
Empirical analysis of traffic to establish a profiled
flow termination timeout

Juan Molina Rodrı́guez
Telecommunication and Electronic Eng.

UPC BarcelonaTech
Barcelona, Spain

juan.molina@alu-etsetb.upc.edu

˜Valentı́n Carela Espanol
and Pere Barlet Ros
UPC BarcelonaTech

Barcelona, Spain
{vcarela, pbarlet}@ac.upc.edu

Ralf Hoffmann
and Klaus Degner

ipoque GmbH
Leipzig, Germany

{ralf.hoffmann, klaus.degner}@ipoque.com

Abstract—The exponential increase of bandwidth on the Inter-
net has made the online traffic classification a highly exigent task.
All the operations in the classification process must be efficiently
implemented in order to deal with an enormous amount of data.
A key point in this process is the selection of a flow termination,
a decision that has important consequences for several traffic
classification techniques (e.g., DPI-based, Machine Learning-
based). For instance, properly expiring the flows reduces the
amount of memory necessary and avoids erroneous computation
of flow features. In addition, the heterogeneous behaviour of
the applications on the Internet have dismissed the traditional
techniques to determine the flow termination (i.e., TCP 3/4-
way handshake, TCP timeout). In this paper, we first perform
a comprehensive study of the flow termination by application
groups. Results confirm that traditional techniques are no longer
sufficient to determine the flow termination (i.e., <50% finish
with TCP handshake for some groups). In order to address this
new scenario we propose a profiled (i.e., by application group)
flow termination timeout. This solution has been evaluated in
a well-known commercial DPI tool (the Ipoque’s PACE engine)
achieving a drastic reduction of memory, while keeping the same
computation cost and classification accuracy. In order to obtain
representative results, two completely different traces have been
analysed, one from the core network of a large ISP and another
from the edge link of a mobile operator.

Index Terms—Traffic classification, profiled termination time-
out, classifier optimization.

I. INTRODUCTION

During the last years network traffic classification has
become a prolific research topic that it is far from being totally
addressed [1]. The increase of bandwidth and diversity of
protocols on the Internet has made the online traffic classi-
fication a difficult and exigent task. In current networks (e.g.
10/40/100 Gbps) packets are received every few ns, and that
is the time available for parsing them without requiring data
buffering. However, many proposed traffic classifiers require
to keep the state of each flow or to store statistics or even the
actual content of the packets to properly classify it. Thus, the
operations involved in this process have to be carried out very
efficiently in terms of memory and CPU (Central Processing
Unit).

We focus our attention in the optimization of the memory
consumption. A crucial issue in this process is the expiration
of the structure that keeps the state of each flow. On the
one hand, expiring the flows too late increases the amount

of memory necessary. On the other hand, expiring the flows
quickly would create segmented flows with less information,
making the accuracy of classification more difficult or even
impossible. So far, this process has been usually carried out
using timeouts or specific protocol mechanisms like the TCP
(Transmission Control Protocol) termination handshake.

The first contribution of this paper is a comprehensive
study of the flow termination by group of applications with
current Internet traffic. The study shows that non-desired
flow terminations, like RST (Reset) or undefined terminations,
are considerably common. Furthermore, we have detected
different behaviours related to the flow termination among the
different groups of applications. From that characterization
we have gone further and proposed an expiration technique
to achieve optimized timeouts in a profiled way. Our method
has been evaluated using the PACE engine [2], a well-known
commercial DPI (Deep Packet Inspection) tool. We achieve
a substantial reduction of memory while maintaining the
accuracy and the CPU consumption.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes the traces used.
Section IV briefly presents the methodology used to extract the
results. Section V presents the statistical results, and based on
them, the estimation and evaluation of the timeouts is done.
Finally, section VI concludes the paper.

