stemming from the SDN paradigm. Even
though a formal definition of such requirements
cannot be found in the literature, we infer the
key SDN requirements by revisiting the design
principles of the state-of-the-art SDN literature.

Control-Data Decoupling: One of the main
reasons that motivated the emergence of Open-
Flow [5] was to decouple the network control
from the data forwarding devices. With its map-
ping system in place, LISP is capable of main-
taining a distributed database where the network
state and control information are stored. This
database can be updated and queried by the
LISP network elements in real time, and any
change on it is propagated over the network.
With this approach LISP is effectively decou-
pling control from data: while the data-plane
remains at the router level, implemented on the

tunnel routers, all control is pushed to the map-
ping system.

Network Programmability: Frenetic [3] and
Procera [4] are two examples of the interest of
the community in programing the network and
improving its management. The LISP paradigm
does not program the network but rather the
mapping system. The control policies can be pro-
grammed and stored on the mapping system, then
the LISP data-plane will operate accordingly.
LISP semantics are poor when compared to state-
of-the-art languages [3, 4] and focuses on repre-
senting the network state, therefore LISP should
be complemented by a rich northbound language.

Centralized Control: Levin et al. [7] demon-
strate that one core benefit of SDN is that it
enables the network control logic to be designed
and operated on a global network view, as
though it were a centralized application. Since
the LISP mapping system stores all network con-
trol state data and can be remotely accessed and
updated in real time, it provides a global view of
the network that effectively centralizes the control.

Scalability: Yeganeh et al. [8] show the con-
cern of the SDN community about SDN scalabil-
ity. LISP is a pull-based architecture that stores
the network state information in the mapping
system, and network entities (e.g. LISP tunnel
routers) retrieve and cache only locally relevant
state information on demand. Furthermore, the
literature shows that the mapping system inter-
nals can be designed to be scalable [11].

Core-Edge Split: Casado et al. [9] analyze the
main shortcomings of existing SDN architectures
and point to the Fabric architecture as a solu-
tion. Fabric is based on an element called net-
work fabric, a set of forwarding elements whose
main function is packet forwarding. By taking
base on this concept, they split the network into
three components: hosts, edge switches, and core
fabric. With this, rich network services such as
isolation, mobility, or security are performed at
the edge while fabric control is only responsible
for packet forwarding. It is simple to establish a
bijective relationship from Fabric components to
LISP elements: tunnel routers perform edge
switch functions, hosts are located on the EID
space, and the core fabric corresponds to the
RLOC space. From an abstract point of view,
LISP offers an equivalent architecture to the one
proposed by Fabric.

LISP SDN BUILDING BLOCKS
In this section we analyze how specific LISP
architectural elements can be used as SDN build-
ing blocks to understand the technical advantages
and disadvantages of LISP as an SDN solution.

FLEXIBLE NAMESPACE
The main LISP specification assumes IPv4 and
IPv6 as address families, but it is flexible enough
to allow using any other address families (e.g.
MAC addresses). The LISP canonical address
format (LCAF) allows defining ad-hoc address
types that can be used for any purpose on a
LISP system.

The template to define this type of address
follows a simple TLV format (type-length-value).
With this format, it is possible to define any

Figure 1. LISP overview.

Identifier

Locator

Control

Data
Encap.
Data

Mapping system

Tunnel router YTunnel router XHost A Host B

EID spaceEID space RLOC space

A

3

4
2

1 65

X

B Y

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 202

IEEE Communications Magazine • July 2015 203

address type, including nested addresses of the
same or different type. There are several address
types defined at the time of this writing: AS
number, geo-coordinates, application data,
NAT-traversal data, multicast info, and so on.
As an example, geo-coordinates addresses are
used to carry geographical information along
with any other address.

