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Abstract Traffic classification is an important aspect in network operation and

management, but challenging from a research perspective. During the last decade,

several works have proposed different methods for traffic classification. Although

most proposed methods achieve high accuracy, they present several practical lim-

itations that hinder their actual deployment in production networks. For example,

existing methods often require a costly training phase or expensive hardware, while

their results have relatively low completeness. In this paper, we address these

practical limitations by proposing an autonomic traffic classification system for

large networks. Our system combines multiple classification techniques to leverage

their advantages and minimize the limitations they present when used alone. Our

system can operate with Sampled NetFlow data making it easier to deploy in

production networks to assist network operation and management tasks. The main

novelty of our system is that it can automatically retrain itself in order to sustain a

high classification accuracy along time. We evaluate our solution using a 14-day

trace from a large production network and show that our system can sustain an

accuracy \96 %, even in presence of sampling, during long periods of time. The

proposed system has been deployed in production in the Catalan Research and

Education network and it is currently being used by network managers of more than

90 institutions connected to this network.
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1 Introduction

Over the last years, the accurate classification of network traffic has become a key

issue for network operation and management. New network applications (e.g.,

YouTube, Skype), have heavily modified conventional Internet usage. The

traditional classification techniques, based on the well-known ports registered by

the IANA [1], are no longer valid due to the inaccuracy and incompleteness of their

classification results [2, 3]. As a consequence, researchers have proposed a wide

range of traffic classification solutions, as shown by the large number of works

existing in the literature [2–20]. Although most proposals achieve high accuracy,

there is no universal method that is suitable for every possible network scenario. In

addition, their deployment in production networks presents practical constraints that

proposed methods do not completely address. For example, most machine learning

(ML) techniques [6, 11, 21] usually rely on a costly training phase that requires

human intervention. As shown by Li et al. [16], these techniques usually require

periodic updates in order to adapt to new traffic or new networks. This not only

implies the involvement of the network operator, but also a specific knowledge for

carrying out the task. Deep Packet Inspection (DPI) techniques need expensive

hardware in order to cope with the high data rates of nowadays networks [2, 22–24].

Similarly to ML-based techniques, DPI-based techniques also require periodic

updates of the signature base used for the classification. On the other hand, host-

behavior-based [4, 19, 20] and IP-based [7, 10] techniques cannot classify a large

portion of traffic (i.e., they have low completeness). The IP-based techniques

delimit its completeness to the IP addresses seen before. Also, the increment of the

Content Delivery Networks has decreased the power of the IP-based techniques.

The host-behavior-based techniques usually highly depend on the monitoring point

[21] because they need to have a complete perspective of the network in order to

find out the behaviors of the different hosts. This hinders their deployment in

production networks, with a large number of users and connections. As a result,

proposed techniques have enjoyed limited success among network operators and

managers, as can be observed by the fact that popular network monitoring systems

still use traditional techniques based on port numbers [25, 26].

Unlike the rest of the literature, in this paper we address the traffic classification

problem from a practical point of view and propose a realistic solution for network

operation and management that can be easily deployed and maintained. First, we

develop a traffic classification solution that relies on Sampled NetFlow, a widely

extended protocol developed by Cisco to export IP flow information from routers

and switches [27]. This complicates the classification [5, 11] but significantly

reduces the cost of the solution and allows its rapid deployment in production

networks given that most network devices already support NetFlow or one of its

variants (e.g., J-Flow, IPFIX). Second, we propose a classification method that

combines the advantages of multiple methods, while minimizing the limitations

discussed above. Third, we propose an Autonomic Retraining System that can

sustain a high classification accuracy during long periods of time. To the best of our

knowledge, this is the first solution for traffic classification to provide this feature,

which is central for network operation and management, because removes the need
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of human intervention of previous solutions, which makes the system easier to

maintain. Finally, we evaluate the performance of our method using large traffic

traces from a production network.