II. RELATED WORK

To the best of our knowledge, this is the first paper that
presents a comprehensive study about the flow termination by
group of applications. Some previous studies concern this topic
but in a simplified way or considering just a few parameters.
In [3] it studied what is the influence of different types
of traffic on the Internet in terms of volume of data, the
behaviour of establishment and termination. The classification
only covers P2P (Peer To Peer) and HTTP (Hypertext Trasfer
Protocol) traffic. Concerning the statistical study of different
protocol groups, the related works are either old or sharing just
a few similarities. Just a few mentions. In [4] it is proposed
a methond to establish a single timeout to prevent DoS
(Denial of Service) attacks by studying the initial RTT (Round
Trip Time). Another exception is [5]. Although this work is
quite old (1995) it establishes a single timeout which can be

978-1-4673-2480-9/13/$31.00 ©2013 IEEE 1156

compared to this paper findings. The use of a single timeout
for the expiration of the flows is a mechanism commonly
used by the traffic classification techniques proposed in the
literature [6], [7].

III. USED TRACES

The traces used for the evaluation were recorded in two
different network scenarios and they provide a good compara-
tive basis. They were taken under confidential agreements, so
specific details can not be revealed. In Table I are synthesised
some of their properties.

a) ISP Core: This trace was recorded on 2009 in an
internal link of a Tier-1 ISP, after the access and aggregation
sections and before the output router to the backbone. This
type of networks are often designed with multiple links due
to balancing and failure issues, so many of the traffic recorded
is asymmetric.

b) ISP Mob: This trace is a good complement for the
ISP_Core one since it was recorded in a mobile operator
network. It was taken somewhere in a middle point of standard
GPRS (General Packet Radio Service) network. As it is near
to the edge, this trace contains a high proportion of symmetric
traffic. It was recorded on 2010.

TABLE I
TRACES PROPERTIES

Duration Size (MB) Packets Flows
ISP Core 38,160 s 2,591,636 7,074,618,384 295,729,886
ISP Mob 2,700 s 133,046 233,359,695 6,093,604

IV. METHODOLOGY

The main tool employed in this study is based on the
Ipoque’s PACE engine [2]. It is a commercial DPI library with
nearly 100% detection rate with no false positive. We use it
to group the protocols according to a general classification
which simplifies the evaluation. However, it does not mean
that the behaviour of the protocols inside any group is homo-
geneous. The groups considered are the following: generic,
p2p, gaming, tunnel, voip, im, streaming, mail
network_management, filetransfer and web. The
generic group is mainly composed by unknown traffic. A
detailed classification can be found in [8].

We have developed a module over PACE that calculates
different statistics by group of applications. The most impor-
tant for our purpose are the times between packets, named
PCK-PCK, and the times between packets with data, named
DAT-DAT. The PCK-PCK times include the TCP’s acknowl-
edgement packets (ACK) while the DAT-DAT times include
only the packets with application data. All the evaluations
are done both bidirectionally and unidirectionally (considering
each of the Client-Server and Server-Client direction). The
establishment of Client-Server or Server-Client direction is
handled by PACE. If it is not able to detect it, or the direction
is either Client-Client or Server-Server, we assume that the
first packet seen comes from the client. In addition, we also

study the termination processes of the different groups for the
TCP traffic. The terminations detected are the standard FIN
(Finalize) process, the RST process, the RST process in a
blocking scenario and the undefined. These termination modes
are further described in section V-A2.

To avoid the inclusion of worthless data we take the
following considerations. For TCP traffic are only parsed those
flows showing the first step of the so called 3 way-handshake.
That means the SYN (Synchronize)-SYNACK process. Doing
so, we avoid considering ongoing flows already initiated and
we only consider bidirectional flows. For UDP (User Datagram
Protocol) traffic the only condition is to see at least two packets
(otherwise any PCK-PCK time could not be calculated). In
Table II is shown the impact of applying these considerations
on each trace.

