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Abstract—Energy-harvesting-enabled wireless sensor networks
(EHE-WSN), despite their disruptive potential impact, still
present several challenges precluding practical deployability. In
particular, the low power density and random character of the
ambient energy sources produce slow deep fadings in the energy
that nodes harvest. Unfortunately, the capacity of the energy
buffers is very limited, causing that, at some times, the node might
interrupt its operation due to lack of stored energy. In this context,
a general purpose framework for dimensioning the energy buffer
is provided in this work. To achieve this, a dynamics-decoupled,
multi-source capable energy model is presented, which can handle
fast random patterns of the communications and the energy
harvesting, while it can capture slow variations of the ambient
energy in both time and space. By merging both dynamics, the
model can more accurately evaluate the performance of the sensor
node in terms of the energy storage capacity and to estimate the
expected energy of the neighboring nodes. In order to evaluate
the performance of the sensor node, a statistical unit for energy
harvesting resources, referred as the Energy-Erlang (E2), has
been defined. This unit provides a link between the energy model,
the environmental harvested power and the energy buffer. The
results motivate the study of the specific properties of the ambient
energy sources before the design and deployment. By combining
them in this general-purpose framework, electronics and network
designers will have a powerful tool for optimizing resources in
EHE-WSNs.

Index Terms—Energy harvesting, energy management, nega-
tive-energy queue, system modeling, wireless sensor networks.

I. INTRODUCTION

R ECENT advancements in electronics [1]–[6] have
pointed out that energy harvesting (EH), a process by

which the energy derived from ambient or external sources
[7] is captured and stored for later use in the sensor, is a firm
candidate as a key enabling technology in the development of
wireless sensor networks (WSNs) with perpetual character [8],
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[9]. The environmental energy can be harvested from a large
variety of physical natures, such as solar [8], thermal, vibration
[6], acoustic [10], or radio-frequency (RF) [2] energy sources.
These upcoming networks, referred as energy-harvesting-en-

abled wireless sensor networks (EHE-WSN), show unique
properties not only because of their ultra low power constraints
but also because of the fact that the energy state is time-varying.
This is, the energy stored at the energy buffer is constantly
increasing and decreasing in a random manner. In addition to
this, the ambient energy has a slow temporal dynamic which
modulates the harvesting power in several orders of magnitude.
As an example, the available power of solar energy ranges
from 10 cm to up to 100 cm a day [11]. Given the
amount of factors which take part during the normal operation
of any single node, it is challenging for the network designer
to dimension critical parameters such as the link capacity [12],
the energy buffer capacity of each sensor node, or to design
transmission policies [13].
Among other critical parameters, the energy buffer, which is

usually composed of supercapacitors or batteries, is one of the
most expensive and larger volume subsystems. In particular, a
typical supercapacitor requires an approximated volume of 2
cm in order to store 1 J of energy [14]. Thus, the design of
the energy buffer might result either in an over dimensioning of
its maximum capacity giving as a result significant downscaling
impairments and an increase in cost, or, on the contrary, an under
dimensioning, which would lead to unnecessary interruptions
along the normal operation of the network.
In order to capture the random patterns of the energy har-

vesting process, existing energy models target one or another
of the following challenges. On the one hand, the models pre-
sented in [12] and [15] model the energy source as an uncorre-
lated process in the communications time scale, thus the model
can handle specific communication patterns. As a result, these
models show that very low values of the energy buffer capacity
(i.e., just a few tens of times the energy of a single data packet)
is enough to maintain the communication. On the other hand,
the models presented in [11], [16], [17] are aimed for solar en-
ergy harvesting and account for the daily temporal variations. In
this case, these models cannot provide detailed information re-
garding the communication energy harvesting random patterns,
but point out to energy buffer capacity to be of thousands to even
millions times larger than the energy of a single data packet.
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We consider that the large mismatch between models show a
pending challenge which should be addressed.
In this context, we aim to provide an general purpose energy

model, which can handle random patterns in both communica-
tions and energy harvesting processes, as well as it can provide
realistic values when addressing slow temporal fadings in the
available ambient energy. In addition, it must be of general pur-
pose and multi-source capable, so that an arbitrary number of
ambient energy sources can be evaluated. In order to do so,
we present a novel dynamics-decoupled spatio-temporal energy
model. This model is dynamics-decoupled since it models the
energy harvesting as the product of two random processes with
separated temporal dynamics: 1) the fast dynamics which is in-
dependent at each node and 2) the slow dynamics which models
the spatial correlation among sensor nodes, as well as the fading
times in the harvesting power, which cause that the nodes cannot
temporarily achieve an energy-neutral operation [16]. Thanks to
this model, it is possible to consider highly detailed information
regarding the random patterns of the ambient energy sources
and the communication process, while still taking in considera-
tion the slow temporal variations.
In addition to that, we define the Energy-Erlang (E2) as a unit