Although some works have also proposed the combination of different

classification techniques [9, 12], previous solutions do not support sampling,

require packet-level data and cannot automatically adapt the classification model to

the changing conditions of the network traffic and applications.

The rest of this paper is organized as follows. The proposed classification

technique and the Autonomic Retraining System are described in Sect. 2. Section 3

presents a performance evaluation of our method and analyzes the impact of

different retraining policies on its accuracy. Finally, Sect. 4 concludes the paper.

2 Traffic Classification System

This section describes our traffic classification method for Sampled NetFlow and its

Autonomic Retraining System. Figure 1 illustrates the architecture of the complete

traffic classification system, which is divided into two different parts. Above in

Fig. 1, the classification path is in charge of classifying the traffic online. In order to

achieve this goal we implement a classifier module, called Application Identifier.

This module (described later in Sect. 2.1) is loaded as a dynamic library in the

monitoring tool and it is only fed with NetFlow v5 data. Given that it only needs the

information provided by NetFlow, either sampled or not, and does not have to track

the flows, the system is swift and lightweight enough to be deployed in large

production networks. As a use-case, we integrated this module in the SMARTxAC

system [28] and evaluated it with data from a large production university network,

as we describe later in Sect. 3.

Below in Fig. 1, the training path carries flow-sampled raw traffic to the

Autonomic Retraining System. This element has two important goals. First, it will

provide online information about the current accuracy of the Application Identifier

that is classifying the traffic online in parallel, as will be described later in Sect. 2.2.

Second, it will generate a new classification model when this accuracy falls below a

Fig. 1 Application Identifier and Autonomic Retraining System Architecture
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threshold, as we describe in Sect. 2.2. Given that the Application Identifier is loaded

dynamically it could be reloaded at any time. This capability along with the

Autonomic Retraining System makes our system resilient to traffic variations as,

when the accuracy falls, the system will be automatically retrained and the

classification model updated.

2.1 The Application Identifier

The Application Identifier is the module in charge of the online classification. As

aforementioned, it combines different techniques for the sake of exploiting their

advantages and reducing their practical limitations. For the reason discussed before,

we only consider use methods capable of dealing with Sampled NetFlow data.

Furthermore, we need fast classification techniques and methods with a lightweight

training phase. Although these constraints complicate the classification, this makes

the system easier to deploy and maintain, which are crucial features for network

operation and management. The final choice consists of the combination of three

techniques of different nature with some improvements especially made to increase

their accuracy with Sampled NetFlow data.

Firstly, we use an IP-based technique based on the proposal presented by Mori

et al. [10]. Basically, this technique tracks down in an offline phase the IP addresses

belonging to famous web sites (e.g., Google, Megavideo). This technique is very

accurate, however its completeness has been significantly degraded given the

migration of some applications to Content Delivery Networks. This has relegated its

use in our system as a technique to be combined with other more complex

techniques.

The second method used by the Application Identifier is an adaptation of the

Service-based classifier described by Yoon et al. [7]. A service is defined as the

triplet\IP, Port, Protocol[assigned to a specific application. The list of services is

also created in an offline phase using a dataset of labeled flows as follows. In our

system, we aggregate all the available flows by their triplet and then, a service is

created when a triplet has a minimum number of flows (n) and there is a

predominant label ([m %). Unlike in [7], we do not use a time threshold but we

require a higher number of flows (n C 5). We studied offline an efficient

configuration of those parameters in order to increase the completeness of the

technique while keeping high accuracy. The results have determined that a proper

configuration in our setting is selecting n = 10 and m [95 %.