TABLE II
FLOW USAGE

TCP UDP TCP used UDP used
ISP Core 159,444,165 127,930,249 42,521,933 55,182,658
ISP Mob 3,904,103 2,063,391 3,454,210 1,850,579

V. RESULTS

The results are presented in two parts. First, the results
observed for the PCK-PCK and DAT-DAT times and the
proportion of the different types of flow termination are
discussed. Second, using these previous results, a set of
timeouts by application group are derived for an efficient flow
expiration. Additionally, we show in Table III the traffic type
proportions of the traces. The heterogeneous composition of
these two traces from completely different scenarios supports
the representativeness of the results. The excess traffic outside
the already cited protocol groups (see section IV) is grouped
as other.

TABLE III
FLOW PROPORTIONS

protocol TCP Core TCP Mob UDP Core UDP Mob

generic 12.57% 10.02% 14.16% 13.22%
p2p 5.98% 2.57% 13.81% 13.21%

gaming 0.02% 0.00% 0.03% 0.08%
tunnel 10.66% 9.29% 0.02% 0.30%
voip 0.84% 0.07% 1.94% 1.05%
im 10.60% 0.46% 0.35% 0.05%

streaming 1.07% 0.71% 58.33% 0.42%
mail 14.17% 1.50% 0.00% 0.00%

management 0.01% 0.01% 11.35% 69.93%
filetransfer 0.69% 0.30% 0.00% 0.00%

web 42.98% 74.69% 0.00% 0.00%
other 0.41% 0.38% 0.01% 1.74%

A. Time profiled study

1) Inter-packet times evaluation: The results related to the
DAT-DAT and greater extent the PCK-PCK times (see section
IV) are fundamental to establish the flow termination timeouts

1157

according to our proposed method, as further explained in
section V-B. In this section, some interesting outcomes are
extracted from the statistics obtained.
• Similar PCK-PCK times over TCP regardless of the

scenario: Excluding the network_management group,
there is a strong correlation comparing the PCK-PCK values
between the ISP_Core (see Table IV) and ISP_Mob (see
Table V). This is also accomplished for the DAT-DAT values,
but not for the UDP traffic (which is always DAT-DAT). This
result suggests that the average packet cadence over TCP is
independent on the network.

• PCK-PCK similarities in Client-Server and Server-
Client: In both scenarios and for the TCP (see Tables IV
and V) and the UDP (see Table VI) traffic there are similar
PCK-PCK values comparing the Client-Server and Server-
Client directions. In the UDP case, it could be expected to
see an asymmetric behaviour in some protocol groups like
the streaming as it happens in the DAT-DAT values over
TCP (see Table VII). This highlights the different role that
some protocols take over UDP.

• TCP and UDP usage differences: UDP flows for some
protocol groups in the ISP_Core show (see Table VI) a
lower or higher packet transmission rate than the DAT-DAT
seen over TCP (see Table VII), or as just explained for the
streaming group they have an unexpected behaviour. That
is justified by the usage of control flows over TCP or UDP
by some protocols. This behaviour is seen in p2p, where
the DAT-DAT times are around 4 times lower in the TCP
case (probably real data transfer) than in the UDP (probably
control flows) one. It also occurs but in the opposite way for
the gaming, tunnel, voip and im groups, which would
imply that now the real stream of data is sent over UDP
while the TCP flows are the control ones. This behaviour is
similar in the ISP_Mob trace, with the main exception seen
for the streaming group since the UDP traffic seems to
carry as well real traffic (low value for the PCK-PCK times).

TABLE IV
PCK-PCK TIMES TCP ISP_CORE (ms)

group avg std avg c-s std c-s avg s-c std s-c

generic 1,510 12,860 2,760 17,840 2,720 16,740
p2p 1,196 7,084 2,216 9,201 2,217 9,593

gaming 209 1,319 448 1,777 384 1,732
tunnel 1,029 11,080 2,004 15,412 1,737 14,706
voip 1,688 9,981 3,161 13,677 3,450 14,137
im 2,715 13,356 5,240 17,857 5,302 18,390

stream 120 3,200 286 4,842 181 3,871
mail 518 8,259 802 10,435 1,040 11,959

manage 1,494 12,774 2,430 17,382 3,313 19,552
filetx 390 36,037 855 55,946 647 46,807
web 1,127 13,383 2,294 18,757 1,827 17,586