In general, such addresses allow LISP to map
from any kind of identifier to any kind of loca-
tor, which means that, from an abstract point of
view, LISP can map from any namespace to
another. This address agnosticism enables rich
network state programmability and can help to
ease the interoperability challenges of heteroge-
neous SDN deployments

DISTRIBUTED MAPPING DATABASE
Interface: The interface to exchange informa-
tion with the mapping system is standard and
open, and all the mapping system internal ele-
ments are hidden behind this interface (see
Fig. 2). This allows the LISP data-plane devices
to remain agnostic of the mapping system inter-
nal implementation. Such decoupling was put
into test when the LISP beta-network deployed
on the Internet (lisp4.net) replaced the existing
mapping system, based on BGP, to a new one
based on DNS without interfering with any of
the LISP data-plane elements.

Arbitrary Information: Using the LISP flexi-
ble addresses (LCAF) described in the previous
section, the mappings can contain any arbitrary
information and be read/written from the map-
ping system using a standard interface. An SDN
system can take advantage of this feature to
store the network state. This is similar to what
Onix [10] does with its own distributed databases.

Onix is a well known wide-area SDN deploy-
ment that addresses the lack of a general SDN
control platform that can provide network-wide
management abstractions. Onix provides an
infrastructure to manage network state, on top
of which different control-plane applications can
be implemented. To offer this, Onix deploys its
own database system to keep the network state
and relies on the OpenFlow protocol to commu-
nicate with the network devices. Onix takes care
of keeping consistent and distributed this net-
work state over all network elements. With a
LISP deployment, Onix could take advantage of
LISP capabilities to provide similar functionality.
First, it could use the mapping system with flexi-
ble addresses to keep network state and policies
instead of deploying its own database system.
Second, it could automatically reflect this state
on the actual network if the network devices
directly pull these policies from the mapping sys-
tem using the LISP protocol.

Internal Scalability: The internal architecture
of a specific mapping system varies depending
on the type of information it is expected to store.
Figure 2 also shows how the mapping system can
use different internal implementations.

A mapping system indexing common IP
addresses benefits from a hierarchical structure,
such as DNS. This is the approach followed by
the delegated database tree (DDT) based on [11],

the mapping system design used on the current
LISP Internet deployment (lisp4.net). On the
other hand, some deployments could require a
flat name space; this is the case of non-aggregat-
able data such as character strings. For such
requirements, a distributed hash table (DHT)
design, rather than a DNS-like design, should be
used. Although some initial efforts toward a
DHT-like mapping system can be found in the
literature [12], at the time of this writing only a
hierarchical mapping system (DDT) has been
successfully widely deployed.

Consistency: Levin et al. [7] expose the impact
of a distributed SDN state on a logical central-
ized control application. While LISP still needs
to deal with distributed trade-offs, its design
allows mitigating them. The LISP mapping sys-
tem is consistent and any snapshot of the dis-
tributed information reflects the desired control
state. However, LISP network elements are
eventually inconsistent, since an update on the
mapping system is not instantaneously reflected
on the data-plane. For instance, a LISP tunnel
router can register new mapping information
into the mapping system at any time, but an old
version of the mapping can still be cached by
remote tunnel routers. In order to minimize net-
work inconsistency time, LISP defines two mech-
anisms to enforce up-to-date information at the
data-plane. First, data-packets can carry an index
of the current version of the mapping; second, a
special control message can be used to explicitly
notify remote parties of the mapping update.

NETWORK LANDMARKS
Re-encapsulating tunnel routers (RTR) are spe-
cial LISP tunnel routers that can be deployed on
the RLOC space, rather than on the EID-RLOC
edges. They receive LISP traffic, decapsulate it,
look-up on the mapping system for the next hop,

Figure 2. LISP mapping system.

DNS
Others

Mapping system internals

Mapping system interface

LISP data-plane devices

DHT

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 203

IEEE Communications Magazine • July 2015204

re-encapsulate the traffic, and forward it. They
give flexibility to the data path, offering network
landmarks that data-packets can use.