The last method used in the Application Identifier is a ML technique, namely, the

C5.0 decision tree, an optimized successor of the well-known C4.5 presented by

Quinlan [29]. To the best of our knowledge, this is the first paper in the field of

traffic classification that uses this variant. Nevertheless, several papers have

previously highlighted the advantages of its predecessor. Kim et al. [21] and

Williams et al. [14] compared different classification techniques showing that C4.5

achieves very high accuracy and classification speed due to its inherent feature

discretization [30]. Furthermore, the C5.0 is characterized by having shorter training

times compared with its predecessor [31] and with other well-known ML techniques

as Support Vectors Machines or Neural Networks [21]. This ability is a key point in
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our proposal given its importance in the Autonomic Retraining System. Because of

this we have not applied in our evaluation any improving technique as boosting or

bagging. The accuracy obtained by the C5.0 with the default configuration is already

very high and the improvement obtained by these techniques was negligible

compared with the critical increase of training time. Another important feature of

our ML-based technique is its full completeness. As mentioned above, the IP and

Service-based techniques have limited completeness given that they rely on IP

addresses. However, the ML-based technique allows the Application Identifier to

classify all the traffic.

It is important to recall that a requirement of our system is that the Application

Identifier has to work only with Sampled NetFlow traffic. The IP and Service based

techniques work properly with Sampled NetFlow because the triplet \IP, Port,

Protocol[ is not affected by the sampling. However, the ML technique is

substantially affected by this constraint, given that NetFlow v5 reduces the amount

of features available for the classification and applying sampling considerably

impacts on the computation of the features [5, 11]. In order to address this limitation

we have implemented the C5.0 ML technique following the recommendations

proposed in [11] to improve the classification under Sampled NetFlow, which

basically consists of applying sampling to the training phase.

In order to combine the power of the three techniques we combine their

classification in a final decision. We give priority to the IP-based technique given

the IP addresses have been manually checked. However, given its low complete-

ness, most of the traffic is classified by the Service and ML-based techniques. The

distribution of the traffic classified by each technique changes with each retraining,

however their contributions are usually around 10 % for the IP-based, 60 % for the

Service-based and 30 % for the ML-based technique. Those techniques give their

classification decision with a confidence value. The classification decision with

highest confidence is selected.

Table 1 presents the features used by each technique, all of them obtained from

NetFlow v5 data. This is very important because it allows the Application Identifier

to be very lightweight and easy to deploy given that it works at flow-level and does

not have to compute the features for the classification.

2.2 The Autonomic Retraining System

A common limitation of previous proposals presented in the literature, including the

ML techniques proposed in [11], in which our Application Identifier is based on, is

that they usually require an expensive training phase, which involves manual

Table 1 Features used by each

classification technique
Technique Features

IP-based IP addresses

Service-based IP, Port and Protocol

ML-based NetFlow v5 features ? average packet

size ? flow time ? flow rate ? inter-arrival time
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inspection of a potentially very large number of connections. In order to automate

this training phase, we developed a retraining system that does not rely on human

supervision. This property together with the ability to classify Sampled NetFlow

data, makes our proposal a realistic solution for network operators and managers.

Unlike the Application Identifier, the Autonomic Retraining System presented in

Fig. 1 uses packet-level data as input. This data is labeled with DPI-based

techniques and later used to build the base-truth for future retrainings. Applying

those techniques online is unfeasible given the high resource consumption.

However, our system is able to retrain itself and sustain high accuracy rates along

time with very few data. This allows us to apply an aggressive flow sampling rate to

the Autonomic Retraining System input keeping the system very lightweight and

economically feasible for the operation and management of large production

networks.

The Autonomic Retraining System is divided in three phases. The first one

corresponds to the labelling and feature extraction, the second checks the accuracy

and stores the base-truth data and, finally, the last phase retrains and reloads the

classifier when it is necessary.

In the labelling and feature extraction phases, the input data is processed in two

different ways. On the one hand, while aggregating the data per flow, a feature

extraction is applied to obtain the NetFlow v5 features that would be obtained in the

classification path. On the other hand, to obtain a reliable base-truth, we use a set of

DPI techniques, including PACE, a commercial DPI library provided by ipoque

[24]. PACE is known to have high accuracy with low false positive ratio. Moreover,

to increase the completeness of the DPI classification we added two extra libraries,

OpenDPI [23] and L7-filter [22]. In addition, our system is extensible and allows the

addition of new labelling techniques to increase the completeness and accuracy.