2) Flow termination evaluation: The study of the different
flow termination types is carried out for the TCP traffic
given its different termination mechanisms. Four possible
terminations are observed: TCP handshake, RST, undefined

TABLE V
PCK-PCK TIMES TCP ISP_MOB (ms)

group avg std avg c-s std c-s avg s-c std s-c

generic 1,796 14,293 3,043 18,868 3,526 19,840
p2p 1,907 8,660 3,475 11,648 3,579 13,058

gaming 109 824 139 946 473 2,520
tunnel 1,396 20,782 2,778 29,860 2,414 27,576
voip 1,976 11,315 3,744 15,264 3,892 15,843
im 1,897 15,667 3,587 21,663 3,894 22,373

stream 87 2,269 216 3,564 117 2,870
mail 1,057 13,678 2,135 20,005 1,957 18,696

manage 316 4,374 604 6,055 682 6,527
filetx 427 9,819 700 13,992 808 14,469
web 704 7,349 1,364 9,793 1,117 8,861

TABLE VI
PCK-PCK TIMES UDP ISP_CORE (ms)

group avg std avg c-s std c-s avg s-c std s-c

generic 2,878 23,551 3,427 25,744 4,719 27,850
p2p 17,310 64,100 26,099 77,177 18,017 70,828

gaming 199 2,997 295 3,816 374 3,948
tunnel 454 7,215 572 8,284 1,061 12,091
voip 306 7,888 509 10,211 404 10,430
im 151 1,471 209 1,829 198 3,171

stream 4,375 37,134 7,068 47,118 5,846 43,562
manage 11,161 55,806 20,342 73,220 21,947 79,760

termination and RST in a blocking scenario. Fig. 1 shows
the behaviour of a RST termination in a blocking scenario.
That is when one or both extremes of the communication do
not receive the corresponding packets from the other side.
Unlike we expected, as we can see in Fig. 2, the number
of flows not finished by the standard TCP handshake is very
high. Additionally, there is a big amount of flows terminating
with a RST in a blocking scenario. In these situations the
retransmission times grow exponentially [9], [10]. Thus, we
have particularly studied the times for the flows finished with
a RST in a blocking scenario (i.e., time between a RST and
the last packet of the flow, and PCK-PCK time). They are
shown in Table VIII. Notice that these PCK-PCK times are
generally bigger than the standard ones (see Table IV). The
results for the ISP_Mob are very similar and are omitted for
the sake of space. These results can find a small comparison
basis in [3].

B. Estimation and evaluation of profiled timeouts

A flow timeout has to be big enough to not consider new
flows with a late packet of an existing one, but as low as
possible to release the memory the sooner. An old previous
study already defined the use of a global timeout of 64
seconds [5]. In order to address this problem we have found
a way to establish it according to different protocol groups
by using the statistics obtained, basically the PCK-PCK times.
The usage of the inter-packet times for the termination timeout
lies on what we want to know is the expected time for a packet

1158

TABLE VII
DAT-DAT TIMES TCP ISP_CORE (ms)

group avg std avg c-s std c-s avg s-c std s-c

generic 2,137 14,585 8,673 41,852 2,566 16,870
p2p 1,772 8,077 3,763 14,747 2,741 11,162

gaming 372 1,521 1,020 4,274 574 2,271
tunnel 1,334 13,057 3,465 24,198 1,584 23,618
voip 2,656 12,609 5,571 19,021 4,825 18,193
im 4,321 16,135 12,360 37,903 6,167 38,115

stream 136 2,960 3,230 18,987 137 3,055
mail 746 10,423 826 11,717 1,945 19,036

manage 1,278 10,442 7,825 33,821 2,634 13,823
filetx 533 46,120 2,944 130,181 589 49,281
web 880 9,269 4,714 24,456 911 9,843

Fig. 1. Blocking scenario behaviour. Both sides send data, but since there is
no acknowledgement from the other side they try to retransmit (after a time
which grows in every attempt) until finally break the connection with a RST

to arrive. For TCP traffic, we also consider the times regarding
the PCK-PCK after a RST in a blocking scenario (see Table
VIII) and the proportion of the different terminations. They
are important since in these situations the time of inactivity
grows exponentially and forces a high timeout.