These routers are a key element of a LISP
SDN deployment. They can process the decapsu-
lated traffic prior to re-encapsulating it again.
This means, for instance, that traffic can be
inspected, accounted, dropped, or modified at the
re-encapsulating tunnel routers. An SDN
approach can take advantage of these elements to
set up network function devices. Devices such as
firewalls, traffic analyzers, and accounting points,
can be plugged, implemented, or virtualized on
top of re-encapsulating devices. In that sense, Fig.
3 shows the abstract representation of a re-encap-
sulating tunnel router device with some network
functions integrated that are used on demand.

TRAFFIC ENGINEERING
A mapping on the LISP mapping system can link
an identifier to several locators. LISP allows
defining a different priority and weight per loca-
tor. These values are used to specify the prefer-
ence of the RLOCs to use to reach an EID as
well as how to balance traffic among them.
Besides that, LISP also introduces advanced
traffic engineering capabilities by means of the
explicit locator path (ELP). An explicit locator
path is a list of hops through which packets have
to be routed. The packets have to visit those

locators in the same order as they are listed in
the explicit path. These explicit paths serve as a
mechanism to force traffic to follow a certain
path on the locators space.

Priorities and weights also apply to locator
paths, which means that an EID can map to sev-
eral locator paths with different priority/weight
attributes. Furthermore, such paths can be nest-
ed, creating sub-paths. This is done using EIDs
instead of RLOCs as hops in the path. The final
locator-only path will be obtained by a recursive
look-up process. When a device finds that the
next hop of the path is an EID, it will look-up
on the mapping system to know the sub-path
that this EID represents. Note that these sub-
paths are subject to priority and weight values
the same way as any other locator on the path.
Using priority and weight, a LISP system can use
different paths for the same destination where
one path could be the most preferable while the
others serve as backup, or many paths can be
used at the same time to balance traffic.

Figure 4 shows an example. The traffic going
to endpoint C should first go through M and N
before being delivered at U. If that path is not
available, then the traffic should be balanced in
a 70/30 fashion over locators V and W. The traf-
fic going to D should follow the path defined by
α before reaching Z. As a backup, it can be also
delivered directly on Z. In the example, α is
used as a special identifier that represents a path
instead of an endpoint.

Locator paths and re-encapsulating devices
are tightly coupled, since in most of the cases
the locator paths are used to force traffic to go
through re-encapsulating devices. Explicit loca-
tor paths combined with re-encapsulating devices
enable network programmability due to the abil-
ity to define custom programmable paths for
packets in real time. Priority and weight parame-
ters serve a fundamental role when deploying
traffic rules. Traffic can be balanced among sev-
eral paths and, thanks to recursion, to an arbi-
trary number of sub-paths. An SDN approach
can deploy several re-encapsulating devices that
also may implement (virtualized or not) network
functions, and then program the mapping system
to force the traffic to flow through these devices
using explicit paths. Path nesting allows defining
common sets of re-encapsulating devices that
can be applied at once to specific traffic.

LABEL SYSTEM
Instance-ID is a 24 bit length identifier that can
be associated with a certain EID. The identifier
is included in the LISP header, and hence in all
data-packets. Typically, this is used to carry
VLAN tags or VPN identifiers. With this, net-
work operators can split network policies and
traffic, enabling multi-tenancy deployments.

However, instance-ID can be used beyond its
original purpose. It is a 24 bit tag that can be
appended to any data-packet to enable further
features, not only multi-tenancy or address
reusing. Specifically it can be used for routing
scalability as well as management. In an SDN
proposal such as Fabric [9], instance-ID can be
used to tag flows that should be forwarded in the
same way, simplifying forwarding on the core
fabric and improving management and scalability.

Figure 3. LISP re-encapsulating tunnel router.

Data path

Network function Network function

Re-encapsulation logic
Mapping
system

LISP in LISP out

Optional path Control

Figure 4. LISP traffic engineering.