Based on their relative accuracy, we have given the highest priority to PACE and

the lowest priority to L7-Filter. The final label of each flow is selected from the DPI

technique with highest priority. An evaluation of the impact of the different DPI

techniques used in the Autonomic Retraining System is presented in Sect. 3.1.

In the second phase, the retraining manager (see Fig. 1) receives the labeled

flows together with their NetFlow v5 features. Those that are not labeled as

unknown are stored for future retrainings. In parallel, the retraining manager sends

the flows together with their NetFlow v5 features to the Application Identifier. This

Application Identifier is identical to the one that is currently running in the

monitoring tool. The Application Identifier classifies the flow by obtaining a second

label. This label is the same label that the monitoring tool would obtain. By

comparing both labels we can compute the actual accuracy of the system. When the

accuracy falls under a threshold, we create a new trainer in order to build a new

classification model. The accuracy in our system is computed from the last flows

seen (e.g., 50K in our evaluation). Although the classification is done at the

application level, the accuracy is computed aggregating the results at the group level

as described in Table 2. Table 2 also presents the traffic mix of the traces used in the

evaluation. These traces that are further described in Sect. 3, although collected in a

research/university network, are compounded by a heterogeneous mixture of

applications.
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A trainer runs as a separate thread and, using the base-truth dumped in the

previous phase, retrains the ML-based and Service-based techniques. The gener-

ation of the training dataset is a key point of the retraining system given the

important impact it has on the perdurability and accuracy of the models. This

process is described in detail in Sect. 2.3. Once the new classification models are

built, the new classification library is compiled and dynamically loaded in the

Application Identifiers that are running on the monitoring tool and the Autonomic

Retraining System itself. An evaluation of the cost of this process is presented in

Sect. 3.2.

2.3 Training Dataset Generation

The proper selection of the instances that compose the training dataset will

considerably impact on the quality and perdurability of the new classification

models created. This way, we have studied two features to build the training dataset:

the retraining policy and the training size of the dataset.

The training size is the number of instances (i.e., labeled flows together with their

NetFlow v5 features) that compose the training dataset. We refer to the training size

as X. The training size substantially impacts on the training times and the quality of

the models. On the one hand, selecting a small training size would produce a system

highly reactive to accuracy falls given that the retraining time is shorter. However,

the classification models built would be less accurate as they have less information

(i.e., instances) to build it. On the other hand, a bigger training size would increase

the training times but produce more accurate models.

Regarding the retraining policy we implemented two different policies to

perform the retraining. The first approach takes into account the last X labeled flows.

However, this approach could be biased to the last traffic received. We refer to it as

Table 2 Application groups and traffic mix

Group Applications # Flows

UPC-II CESCA

web HTTP 678,863 17,198,845

dd E.g., Megaupload, MediaFire 2,168 40,239

multimedia E.g., Flash, Spotify, Sopcast 20,228 1,126,742

p2p E.g., Bittorrent, Edonkey 877,383 4,851,103

mail E.g., IMAP, POP3 19,829 753,075

bulk E.g., FTP, AFTP 1,798 27,265

voip E.g., Skype, Viber 411,083 3,385,206

dns DNS 287,437 15,863,799

chat E.g., Jabber, MSN Messenger 12,304 196,731

games E.g., Steam, WoW 2,880 14,437

encryption E.g., SSL, OpenVPN 71,491 3,440,667

others E.g., Citrix, VNC 55,829 2,437,664
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the naive retraining policy. The second approach uses random flows from the last

Y days, as follows called long-term retraining policy. Although it is totally

configurable, for the sake of a fair comparison, we also select a total of X flows

proportionally distributed in Y days, where Xi is the number of flows for the day i:

Xi ¼ X � 2ðY�iÞ

2Y � 1

Thus, it creates a training data set in which recent days have more weight (i.e., more

instances) than older ones.