for energy utilization. The Energy-Erlang provides a link be-
tween the energymodel, the environmental harvested power, the
network requirements and the energy buffer capacity. Accord-
ingly, we use the Energy-Erlangs to provide design guidelines
in the design and dimensioning of the energy buffer capacity.
In order to do so, we evaluate the performance of the sensor
network in terms of the probability of energy outage. Finally,
we evaluate the impact of the spatial correlation among sensor
nodes in the correlation of the energy outage among neighboring
nodes.
The rest of this paper is organized as follows. In Section II

the energy path is described. In Section III the energy model
is presented and the associated Energy-Erlang is defined. In
Sections IV and IV-C, the energy model is evaluated in terms
of the energy outage probability and the average time for an en-
ergy outage. In Section V we evaluate the spatial correlation of
the energy outage. Finally, in Section VI we conclude our work.

II. ENERGY PATH

In an energy-harvesting-enabled wireless sensor node, the en-
ergy which is used to enable the sensing, processing and com-
munications is fully obtained from its close environment by
means of ambient energy harvesters [7]. This energy would ide-
ally present an ubiquitous and perpetual character, but it also
generally has spatio-temporal-correlated properties [18]. After-
wards, this energy is conditioned in order to be stored in an en-
ergy buffer (e.g., a battery or a capacitor). Finally, this energy
is used to power the sensing, processing and communications
units [19]. This flow is here referred as the energy path.
The purpose of this section is two-fold. Firstly, we aim to

provide an overview of the consisting sub-system parts of the
energy path, and secondly, we present the basic assumptions
and relations among parts, as well as we define the dynamics-
decoupled model for the ambient energy.

Fig. 1. Separation of dynamics. Energy field is correlated in both time and
space. Harvesting energy is bursty and random but it presents a smooth vari-
ation in temporal average.

A. Ambient Energy

The ambient energy can be harvested from a very large va-
riety of physical phenomena. In particular, the most appealing
energy sources for energy harvesting range from solar, thermal,
mechanical, acoustic, or RF. As it is shown in [7], the power
that a sensor node can harvest depends upon many factors, such
as nature of the source, power availability, and dimensions of
the energy harvester.
Among other physical phenomena, solar, human movement,

vibrations, or RF waves already present implementable trans-
ducers for sensors. In particular, the average power that it can be
harvested from each energy source is in the order of 10 mW for
solar, 1 mW for human movement, 10 for RF, and 1 for
vibrations [7]. However, the instantaneous power that it avail-
able at a given time and space is unpredictable.
In order to provide a model for the ambient energy, we re-

quire it to be as general as possible, we assume that the ambient
energy, which is harvested, is spatio-temporal correlated and its
value is given by what we define as the energy field. The energy
field, in power units, is defined as a spatio-temporal
function which provides the energy that would be harvested in
case that a node is located at a certain location at a time .
To avoid an overhead in notation, in what follows, we will

refer as the energy field, as the power which is
harvested from the energy field at the location of the sensor node
under study and as the average value of the energy field at
the location of the sensor node.
Then, we assume that the energy field is given by the product

of two separated dynamics

(1)

where is a dimension-less, spatio-temporal-decorrelated
random process, referred as the fast dynamics, and , in
power units, stands for a random process with a slow variation
in time as well as in space, here referred as the slow dynamics.
The coexistence of these two dynamics is shown in Fig. 1.
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The large temporal difference between both dynamics is such
that it is accomplished that the average in time of , can be
separated by the product of both time-averages

(2)

where the operator stands for time average. Provided that the
above equation holds, it is then obtained that we can approxi-
mate at a time close to as

(3)

for short time intervals, such that can be considered
constant within a node, while we can approximate as

(4)

for long time intervals. Therefore, depending on the length of
the time interval, we can approximate the energy harvesting by
just considering either the fast or the slow dynamics.
In addition, we define as (and its averaged value) the

harvested energy over a fixed time

(5)

and alternatively, we define (and thus, its averaged value)
as the time such that a given fixed amount of energy has
been harvested

(6)

The spatio-temporal correlation of the slow dynamics is mod-
eled with a correlation coefficient. As a general definition, the
correlation coefficient of the harvested power between the nodes
and , located at and at times and respectively is
given by

(7)

where and refer to the standard deviation of the
energy field at the locations of the nodes and .
Finally, we define the coherence time, , as the minimum

average time at which two points present no correlation between
them. The concept of coherence time will result very helpful
in the following sections in order to relate how fast the energy
field varies in time and the impact that it has over the evaluated
results.