Identifier

Locator

Priority

Weight

1st

2nd

C

M100%

70%

30%

1st

2nd
D



100%

1st 100%

100%

V

W

N

P Q



Z

Z

U

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 204

IEEE Communications Magazine • July 2015 205

LISP FOR SDN
Based on the previous analysis, this section dis-
cusses the advantages and drawbacks of applying
LISP for SDN.

HIGHLIGHTS
Based on the analysis in the previous section, we
highlight the most relevant features of LISP in
SDN environments.

Scalability: As described previously, the map-
ping system provides scalability to the LISP sys-
tem, an SDN solution can leverage this to
provide a scalable network state database that
can be directly queried by both data and control
devices.

Interoperability: Given its flexible namespace
and its label system, LISP is agnostic to the pro-
tocols it encapsulates and is well-suited to deploy
overlays.

Inter-Domain: Network landmarks and LISP
traffic engineering capabilities allow LISP to
enforce policies on transit networks and make it
suitable for inter-domain deployments.

BENEFITS
First, LISP has been designed to be incremental-
ly deployable and to leverage current IP-based
networks. Any existing IP-based network can
incorporate common SDN features by simply
upgrading some routers to LISP tunnel routers
and connecting them to a mapping system.

Second, the shortcomings of traditional SDN
protocols are motivating the emergence of hybrid
SDN proposals that combine SDN with tradi-
tional network solutions [13]. Interestingly, due
to its scalability and interoperability, LISP eases
the deployment of the aforementioned hybrid
SDN networks, specially since LISP can be incre-
mentally deployed. Furthermore, thanks to its
flexibility, LISP is well-suited to accommodate
future protocols and new network approaches.

Finally, in contrast with common SDN proto-
cols that are designed to operate mostly within a
single domain, LISP allows SDN policies to be
enforced across domains (e.g. DC-to-DC, DC-
to-user’s home). Well-placed LISP elements (e.g.
re-encapsulating tunnel routers) make possible a
programmable SDN deployment over a transit
network (e.g. the Internet), something that is
more complex to accomplish with traditional
SDN protocols.

DRAWBACKS
Due to both how the protocol operates and its
nature as a map-and-encap approach, LISP has
some limitations that must be taken into account
when considering LISP as a southbound SDN
protocol.

Extra Headers: In order to encapsulate the
traffic, LISP adds extra headers to the packets.
This increments the packet size and reduces the
available payload.

Mapping Resolution: LISP devices resolve
and cache the mapping information on demand.
The first packets of non-cached flows need to be
either buffered or dropped until the mapping
resolution process has been completed.

Mapping Updates: Any update on the map-
ping system is propagated over the network.

However, this propagation involves some delay
due to the signaling process, which can introduce
latency in the system and/or produce packet losses.

Look-Up Support: While LISP defines how to
convey different types of addresses in control
messages, it does not define how to use all of
those addresses to perform look-up operations.

Flat Data Support: Generally, mapping sys-
tem implementations have been designed with
hierarchical data in mind (e.g. IP addresses) and
as such do not perform well when storing flat
data (e.g. character strings).

Both extra headers and mapping resolution
drawbacks are inherent in the LISP architecture.
However, they do not have a strong impact on
performance given that LISP encapsulation typi-
cally adds only 36 bytes (IPv4) or 56 bytes (IPv6) [1],
and the LISP entities cache the mappings and
because of the strong locality of traffic [14]
achieve a hit-rate above 99 percent.

Regarding flat data support, the limitation can
be solved with a DHT-based mapping system.
Given that the interface to read/write mappings
is open and standard, this limitation is not archi-
tectural and can be solved taking advantage of
existing DHT databases.

To overcome the rest of the drawbacks we
propose the following potential enhancements
for the protocol above.