Section 3.2 evaluates the impact of those features presenting sound conclusions

about the best trade-off between accuracy and performance to obtain proper datasets

to maintain an accurate online traffic classifier for a network management tool.

3 Evaluation

In this section, we first evaluate the contribution and impact of the different DPI

techniques used in the Autonomic Retraining System. Then, we evaluate the impact

of the policies presented in Sect. 2.3 on the generation of the training dataset. The

obtained results are then used to select a proper configuration for the training

dataset. Afterwards, we analyze the impact of the Autonomic Retraining System on

the Application Identifier. This evaluation is performed for both sampled and

unsampled scenarios. The results show the effectiveness of our system as an

autonomous and accurate traffic classifier for large networks.

3.1 Evaluation of Labelling DPI-Based Techniques

DPI-based techniques are scarcely used for online classification given their high

resources consumption. However, these techniques are commonly used as an

automatic ground-truth generator [8, 11, 21]. In our system, the Autonomic

Retraining System uses three DPI-based techniques (i.e., PACE, OpenDPI and L7-

Filter) to generate the ground-truth online. This is feasible given that the Autonomic

Retraining System only needs a small sample of the traffic to maintain the

Application Identifier updated. Samples are selected by applying a high flow

sampling rate to the training path. This extremely reduces the amount of traffic to be

analyzed compared with the whole traffic received by the classification path. This

type of sampling preserves the entire payload of the flows, allowing DPI-based

techniques work properly.

The experiments in this section use the trace CESCA. The CESCA trace is a

fourteen-days packet trace collected on February 2011 in the 10-Gigabit access link

of the Anella Cientı́fica, which connects the Catalan Research and Education

Network with the Spanish Research and Education Network. As described in

Sect. 2.2, the Autonomic Retraining System only requires a small sample of the

traffic to achieve its goal. For this reason, similarly to the flow sampling applied to

the training path, we applied a 1/400 flow sampling rate. Although the Autonomic

Retraining System can handle higher flow sampling rates, we applied this one
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because it was the lowest that allowed us to collect the trace without packet loss in

our hardware.

Figure 2 shows the contribution of the different DPI techniques in the base-

truth generation. The major contributor in the labelling process is PACE. As

Fig. 2a shows, the contribution of OpenDPI and L7-Filter are very low, 0.22 %

(0.18 ? 0.04 %) and 2.24 % respectively. This is because most of the labels of

these techniques match with the labels of PACE and PACE has higher priority

(Sect. 2.2). Figure 2b shows that OpenDPI and L7-Filter miss some application

labels but match them at group level. This can be seen in the decrease of the

PACE percentage. These results also help us to understand the completeness

our system would achieve in case we have no access to a commercial labelling

tool.

In order to guide the network operator in the selection of an appropriate flow

sampling rate for their network, Table 3 presents the consumption of the DPIs

techniques by profiling the Autonomic Retraining System running in a 3 GHz

machine with 4 GB of RAM. Table 3 shows that the average consumption of the

different DPI techniques has the same order of magnitude. However, looking at the

standard deviation and the maximum (Max) by flow, L7-Filter behaves totally

different than PACE and OpenDPI. This is because L7-Filter has been limited to the

first packets and bytes of each flow in order to reduce the false positive ratio [11].