B. Energy Buffer

By following the energy path, the harvested energy is tem-
porarily stored in an energy buffer, until this is used by the com-
munication unit of the sensor node. This sub-unit is generally
composed of a battery or supercapacitors and it is one of the
most expensive and volume consuming of the sub-units con-
tained within a node. In particular, typical batteries present an
energy density in the order of 0.2 MJ/kg and recharging cycles
in the order of 1000. Alternatively, supercapacitors show larger

Fig. 2. Depiction of the three elements which interact in the energy path. Har-
vested energy, the energy stored in the energy buffer and the energy used for
communications.

and faster recharging cycles, at the expense of a more reduced
energy [7], [14].
An additional challenge in energy storage technologies,

which also motivates the minimization of the energy buffer,
is the energy buffer leakage [19]. This impairment depends of
the energy buffer capacity, which typically results in over-di-
mensioned energy buffers, limiting the optimal operation of
the sensor node. However at the same time, large energy
buffers suffer from larger losses and in some cases, the leakage
consumes more energy than the communication subsystem.
This energy buffer of maximum capacity , in energy units,

(e.g., a battery or a supercapacitor) will store energy while ab-
sorbing the time-varying random variations of both the energy
harvesting and communication processes. We define the energy
state, , as the energy which is stored at a time in the energy
buffer. This is a random process, which, in turn, is a function of
the energy harvesting and the communication processes. This is
given by

(8)

where is the power which is harvested at the node lo-
cation, stands for the power which is requested by the
communications unit and refers to the power losses.
For a better understanding of the three elements which in-

teract in the energy path, they are shown in Fig. 2. refers
to the aggregation of the energy which is harvested starting from
the time plus the initial stored energy. stands for the
aggregated energy which has been used for communications. In
addition, the energy which is stored in the energy buffer, ,
is represented as the shaded area between the curves and

. Finally, we have also represented the data transmission
requests as arrows.

C. The Communications Unit

The communication process in aWSN is characterized by the
transmission of short data packets. A data packet has an associ-
ated energy, ( in average), which is required in order to
guarantee that the transmitted data can be recovered at the re-
ceiver node. This energy, , is a function of the link capacity,
the distance between nodes and the transceiver constraints, as
provided by Shannon’s link capacity.
The packetized patterns of the communications unit enables

the discretization of (8). Such discretization has been performed
in previous works [11], [12] by providing a Markov chain.
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III. NEGATIVE-ENERGY QUEUE MODEL

A. State-of-the-Art Models

The existing state-of-the-art joint models, which are based on
Markov queues, can be roughly classified into three types. In the
first type the basic unit is the energy packet and, unlike classical
communications queues, empty queues of energy packets en-
tail an interruption of the normal operation of the sensor nodes.
In such models the energy harvesters generate arrivals of energy
packets that in turn, are stored in the energy buffer (representing
a battery or a supercapacitor). The communication unit is mod-
eled as a server which processes the energy packets where the
service time is associated to the generation of communications
events[15], [20], [21]. The second type of models proposes the
interconnection of two different Markov chains, namely a main
queue for communications packets and a secondary queue for
energy harvesting resources. Such type of models consider that
a data packet can be effectively transmitted when it has been
processed by the main queue and the queue of energy-packets
is not empty [12], [13]. And finally, the third type are based on
state-dependent Markov chains where each state represents a
combination of the amount of energy, data packets available in
their respective buffers [22]–[24].
Alternatively, existing joint models for solar energy har-

vesting account for daily temporal variations of the ambient
energy. Due to the fact that solar energy provides a significantly
larger amount of energy, and due to the fact that sensor nodes
must store enough energy for several hours, these models are
very source-specific, and therefore not general purpose [11],
[16], [17].
Overall, existing joint energy/information models suffer from

a remarkable degree of complexity, at the same time extending
them to account for multi-source energy harvesting systems is
challenging since the energy harvesters are not considered as in-
dividual entities. Furthermore, they are not typically equivalent
to classical communication models and as such, harder to solve.
The goal of this paper is to develop a new type of model that it
is simple, accurate and that naturally accounts for the multi-en-
ergy harvesting environment.