We establish a threshold selecting the value {average +
2.5 ∗ STD}1. Doing so, unusual big measures are excluded,
while still representing around 99% of the complete time
values. However, this does not mean that 99% of the flows
are not segmented. Such proportion is difficult to evaluate,
although is always lower since each flow is composed by
many packets. This adds some issues to our evaluation and is
further discussed later on (see explanation refering to Fig. 4).
For each trace and separately for the TCP and UDP flows we
choose the biggest threshold from either the Client-Server or
the Server-Client direction. Thereby, we consider always the
worst case. We define these thresholds as ̂tpck pck for the PCK-
PCK standard times and ̂tpck blk and the PCK-PCK times after
a RST in a blocking scenario.

We have seen that ̂tpck blk times are forcing a higher value
when considering the optimal timeout. For that reason we
use those values to round off the final results. The criteria
used is based in two aspects. On the one hand, we consider

1STD = Standard deviation

Fig. 2. Termination proportions ISP_Core, green stands for the standard
FIN process, yellow for the unclosed flows, red for the RST and intense red
for the RST in a blocking scenario

TABLE VIII
RST TIMES ISP_CORE (ms)

group avg rst-end std rst-end avg pck std pck

generic 34,276 138,999 6,722 33,147
p2p 15,095 53,451 6,354 18,664

gaming 57,834 128,352 765 5,673
tunnel 13,618 96,933 5,618 33,423
voip 20,311 91,428 4,753 29,569
im 8,819 68,851 1,964 17,671

stream 7,449 50,738 344 4,060
mail 29,384 126,616 9,357 38,504

manage 182 259 157 239
filetx 11,967 86,210 3,768 45,231
web 11,534 59,228 1,996 13,051

which proportion of the traffic is behaving as in a blocking
scenario. On the other, we also evaluate the CDF (Cumulative
Distribution Function) of the PCK-PCK times in relation to
the timeout for each group to see what is its variability. That
is, what is the effect of reducing the timeout in the proportions
of values inside the ̂tpck blk interval. Fig. 3 shows the three
groups we have detected. A strong variation is seen for
the p2p, voip, streaming and network_management
groups. A medium variation for the generic, tunnel, im,
mail and web groups. Finally, a slow variation is seen for
the gaming and filetransfer groups.

Although it is difficult to include these behaviours in the
calculation of the final timeout, we have done it applying
a factor named F . It modifies the final timeout taking into
account the behaviour above described. This factor is set up
as {0.33, 0.66, 1} for the slow, medium and strong variation
respectively. Thus, we propose that for TCP traffic a good
theoretical timeout could be approximated as follows:

ttimeout = (1− finblk) ∗ ̂tpck pck + finblk ∗ ̂tpck blk ∗F (1)

F = {0.33, 0.66, 1} (2)

Remember the ̂tpck blk regards the RST times in a blocking

1159

(a) Strong variation (P2P) (b) Medium variation (Web) (c) Slow variation (Filetransfer)

Fig. 3. CDF of inter-packet times with RST termination in a blocking scenario

scenario. Therefore, the proportion finblk is as well related
to that field, but concerning the proportion of termination
modes. Both parameters are considered getting the worst case
value among the ISP_Core and the ISP_Mob (i.e., the case
where the timeout is bigger), so we intend to find out a global
timeout indepedent of the traces evaluated. By applying this
formula we consider the ̂tpck blk according to its proportion
of appearance in terms of flows termination and also the
behaviour seen from the CDF’s. The parameters used for this
calculation and the results are shown in Table IX. For UDP
traffic no rounding off has been done since the only parameter
to consider is the ̂tpck pck.