PROPOSED IMPROVEMENTS
The mapping updates limitation requires opti-
mizing the mapping update signaling on SDN
scenarios. In this context, we propose imple-
menting a publish/subscribe mechanism for
LISP mappings. The proposed mechanism is
already being prototyped for the LISP project
in OpenDaylight (opendaylight.org). The sys-
tem operates as follows. Whenever a LISP
data-plane device requests a mapping, the map-
ping system adds it to the list of subscribers for
that mapping. Whenever the mapping data
changes, the subscribers of that mapping are
immediately notified, and thus they do not
need to wait for the standard mapping update

Figure 5. LISP SDN prototype.

A→B
R Y

B→A
Y

Mapping system

Controller

Host B

RLOC spaceEID space EID space

Host A Tunnel router YTunnel router X

Re-encapsulating
tunnel router R

R X

X

Identifier

Locator

Control

Data
Encap.
Data

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 205

IEEE Communications Magazine • July 2015206

propagation. The requester has to renew its
subscription by explicitly requesting the map-
ping before a time-out. For scenarios where
scalability and/or security is a concern, the sub-
scription may be restricted to a set of pre-
defined mappings or subscribers.

The look-up support needs to be extended
beyond its current focus mostly in IP-prefixes.
Most of the current SDN solutions operate the
network in terms of flows. Traditionally, the
minimal amount of information to identify a
flow is its 5-tuple, even though normally in SDN
more fields are used (e.g. OpenFlow). We advo-
cate that LISP requires at least a look-up mecha-
nism based on 5-tuples, despite the fact that in
the future further look-up processes can be
implemented, potentially leveraging on the
OpenFlow tuple matching process.

PROTOTYPE
This section presents a prototype of a LISP-
based SDN solution in order to validate its feasi-
bility.

SETUP
The prototype topology is depicted in Fig. 5.
Two hosts (A and B) in different LISP sites are
connected through the transit network via two
tunnel routers (X and Y) and optionally via a re-
encapsulating tunnel router. The mapping sys-
tem stores mappings of source-destination EID
tuples to RLOC space paths. These mappings
are loaded by (borrowing OpenFlow terminolo-
gy) a controller.

To implement the prototype, we instantiate a
virtual machine running Linux for each of the
elements on the topology. We connect the
machines using virtual networks, emulating the
topology depicted in the figure. On the machines
that need LISP capabilities we run the open-
source LISPmob implementation (lispmob.org)
modified to support look-ups based on destina-
tion-source EID tuples.

On the described prototype we test two dif-
ferent scenarios, one where the traffic goes
directly to its destination and another where the
traffic goes through the detour introduced by the
re-encapsulating tunnel router. We have a sim-

ple SDN application running on the controller
that can dynamically set which path has higher
priority.

METRICS
To extract relevant metrics we run 10 iterations
injecting ping packet traffic during 10 secs per
scenario (with and without detour) at a data-rate
of 1000 pkts/s.

Packet Loss: The initial packet loss is due to
the required mapping resolution signaling when
we send a flow over a new path. We have mea-
sured an average initial packet loss of 3.0 pack-
ets dropped per iteration on the scenario without
detour. This average packet loss goes up to 5.1
packets per iteration on the scenario with the
extra LISP router due to the introduction of
additional mapping resolution operations.

Delay: To measure how much delay is intro-
duced by LISPmob we built an equivalent pro-
totype without LISP capabilities, where traffic
paths were configured modifying the routing
tables on the Linux boxes. The top of Fig. 6
shows the PDF (probability distribution func-
tion) of the RTT (round trip time) for the sce-
narios considered. Note that without the detour
round-trip traffic goes through four hops (i.e.
two from A to B and two from B to A), while
the detour introduces one extra hop in each
direction (3+3) for a total of six hops. The bot-
tom part of Fig. 6 shows how much time elaps-
es from when LISPmob receives a new packet
until it delivers the LISP encapsulated packet,
that is, LISP look-up and encapsulation. The
plots in Fig. 6 show that each LISP hop adds
roughly 50 microseconds to the RTT, of which
no more than 30 are due to LISP operations.
The remaining latency is mostly due to the user
↔ kernel communication required by LISP-
mob. Nevertheless, the lookup and encapsula-
tion operations may be optimized by router
manufacturers to enable the performance of
hardware implementations to be similar to that
of traditional IP datagram forwarding.