B. Negative-Energy Queue Model

Given the large amount of literature devoted to queue theory
for communication models, we consider that a queue model for
EHE-WSN nodes should have the same properties than a com-
munication queue. That is, we pursue an energymodel such that:
• the stability condition must be ;
• the idle state must be defined as the state of having an
empty queue;

• the loss of communicationmust be assigned to a full queue.
Thanks to such queue model, we would be capable of using the
well known results and closed-form expressions for communi-
cations, and to translate them into energy harvesting require-
ments.
Therefore, we define the negative-energy queue model for

EHE-WSN as in Fig. 3. As it is shown, the arrivals of this queue
are generated by the set of applications of the sensor node. i.e.,
every time an application spends one unit of energy, it generates

Fig. 3. Negative-energy queue model. Model consists of arrivals of negative-
energy packets which are produced as the applications consume energy from the
energy buffer. Negative-energy packets are processed by the energy harvesters.
Negative-energy queue model provides a very simple framework to model a
sensor node with multiple power consuming applications and multiple energy
harvesters.

an arrival of negative-energy. Each type of application has an
associated generation rate (e.g., for communications, for
processing and for sensing). On the other hand, the service
time, , is the time that an energy harvesting unit
needs to process one negative-energy packet. In other words,

is the time that it takes for the energy harvesting unit to
harvest the required amount of energy that has been consumed
by a certain application (6).
In order to account for power losses [19] in our negative-en-

ergy queue model we assume them as constant. This assumption
is valid for a wide set of values of the energy buffer state while
does not apply for very low or very high energy buffer states
[25]. Below a certain threshold of stored energy the sensor node
stops its operation, this is taken into account by our model as a
full negative-energy queue. Similarly, the energy harvested by
sensor nodes with very high energy stored is lost because of the
leakage, this represents the maximum achievable capacity of the
energy buffer. We consider this case in our model as an empty
negative-energy queue.
In addition to this, recent trends in sensor node design is

pointing tomulti-source energy harvesting [6], [26], [27].Multi-
source energy harvesters can be considered in this queue model
by connecting them in parallel, such as multiple servers in a
communication queue (e.g., M/M/c/N and M/G/c/N).
Finally, the queue of negative-energy packets refers to the en-

ergy buffer but observed upside down. A queue which is empty
of negative-energy packets refers to a fulfilled energy buffer,
while a fulfilled queue stands for an empty energy buffer. Thus,
the number of negative-energy states is related to the energy
buffer capacity as

(9)

where is the energy buffer capacity and refers to the
energy which is harvested over a time . Additionally, if at a
certain time the queue has negative-energy packets, then
the energy state at the energy buffer is given by

(10)

It is observed that when the queue does not have any negative
energy packet, the energy harvester unit can remain in idle state,
alike communications queues.
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Fig. 4. Set-up of the time-domain simulation.

For further evaluation along this work, we have considered
communications processes, with Poisson arrivals, as the gener-
ator of negative-energy packets and a single energy harvester.
Therefore, as it follows, we can use the literature of M/G/c/N
queues, so that we can evaluate the system for any arbitrarily
chosen statistic distribution for the energy harvesting source.

C. The Energy-Erlang

By having provided the negative-energy queue model for
EHE-WSN, we can now define the energy utilization as

(11)

in Energy-Erlang [E2] units. As it can be observed, the energy
utilization of the negative-energy queue model, unlike the uti-
lization which was defined in typical queue models for EHE-
WSN, is now stable for , where stands for the number
of energy harvesters.
In general terms, the Energy-Erlang is a dimension-less unit

which is proposed here as a statistical unit of energy harvesting
resources.
As an example, let us assume that an energy harvester is able

to harvest . If, in order to communicate, it requires
, then the required energy harvesting resources

result in Energy-Erlangs, which means that at least
three energy harvesters are required in order to enable a correct
operation of the sensor node .
Due to the fact that the Energy-Erlang is a ratio between the

available and the required energy resources, it provides signif-
icant advantages in the design and dimensioning of sensors.
In particular, this can be used to dimension energy harvesters,
since we can relate the required harvesting power to meet cer-
tain user-defined requirements by . In addition
to this, it is also possible to dimension energy buffers for fixed
available energy and requirements, through the evaluation of the
negative-energy queue model. This is provided in the following
sections through the evaluation of the energy outage probability.