TABLE IX
TIMEOUT TCP (ms)

group ̂tpck pck ̂tpck blk finblk F ttimeout

generic 53,126 117,269 0.1326 0.66 56,344
p2p 36,255 78,086 0.181 1 43,826

gaming 6,772 26,440 0.1246 0.33 7,015
tunnel 77,426 119,298 0.1244 0.66 77,589
voip 43,500 90,671 0.1008 1 48,255
im 59,826 163,225 0.0787 0.66 63,596

stream 12,392 35,098 0.3653 1 20,687
mail 52,147 127,211 0.1011 0.66 55,363

manage 52,192 76,480 0.1018 1 54,665
filetx 140,720 497,736 0.291 0.33 147,568
web 47,804 83,657 0.0428 0.66 48,121

TABLE X
TIMEOUT UDP (ms)

group ttimeout

generic 74,343
p2p 219,043

gaming 45,584
tunnel 40,814
voip 71,636
im 14,030

streaming 124,862
management 221,346

In addition, we have gone further and we have evaluated

the impact of these outcomes by means of the Ipoque’s PACE
engine [2]. Thanks to that, we are able to measure not only the
memory saving but also the detection rate impact. However,
due to technical limitations in the PACE engine we have not
been able to set up each timeout in a profiled way for each
protocol group.

To solve that issue, we have elaborated a method to see what
is the effect of varying the timeout on each group. We measure
for a set of intervals from 20 to 300 seconds of timeout, in
steps of 20 seconds, what are the number of flows detected
by PACE according to each protocol group. We also add the
values for 600 seconds to obtain a wide timeout to compare
with. Then we have plot (see Fig. 4) the proportion of flows per
protocol group for each timeout compared with the maximum
number of flows seen (when the timeout is 20 seconds). Thus,
we get a curve to approximately see when the number of flows
per protocol group tends to be stable (see Fig. 4). Only the
ISP_Core trace is evaluated since it is more representative
than the ISP_Mob one, which results show similarities.

Fig. 4. Timeout PACE evaluation ISP_Core

Consider that for the FTP (File Transfer Protocol) inside
the filetransfer group the timeout is directly established

1160

by PACE and its operation is independent from the one we
vary. That is why in Fig. 4 it is not seen a wide variation for
this group. Also, the effect of the voip and lesser extent in
the p2p group, since at some point the variation increases,
hindering the evaluation of our theoretical timeouts. This
happens due to internal detection methods of PACE. With the
exception of the generic group (remember that it contains
the unknown traffic), the already commented situations and
considering that the evaluation is done over all the traffic to-
gether (i.e., TCP and UDP), the theoretical results are roughly
accomplished. However, for some protocol groups the curves
seems to not stabilize. For p2p and network_management
this behaviour is mainly due to a high timeout seen for UDP
traffic, which is majority against TCP (see Table III). In lasting
flows with many packets, like streaming, the effect of
having around 1% of PCK-PCK times outside the threshold
results in a bigger number of flows seen. It is not the same
having 100 flows with 10 packets than 10 flows with 100
packets. In both situations there would be around 1000 PCK-
PCK times, which means that around 10 of them would be
outside the threshold. In the first situation it would result in
having around 110 (10% increment) flows while in the second
around 20 (100% increment).

More precisely we have also checked a global timeout by
measuring what is the direct impact in the memory require-
ments, the detection rate and the performance of PACE. We
can see that parameters in Fig. 5 where the undetection rate
is the global one, the memory elements are the number of
flows which are stored for each timeout and the total elements
stand for the number of flows seen for each timeout. For a
certain timeout both the detection rate and the total number
of flows (which is directly related to the performance) tend
to be stable. Comparing a timeout in which the detection rate
and number of flows stabilizes (approximately 200 seconds)
with 600 seconds (this was the reference timeout implemented
by PACE), we achieve a reduction of around 60% of memory
necessities.