On the other hand, OpenDPI and PACE perform a more thorough examination in

order to find out the application label. In more restrictive scenarios, OpenDPI and

L7-Filter could be deactivated to improve the performance of the system. However,

given that OpenDPI and L7-Filter detects some applications that PACE does not, we

have included both DPI techniques in the system. For instance, the 14-days CESCA

trace contains 71 million flows (with 1/400 flow sampling applied). Without

sampling, 42 ls would be needed in average to process each flow without packet

loss (14 days / (71 million flows 9 400) = 42 ls/flow). Table 3 shows that only

the DPI libraries require 92 ls per flow in average. This shows that a traffic

classification system based solely on DPI would not be sustainable in our network

scenario and it does not scale well to higher link speeds.

Fig. 2 DPI labelling contribution. a By application. b By group of application
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3.2 Training Dataset Evaluation

In this section, we evaluate the impact of the policies presented in Sect. 2.3 in the

generation of the training dataset used by the Autonomic Retraining System. In all

experiments, we use the trace UPC-II for the initial offline training and the trace

CESCA for the evaluation. The trace UPC-II is a fifteen-minutes full-payload trace

with more than 3 millions of flows. This trace was collected on December 2008 at

the Gigabit access link of the UPC BarcelonaTech, which connects about 25

faculties and 40 departments (geographically distributed in 10 campuses) to the

Internet through the Spanish Research and Education network (RedIRIS). This link

provides Internet access to about 50,000 users. This trace has been also used in [11].

We used different traces for the training and the evaluation in order to show the

ability of our system to automatically adapt itself to new scenarios.

In order to asses the quality of the system the Autonomic Retraining System uses

the accuracy metric. As already mentioned in Sect. 2.2, the Autonomic Retraining

System computes the accuracy by calculating the number of correctly classified

flows from the last flows seen (i.e., 50K in our evaluation). The exact definition of

the accuracy metric would be:

Accuracy ¼
PN

i¼1ðTPÞ
PN

i¼1ðTPÞ þ
PN

i¼1ðFPÞ

where N: number of categories (i.e., groups of applications). TP (True Positives):

The number of correctly identified flows for a specific category. FP (False Posi-

tives): The number of falsely identified flows for a specific category.

Although the accuracy is the most popular metric used in the network traffic

classification literature it has some limitations. In order to confirm the quality of the

Autonomic Retraining System we also compute the Kappa coefficient. This metric is

considered to be more robust because it takes into account the correct classifications

occurring by chance. We computed the Kappa coefficient as explained by Cohen

[32]:

Table 3 DPI techniques consumption

Metric DPI techniques

L7-Filter OpenDPI PACE

Flow

Avg. (ls/flow) 34.54 25.92 32.36

SD (ls/flow) 41.29 1,419.10 1,721.86

Max (ls) 13,118 1,369,695 1,558,510

Packet

Avg. (ls/packet) 1.74 1.29 1.66

SD (ls/packet) 10.49 4.31 4.87

Max (ls) 13,118 13,168 12,979
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k ¼ Po� Pe

1� Pe

being:

Po ¼
PN

i¼1ðTPÞ
PN

i¼1ðTPÞ þ
PN

i¼1ðFPÞ

Pe ¼
XN

i¼1

ðPi1 � Pi2Þ

where Pi1: proportion of apparition of the category i for the observer 1. Pi2: pro-

portion of apparition of the category i for the observer 2.

The Kappa coefficient takes values close to 0 if the classification is mainly due to

chance agreement. On the other hand, if the classification is due the discriminative

power of the classification technique then the values are close to 1.

In order to evaluate the impact of the different retraining policies on the

Autonomic Retraining System we have performed a study of the impact of the

parameter Y in the long-term retraining policy. The study evaluates the performance

of different values of Y (i.e., 5, 7, 9, 11) with a fixed accuracy threshold (i.e., 98 %)

and a fixed training size (i.e., X = 500K). The results of this evaluation, presented

in Table 4, show that this parameter has not critic impact on the Autonomic

Retraining System. However, the values Y = 7 and Y = 11 achieve the highest

accuracies, being Y = 7 faster in the training process. As a result, we selected Y = 7

for the long-term retraining policy. This way, the retraining is performed with flows

processed during the last 7 days, allowing the system to cover the traffic of an entire

week.