D. The Energy Outage

As a metric for evaluation of the energy model to provide
guidelines in dimensioning of energy buffer, we define the en-
ergy outage. The energy outage is defined as the time interval
during which the sensor node does not have enough stored en-
ergy, and thus its operation is temporarily interrupted. This situ-
ation can be observed in Fig. 2. The probability that this occurs
equals to the probability that the queue of negative-energy is
full, and so, it equals to the expression for blocking probability
of a queue model for communications [28]. Therefore, bymeans

of queue theory onM/G/1/N, we can obtain that the outage prob-
ability, is given by

(12)

where refers to the probability that there are 0 negative-
energy packets left within the queue right after the last nega-
tive-energy packet was processed by the energy harvester. is
found as a solution for

and

(13)

where, equivalent to , refers to the probability that there
are negative-energy packets left and stands for the state
transition probability of remaining negative-energy packets
from the state to the state , considering each state right after
a negative-energy packet has been processed by the energy
harvester.

IV. EVALUATION OF THE ENERGY OUTAGE

In this section we evaluate the energy outage probability in
terms of the utilization in Energy-Erlangs and the normalized
energy buffer capacity. This evaluation considers two represen-
tative cases, which are single-source energy harvesting systems
and the recently proposed multi-source energy harvesting plat-
forms [6], [26], [27].

A. Evaluation of the Fast Dynamics

1) Time-Domain Simulation Set-Up: In order to validate the
negative-energy queue model, we have first performed a time-
domain simulation which implements a one-to-one transmission
of RF energy in a multi-path environment. The energy trans-
mitter (ET) generates an RF wave, which is propagated through
a multi-path Rayleigh channel with coherence time
[29], the average power at the receiving node is set to 10 ,
which is reasonable as reported in [30]. A block diagram of
the simulation set-up is shown in Fig. 4. At the receiving node,
a rectenna is used to harvest the energy of the RF wave [2].
The power which is harvested is power processed and stored in
a continuous manner in an energy buffer of variable capacity.
The communications unit transmits data packets with a variable
Poisson distributed inter-arrival rate.
2) Negative-Energy Model Simulation Set-Up: In order to

model the fast dynamics, we assume that the energy harvester
processes these negative-energy packets at a rate of
negative-energy packets per second, following both Poisson and
chi-squared statistics. Then, the communications unit generates
Poisson arrivals of negative-energy packets at a rate of

.
A Poisson distribution might not hold as a general case,

however it studied due to two main reasons. Firstly, the energy
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Fig. 5. Comparison between the energy outage probability obtained by as-
suming a Poisson process for the energy harvesting and by assuming that the
energy harvesting process is chi-squared distributed. It is shown as a function
of the energy utilization for different values of the normalized energy buffer
capacity.

outage probability has a closed-form expression, which is given
by

(14)

And, secondly, a Poisson process has very large entropy [31],
thus becoming the energy outage probability of a M/M/1/N
as an upper bound in the energy outage probability in many
environments.
Alternatively, a chi-squared distribution is of special interest

in the context of energy harvesting, since this distribution is
given as a result of harvesting energy from aGaussian noise-like
energy source [32]. In particular, the energy which is harvested
during a time from a Gaussian noise-like source of bandwidth
is modeled as chi-squared distribution with de-

grees of freedom. In this simulation, we have chosen ,
since it is the result of approximating the time-domain simula-
tion parameters with a time and .
3) Performance Evaluation and Comparison: In Fig. 5 we

compare, in terms of the energy outage probability, the time-do-
main simulation results to the negative-energy queue model
results assuming 1) a Poisson distribution for the energy har-
vesting process (black continuous lines) and 2) a chi-squared
distribution for the energy harvesting process. The energy
outage is evaluated as a function of the energy utilization for
different values of the normalized energy buffer.
As the results show, the negative-energy model well predicts

the behavior of time-domain simulation, although significantly
reducing the computational cost. In addition, we observe that
the energy outage probability is upper bounded by the results
from the M/M/1/N queue and it tends to
when the energy utilization tends to one. As an example, if con-
sidering that the sensor node has the following requirements:

, , and the node is able to har-
vest from an environmental source, then we find
that the energy utilization equals to E2. By consid-
ering a target of in the energy outage probability,
it is obtained that we would require a normalized energy buffer

Fig. 6. Model of the Rayleigh channel and evolution of the energy state at the
sensor node.

capacity of . Finally, if we express the energy buffer
capacity in terms of energy, we would require an energy buffer
capacity of .