CONCLUSIONS
In this article we have analyzed if LISP, in its
current form, can be used for SDN. Our analysis
concludes that the control-data decoupling, the
network programability, and the centralized con-
trol enabled by traditional SDN solutions are
already enabled by the LISP mapping system
and supported by the rest of the LISP compo-
nents. The major benefits of using LISP for SDN
are that it keeps its incremental deployability
and flexibility while providing scalability, inter-
operability, and inter-domain support, making
LISP especially suitable for SDN deployments
over legacy or transit networks, such as the
Internet. However, despite its potential as an
SDN enabler, there are some aspects of the pro-
tocol that should be extended to better fit the
SDN use-case, mainly the signaling for the map-
ping updates and implementing support for an
advanced look-up process. Finally, the presented
prototype demonstrates that LISP is feasible for
SDN scenarios.

Figure 6. LISPmob induced delay.

RTT (in milliseconds)
0.10

0.1
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (in milliseconds)
0.010

0.1
0

0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Linux (2+2 hops)
Linux (3+3 hops)
LISPmob (2+2 hops)
LISPmob (3+3 hops)

LISPmob (look-up and encap)

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 206

IEEE Communications Magazine • July 2015 207

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their
constructive comments. This work has been par-
tially supported by a Cisco research grant, by the
Spanish Ministry of Education under grant
FPU2012/01137, by the Spanish Ministry of
Economy and Competitiveness under grant
TEC2014-59583-C2-2-R, and by the Catalan
Government under grant 2014SGR-1427.

REFERENCES
[1] D. Farinacci et al., “The Locator/ID Separation Protocol

(LISP),” IETF RFC 6830, 2013.
[2] M. Jarsche et al., “Interfaces, Attributes, and Use Cases:

A Compass for SDN,” IEEE Commun. Mag., vol. 52, no.
6, June 2014, pp. 210–17.

[3] N. Foster et al., “Languages for Software-Defined Net-
works,” IEEE Commun. Mag., vol. 51, no. 2, 2013, pp.
128-134.

[4] H. Kim and N. Feamster, “Improving Network Manage-
ment with Software Defined Networking,” IEEE Com-
mun. Mag., vol. 51, no. 2, 2013, pp. 114–19.

[5] N. McKeown et al., “OpenFlow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Computer Com-
munication Review, vol. 38, no. 2, 2008, pp. 69–74.

[6] S. Sezer et al., “Are We Ready for SDN? Implementation
Challenges for Software-Defined Networks,” IEEE Com-
mun. Mag., vol. 51, no. 7, 2013, pp. 36–43.

[7] D. Levin et al., “Logically Centralized?: State Distribu-
tion Trade-Offs in Software Defined Networks,” Proc.
First Workshop on Hot Topics in Software Defined Net-
works, ACM, 2012, pp. 1–6.

[8] S. H. Yeganeh et al., “On Scalability of Software-
Defined Networking,” IEEE Commun. Mag., vol. 51, no.
2, 2013, pp. 136–41.

[9] M. Casado et al., “Fabric: A Retrospective on Evolving
SDN,” Proc. First Workshop on Hot Topics in Software
Defined Networks, ACM, 2012, pp. 85–90.

[10] T. Koponen et al., “Onix: A Distributed Control Plat-
form for Large-Scale Production Networks,” OSDI, vol.
10, 2010, pp. 1–6.

[11] L. Jakab et al., “LISP-TREE: A DNS Hierarchy to Support
the LISP Mapping System,” IEEE JSAC, vol. 28, no. 8,
2010, pp. 1332–43.