Table 5 presents the results of the evaluation using three different training sizes

(i.e., X = {100K, 500K, 1M}) and two retraining policies (i.e., naive retraining

policy and long-term retraining policy). The evaluation has been performed using a

high retraining threshold (i.e., the Application Identifier is retrained if the accuracy

goes below 98 %) in order to stress the system to perform multiple retrainings by

highlighting the differences between the different configurations. Unlike we initially

expected, Table 5 shows that the long-term retraining policy performs slightly

worst than the naive retraining policy in terms of accuracy. Moreover, the average

training time is shorter for the naive retraining policy. This is mainly due the

Table 4 Long-term policy evaluation

Metric Training policy (days)

5 7 9 11

Avg. accuracy (%) 98.04 98.12 98.07 98.12

Min. accuracy (%) 95.64 95.44 95.44 95.42

# retrainings 126 125 125 125

Avg. training time (s) 229 232 234 242

Cohen’s Kappa (k) 0.9635 0.9634 0.9634 0.9633
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creation of the dataset that, although it could be optimized for the long-term

retraining policy, it will be always longer than the naive retraining policy.

Regarding the training sizes, the option X = 100K achieves lower average accuracy

than the other training sizes. However, the X = 100K training size obtains the

highest minimum accuracy and the lowest average training time. This could be

interesting if the network demands a fast-recovery system to an accuracy fall. The

results comparing X = 500K, 1M and the naive retraining policy show that these

configurations obtain similar average accuracy. However, we have decided to

choose X = 500K and naive retraining policy as the optimum configuration given

that it offers slightly better results. Regarding the impact of this policy on the

system, the training with a 98 % accuracy threshold only requires 3.93 h compared

to the 336 h (14 days) of duration of the whole experiment, which represents only

13 % of the total trace time. If the threshold is lowered up to 96 %, the training time

is reduced to 0.54 h (1.8 % of the total trace time).

Although the Autonomic Retraining System bases its decisions on the accuracy

metric, we have also computed the Kappa coefficient. Table 5 shows that the values

of the Kappa coefficient are very close to 1. This result confirms the actual

classification power of the Autonomic Retraining System showing that its

classification is not just due to chance agreement.

3.3 Retraining Evaluation

So far, we have separately studied the performance of the labelling techniques and

the impact of the different policies on the training dataset generation. Based on these

Table 5 Training dataset evaluation

Training size Metric Training policy

Long-term policy Naive policy

100K Avg. accuracy (%) 97.57 98.00

Min. accuracy (%) 95.95 97.01

# retrainings 688 525

Avg. training time (s) 88 25

Cohen’s Kappa (k) 0.9622 0.9567

500K Avg. accuracy (%) 98.12 98.26

Min. accuracy 95.44 95.70

# retrainings 125 108

Avg. training time () 232 131

Cohen’s Kappa (k) 0.9634 0.9652

1M Avg. accuracy (%) 98.18 98.26

Min. accuracy (%) 94.78 94.89

# retrainings 61 67

Avg. training time (s) 485 262

Cohen’s Kappa (k) 0.9640 0.9650
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results, we selected a final configuration: the Autonomic Retraining System uses the

three DPI-based techniques (i.e., PACE, OpenDPI and L7-Filter) for the labelling

process (Sect. 3.1), 500K flows as training size (i.e., X = 500K) and the naive

retraining policy (Sect. 3.2). In this section, we evaluate the Application Identifier

and the impact of the Autonomic Retraining System on its accuracy with both

sampled and unsampled traffic.

As discussed in Sect. 3.2, we use in all experiments the trace UPC-II for the

initial training and the trace CESCA for the evaluation. It is important to note that

the trace UPC-II was collected in December 2008 while the trace CESCA was

collected in February 2011. As a result, the system usually performs an initial

retraining to update the initial outdated model. This decision has been taken in order

to show the impact of the spatial obsolescence, showing that in order to obtain the

most accurate classification model it is crucial to train the system with the traffic of

the scenario that it is going to be monitored.