B. Evaluation of Joint Dynamics

In a real environment, the ambient energy is time-varying.
This is, the actual harvesting rate slowly evolves with time in
an unpredictable manner, within a wide range of orders of mag-
nitude. As a result, the power which is being harvested at the
node location is affected by deep fadings.
Given the large variety of ambient energy sources, in this sec-

tion we focus on RF energy harvesting affected by multi-path
propagation. It is well known that multipath propagation is a
very common effect during the reception of RF power within an
urban area. The multipath is defined as the propagation of an RF
signal through two or more paths, giving as a result constructive
or destructive interference and phase shifting.When the number
of interferences is large and it is very environment-dependent,
the received power is affected by the Rayleigh fading [29]. In
general terms, this model is mainly characterized by a certain
coherence time, , or, equivalently, with the doppler frequency.
In Fig. 6 we show an example of the harvested power,

over time when assuming that the harvesting source is affected
by the Rayleigh channel. In addition, it is also shown a depiction
of the energy state at the energy buffer of the sensor node. As it
is shown, given the variation of the harvested power, the energy
state is unable to reach a steady-state. On the contrary, deep fad-
ings tend to completely deplete the energy buffer. Alternatively,
when the multipath propagation provides constructive interfer-
ence, the sensor node is able to store large amounts of energy.
Thus, in consideration of the multipath propagation, it is ob-

served that the energy buffer does not only have to store enough
energy to handle the random patterns of both communication
and energy harvesting processes, but it also does have to be able
to store large enough amounts of energy to overcome deep fad-
ings in the harvested energy.
The lack of a steady state leads to evaluate the energy outage

probability throughout event-based simulation of the negative-
energy queue. In order to do so, we have assumed that the av-
erage energy harvesting rate, , evolves in time by following
a Rayleigh distribution. The temporal evolution of is related
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Fig. 7. Energy outage probability assuming Rayleigh fading with coherence
time as the slow dynamics in the energy harvesting power source. An
average and has been assumed in order to obtain
these results.

Fig. 8. Energy outage probability assuming Rayleigh fading with coherence
time as the slow dynamics in the energy harvesting power source.
An average and has been assumed in order to
obtain these results.

to the coherence time, . In Figs. 7 and 8, we show the results of
the energy outage probability as a function of the energy utiliza-
tion in Energy-Erlangs, for different values of the energy buffer
capacity. In order to obtain these results, the average ambient
power has been set to and the energy per packet
has been set to . As it is shown, the effect of the
slow dynamics is clear. While in Fig. 5, an energy buffer of 200
was enough to guarantee a for E2, in

this case, by assuming slow dynamics, we would now require
an energy buffer of 5 or 50 mJ to meet the same requirements
for and , respectively.
As we would expect, the most critical situation refers to an

energy utilization of E2. That is, the communications
unit requires the whole amount of energy which is harvested.
As it is shown in the previous figures for both dynamics, this
case has for any energy buffer capacity the worst energy outage
probability. In Fig. 9, we show the energy outage probability of
the sensor node in terms of the energy buffer capacity. As it can
be observed, by increasing the size of the buffer, the node is able
to temporarily store more energy to satisfy the energy require-
ments for larger fadings. It is found that the relation between the
buffer size and the energy outage probability follows an expo-
nential relationship.

Fig. 9. Dependency of the energy outage probability in terms of the energy
buffer size. It is represented for three different coherence times of the energy
source: 1, 10, and 100 s.

C. Average Time to Energy Outage

Another relevant parameter which is set as a metric for de-
sign and dimensioning of energy buffers is the average time to
energy outage. This metric evaluates the average time it takes
for the node to fail in the communication due to energy outage.
This time has large implications in the network protocol designs,
such as routing. As an example, when a node is temporarily dis-
connected from the network, any existing route which would
go through this node must be reassigned to neighboring nodes.
Then, a larger average time to the energy outage represents a
reduction in the network reconfiguration, and thus it represents
a reduction in communication, control and energy overhead. In
fact, a similar concept in battery-poweredWSNs is defined. The
network lifetime in a WSN is defined as the time it takes for any
node to deplete its battery, thus causing an alteration in the net-
work topology.
In Figs. 10 and 11 we show the average time to energy outage

as a function of the energy utilization in Energy-Erlangs, for
different values of the energy buffer capacity, considering a co-
herence time of in Fig. 10 and a coherence time of

in Fig. 11. In order to obtain these results, we have
set the same parameters as in the evaluation of the probability of
energy outage. As it is shown, the average time to energy outage
rapidly decreases as the energy utilization tends to one. On the
contrary, this time increases rapidly for larger energy buffer ca-
pacity, thereby establishing a relevant design guideline.
In addition to this, for a better understanding on the de-

pendence of the energy buffer capacity on the average time
to energy outage, we show in Fig. 12 this average time
as a function of the energy buffer for a coherence time of

. As it is shown, channels with large
temporal correlation need larger energy buffers in order to
overcome long deep fadings. Interestingly, it is observed that
for small sizes of the energy buffer, the average time to energy
outage tends to the coherence time. However, as the energy
buffer capacity is increased, the average time increases faster
for those environments with smaller .