[12] L. Mathy and L. Iannone, “LISP-DHT: Towards a DHT to
Map Identifiers onto Locators,” Proc. 2008 ACM
CoNEXT Conf., ACM, 2008.

[13] S. Vissicchio, L. Vanbever, and O. Bonaventure,
“Opportunities and Research Challenges Of Hybrid Soft-
ware Defined Networks,” SIGCOMM Comput. Commun.
Rev., 44, 2, April 2014, pp. 70–75.

[14] F. Coras, A. Cabellos-Aparicio, and J. Domingo-Pascual,
“An Analytical Model for the LISP Cache Size,” Proc.
IFIP Networking, 2012.

BIOGRAPHIES
ALBERTO RODRIGUEZ-NATAL received a BSc. (2010) and a
MSc. (2012) in computer science from the University of
Leon (Spain) and the Technical University of Catalonia

(Spain), respectively. He is now a Ph.D. candidate at the
Technical University of Catalonia and has been a visiting
researcher at Cisco Systems (USA) and the National Insti-
tute of Informatics (Japan). His main research interests
are future Internet architectures and Software-Defined
Networking.

MARC PORTOLES-COMERAS received his degree in telecom-
munications engineering from the Technical University of
Catalonia (UPC) and is currently working as a software
engineer at Cisco Systems Inc., participating in the devel-
opment of the LISP protocol architecture. Before joining
Cisco he was a research engineer at the Centre Tecnológ-
ic de Telecomunicacions de Catalunya (CTTC) where he
part ic ipated in mult ip le R&D projects. His current
research interests are SDN and network virtualization
solutions.

VINA ERMAGAN is a technical lead in the Chief Technology
and Architecture Office at Cisco Systems. She joined Cisco
in 2008 and has been working on research, design, and
development of SDN and network virtualization technolo-
gies ever since. She has initiated projects to implement
LISP in Open vSwitch (OVS), OpenStack, and OpenDaylight.
Vina received her MSc. in computer science from UC San
Diego in 2008, and her BSc. in computer engineering from
Sharif University of Technology.

DARREL LEWIS has more than 25 years of experience as an
engineer for routing infrastructure vendors and network
service providers. He has co-authored several LISP RFCs and
he is currently a technical leader at Cisco Systems. Previ-
ously, he worked for Riverhead Networks as the lead con-
sulting engineer. He is active in the North American
Network Operators Group (NANOG), the Internet Engineer-
ing Task Force (IETF), and is a noted instructor in the fields
of both Internet routing and security.

DINO FARINACCI is a technologist advancing the state of
the art for the next-generation Internet. He was the orig-
inal co-author for LISP dating back to 2007 and has the
pleasure of writing two implementations of the protocol.
He currently does consulting for large and startup net-
working vendors as well as users of such products. He is
a software engineer by trade and a technology visionary
by passion.

FABIO MAINO is a distinguished engineer at Cisco Systems, in
the Chief of Technology and Architecture Office, where he
leads the LISP research team. He has approximately 50
patents issued or filed with the US PTO, and has contribut-
ed to various standardization bodies, including IEEE, IETF,
and INCITS. He has a Ph.D. in computer and network secu-
rity and an M.S. (“Laurea”) in electronic engineering from
Politecnico di Torino, Italy.

ALBERT CABELLOS-APARICIO received a BSc. (2001), MSc.
(2005), and Ph.D. (2008) degree in computer science from
the Technical University of Catalonia (UPC), where he is
now an assistant professor. In 2010 he joined the NaNoNet-
working Center in Catalunya, where he is the Scientific
Director. He has co-authored more than 15 journal and 40
conference papers. His main research interests are future
architectures for the Internet and nano-scale communica-
tions.

RODRIGUEZ-NATAL_LAYOUT.qxp_Author Layout 7/6/15 3:08 PM Page 207

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