VI. CONCLUSION

Nowadays Internet bandwidth has forced online traffic clas-
sifiers to be implemented very efficiently. Among the different
constraints that online traffic classification present, this paper
focuses on the optimization of the memory consumption. A
key issue in this aspect is the expiration of the structures
that keep the state of each flow. This paper proposes a new
methodology for an efficient expiration of the flows based
on profiled timeouts. In order to obtain these timeouts it
has been studied the behaviour of the traffic by group of
applications. Unexpected results have been observed regarding
the proportion and types of flow termination in the current
traffic. The profiled timeouts obtained have been evaluated in
a well-known commercial DPI tool (the Ipoque’s PACE en-
gine), achieving a drastic reduction of memory while keeping
the computation cost and classification accuracy. The results
suggest that the implementation of the profiled timeouts in the
traffic classification techniques proposed in the literature [11]

Fig. 5. Timeout PACE performance ISP_Core. Elements stand for flows

could considerably improve their memory consumption, alle-
viating by this, their feasibility for online classification.

ACKNOWLEDGMENT

This research was partially funded by the Spanish Ministry
of Science and Innovation under contract TEC2011-27474
(NOMADS project) and by the Comissionat per a Universitats
i Recerca del DIUE de la Generalitat de Catalunya (ref.
2009SGR-1140).

REFERENCES

[1] A. Dainotti, A. Pescapè, and K. Claffy, “Issues and future directions in
traffic classification,” Network, IEEE, vol. 26, no. 1, pp. 35–40, 2012.

[2] Ipoque, “Datasheet PACE,” Ipoque GmbH, 2012, website:
http://www.ipoque.com/sites/default/files/mediafiles/documents/data-
sheet-pace.pdf.

[3] Wolfgang John, Sven Tafvelin, Tomas Olovsson, “Trends and Dif-
ferences in Connection-behavior within Classes of Internet Back-
bone Traffic,” Chalmers University of Technology, 2008, website:
http://www.sjalander.com/wolfgang/publications/PAM08.pdf.

[4] H. Kim, J.-H. Kim, I. Kang, and S. Bahk, “Preventing session table ex-
plosion in packet inspection computers,” Computers, IEEE Transactions
on, vol. 54, no. 2, pp. 238–240, 2005.

[5] Kimberly C. Claffy, Hans-Werner Braun, George C. Polyzos, “A Param-
eterizable Methodology for Internet Traffic Flow Profiling,” pp. 1481–
1494, October 1995.

[6] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee,
“Internet Traffic Classification Demystified: Myths, Caveats, and the
Best Practices,” in Proc. of ACM CoNEXT, December, 2008.

[7] V. Carela-Espanol, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Sole-
Pareta, “Analysis of the impact of sampling on NetFlow traffic classifi-
cation,” Computer Networks 55, pp. 1083–1099, 2011.

[8] Ipoque, “SUPPORTED PROTOCOLS AND AP-
PLICATIONS,” Ipoque GmbH, 2012, website:
http://www.ipoque.com/sites/default/files/mediafiles/documents/data-
sheet-protocol-support.pdf.

[9] R. Braden, “RFC 1122 - Requirements for Internet Hosts – Communi-
cation Layers,” Internet Engineering Task Force, October 1989, website:
http://tools.ietf.org/html/rfc1122.

[10] V. Paxson, M. Allman, J. Chu, M. Sargent, “RFC 6298 - Computing
TCP’s Retransmission Timer,” Internet Engineering Task Force, June
2011, website: http://tools.ietf.org/html/rfc6298.

[11] T. Nguyen and G. Armitage, “A Survey of Techniques for Internet Traffic
Classification using Machine Learning,” IEEE Communications Surveys
and Tutorials, vol. 10, no. 4, 2008.

1161