D. Multi-Source Energy Harvesting

As mentioned in the previous section, this model is also
capable of handling multi-source energy harvesting platforms.
These platforms are gaining interest as they provide a robust
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Fig. 10. Average time to energy outage assuming Rayleigh fading with coher-
ence time .

Fig. 11. Average time to energy outage assuming Rayleigh fading with coher-
ence time .

Fig. 12. Average time to energy outage assuming Rayleigh fading with coher-
ence as a function of the energy buffer capacity.

alternative to power wireless sensors, since the sensor node
can maintain its operation regardless of the fact that one of its
energy sources might be temporarily unavailable [6], [26], [27],
into better cope with time asynchronicity [33].
For this, the major benefits of these platforms are found in en-

vironments where the available power is presented with a sparse
slow dynamics, since the combination of independent energy
sources reduces the overall sparsity, thus potentially minimizing
the chances of being affected by a deep fading.
Due to the fact that multi-source energy harvesting are of

interest in energetically sparse environments, we have approxi-
mated a sparse ambient energy by a random process generated
by exponentially distributed energy bursts of power ,

Fig. 13. Energy outage probability as a function of the energy utilization.
and .

where refers to the power crest factor and stands for the
number of harvesters. The inter-burst time has been set to

s, modeled with an exponentially distributed random
process. Therefore, the length of the burst is set such that, in
average, each harvester is able to receive . The
power crest factor, , is defined as

(15)

where is the average peak power.
Fig. 13 compares the energy outage probability in terms of

the number of harvesters, as a function of the normalized en-
ergy utilization, defined as , also in Energy-Erlang units. In
order to obtain these results, the energy buffer capacity has been
set to and the power crest factor has been fixed
as . As the comparison shows, considering multi-source
energy harvesters has a very positive impact upon the perfor-
mance of the sensor node, when considering large power crest
factors. In particular, it is possible to reduce down to two or-
ders of magnitude the energy outage probability, while main-
taining the same user-defined requirements in terms of the en-
ergy utilization.

E. Dimensioning Guidelines

In order to provide guidelines to enable an uninterrupted oper-
ation of the sensor nodes, we observe that there exist a trade-off
in the design of the energy buffer, the energy harvesting unit
and the communications capabilities, since operating with low
values of energy utilization (i.e., the harvesting power is larger
than the actually used) reduces the energy buffer capacity.
Due to the fact that the energy utilization is a ratio, the En-

ergy-Erlang can be used to define the energy harvesting require-
ments for fixed communications capabilities ( ).
In this case, the trade-off between energy buffer and energy
harvesting sub-units can be studied to minimize their overall
area/cost [33]. As an example, in Fig. 7 it is observed that in
order to provide a , an energy buffer of 100 mJ
is required for an energy utilization of , whereas only
an energy buffer of 0.1 mJ is required in case that the energy
utilization is reduced down to . In other words, for
a fixed communications capabilities, the energy buffer capacity
has been reduced in three orders of magnitude at the cost of dou-
bling the energy harvesting requirements.
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Fig. 14. Correlation of the ambient energy: comparison of the harvested power
in two neighboring nodes with spatial correlation (top) and

(bottom).

V. SPATIAL CORRELATION OF THE ENERGY STATE

In previous sections, the energy outage has been addressed for
just a single sensor node. It has been assumed that the sensor
node can transmit any time it has enough energy to transmit.
Intuitively, in order to successfully deliver a data packet from
the node to the node , not only the transmitter node must be
energetically charged, but also the receiver must be active.
In this section, we evaluate the correlation of the energy

outage probability of neighboring nodes. In order to do so, this
work accounts for the spatial correlation of the energy field.
The spatial correlation, , defined as a function of the distance
between nodes can be simplified from (7), if considering only
spatial variations by

(16)

where refers to the distance between nodes and
, and refers to the average power of the ambient energy
source. The spatial correlation as a function of the distance is as-
sumed to decrease monotonically with the distance and bounded
to 1 when and 0 when . This spatial correla-
tion depends upon the physical phenomena, which can be gen-
erally classified into several groups [34], [35], e.g., spherical,
power exponential, rational quadratic, ormatérn. As an example
of physical phenomena, electromagnetic waves present a power
exponential correlation function, with [36]. The expo-
nential correlation function is given by

(17)

In order to evaluate the correlation of the energy outage
among neighboring nodes, we focus on a RF energy harvesting
environment, where the correlation of the slow-dynamics of
the harvesting energy between two locations is given by (17).
Then, we use a Rayleigh channel model from Section IV. To
evaluate this correlation, we proceed to simultaneously perform
a time-varying simulation of two neighboring nodes which
harvest correlated RF power. Fig. 14 shows an example of the
harvested power from two neighboring nodes when there is a
spatial correlation of (top) and (bottom).

Fig. 15. Energy state correlation between two nodes, for a correlation factor of
.

Fig. 16. Energy state correlation between two nodes, for a correlation factor of
.

In Figs. 15 and 16, we show the bivariate histogram of the en-
ergy state of two energy harvesting enabled sensor nodes which
present a correlation in their harvesting rates of and

. In order to obtain these results, an energy buffer ca-
pacity of has been chosen. As shown, the relatively
small capacity of the energy buffer, leads to a noticeably large
probability of energy outage. As it is also observed, as the cor-
relation of the energy source decreases, the bivariate histogram
the energy states spreads, thus becoming challenging to estimate
the energy state of neighboring sensors.
In addition to this, Fig. 17 shows the probability that a certain

node is in energy outage, when it is known that the node is
already in energy outage. This probability is shown as a func-
tion of the distance, when considering the values of
and in the correlation model shown in (17). As the
figure shows, at short distances, if a node is in energy outage,
neighboring nodes of this sensor node will probably be in en-
ergy outage as well. Alternatively, as the distance among nodes
increases, this probability tends to the energy outage proba-
bility. Alike temporal variations of the slow dynamics, the en-
ergy buffer has a significant effect in counteracting the impact
of the spatial distribution of the energy.
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Fig. 17. Correlation of the energy outage probability in terms of the correlation
among sensor nodes.

A. Applications of the Spatial Correlation

The correlation of the environmental energy and the energy
state of the sensor nodes is of special interest for network de-
signers. As an example, in the MAC-layer, sensors can increase
the success rates in packet delivery in a point-to-point commu-
nication, since they can estimate whether the destination node
has sufficient energy to receive the packet.
However, we expect that the majority of the benefits of this

model will lay on the routing layer. State-of-the-art routing pro-
tocols for energy harvesting include the energy state in their cost
function [37]–[39]. With this, the network tries to avoid nodes
which have significantly less remaining energy and, therefore
extending the network operation. When considering spatially
distributed energy fields, routes bend to energetic networking
areas [38]. This aims to balance the overall energy availability
to the energy requirements.
Unfortunately, in order to optimize the routes in these en-

vironments, the network must take decisions upon the up-to-
date energy state and energy availability of the sensors. As a
result, this information must be constantly exchanged among
nodes—or, even, reported to the base station (BS)—to generate
the optimal solutions.
In this context, having knowledge of the spatial distribution

of the ambient energy and the correlation among energy states
can improve the network operation: on the one hand, sensor
nodes can potentially take decisions on behalf of their neigh-
boring nodes, thus suppressing the local exchange of overhead
information. On the other hand, in case of reporting the energy
state to a BS, the reporting overhead can be also reduced, since
fewer nodes are required to report updated information.

VI. CONCLUSION

Energy harvesting will have a great impact in the deployment
of WSNs. However, there are still many unsolved challenges.
Regarding the design of the energy buffer, it has been shown
that there is a strong compromise between size and achieving
an uninterrupted operation. Up to now, the dimensioning of the
energy buffer has still been a pending challenge, which has
been usually solved by over-dimensioning. In this paper, a novel

spatio-temporal energy model has been presented, which con-
siders the separation of dynamics. Through this energy model,
the random patterns of the ambient sources, the communica-
tions, and the energy state, as well as the impact of slow fadings
in the harvested power can be accurately modeled, yielding as
a result guidelines in the design of the energy buffer. In order to
provide these guidelines, the concept of energy utilization, mea-
sured in Energy-Erlangs, and the energy outage have been de-
fined. The results show that the source-versatile, dynamics-de-
coupled model provides a more accurate model of the sensor
node and shows how the energy buffer helps counteracting the
impact of the temporal evolution of the harvested energy upon
the energy outage probability, thus showing a strong compro-
mise between performance and size. In addition to this, the spa-
tial correlation of the energy has shown potential to develop
novel transmission policies. As the results show, the spatial cor-
relation of the energy field can help detecting unavailable neigh-
boring nodes.
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