Figure 3a presents the evaluation of the Application Identifier when no packet

sampling is applied to the traffic. We tested different accuracy thresholds in order to

show the behavior of the system depending on the preferences of the network

operator. The system maintains the accuracy of 94 % by performing five retrainings

during the 14 days. With the 96 % threshold it is able to sustain the accuracy during

long periods of time with only 15 retrainings. Using the highest threshold, our

method achieves better average accuracy than previous thresholds. However, it is

not capable to continuously maintain the 98 % accuracy. Because of this, the

Autonomic Retraining System is almost continuously updating the classifier.

Nevertheless, these continuous retrainings have not any impact on the Application

Identifier giving that this procedure is done completely apart. Figure 3a also shows

the effectiveness of the retrainings, pointed out with cross symbols, that usually

produce a substantial increment of accuracy. An interesting result seen by the 94 %

threshold is the ability of the system to automatically find a proper classification

model. As can be seen at the left part of the Fig. 3a, the system performs three

retrainings but finally builds a model that remains stable for about a week.

We have also evaluated the performance of our system when packet sampling is

applied in the classification path. We perform the experiments with a common

94%

96%

98%

100%

Avg. accuracy =  96.76 % -- 5  retrainings -- 94% threshold
Avg. accuracy =  97.5 % -- 15  retrainings -- 96% threshold
Avg. accuracy = 98.26 % -- 108  retrainings -- 98% threshold

Time

A
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y

(a)

Fri, 04 Feb 2011 Tue, 08 Feb 2011 Fri, 11 Feb 2011 Mon, 14 Feb 2011 Thu, 17 Feb 2011 Fri, 04 Feb 2011 Tue, 08 Feb 2011 Fri, 11 Feb 2011 Mon, 14 Feb 2011 Thu, 17 Feb 2011

94%
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98%

100%

Avg. accuracy =  96.65 % -- 5  retrainings -- 94% threshold
Avg. accuracy =  97.34 % -- 17  retrainings -- 96% threshold
Avg. accuracy =  98.22 % -- 116  retrainings -- 98% threshold
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Fig. 3 Impact of the Autonomic Retraining System on the Application Identifier with the selected
configuration (i.e., naive training policy with 500K). a Retraining without sampling. b Retraining with
1/1,000 sampling rate
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sampling rate of 1/1,000 using the configuration before described. Figure 3b shows

the impact of the retraining in the presence of sampling. The initial low performance

showed in Fig. 3b is derived from the fact that we build the initial classification

library with the unsampled UPC-II trace. As a consequence, the system needs to

perform an initial retraining to build a representative model of the current sampled

scenario. As aforementioned, this also shows the importance of the spatial

obsolescence and justifies the importance of the Autonomic Retraining System.

Surprisingly, after the initial retraining, the system is able to sustain the same

accuracy as the unsampled scenario. The greater decrease of information produced

by packet sampling [11] is only reflected in a slight increment in the number of

retrainings given that, as described in Sect. 2.1, our techniques has been adapted to

deal with it.

Finally, in order to completely understand the influence of the Autonomic

Retraining System, we have performed two additional experiments that confirm its

necessity. The first experiment creates a model with data from one network to

classify traffic from another network (i.e., use the trace UPC-II to classify CESCA).

The second experiment creates the model with the traffic of the own network but

does not retrain it (i.e., use the CESCA trace to train and classify). Giving both

trainings can be performed offline we used 3M of flows for both experiments,

instead of the 500K of our solution, trying to build the models as accurate and

representative as possible. Even so, Fig. 4 show that our solution outperforms these

experiments. Figure 4a, that presents the results when no sampling is applied, shows

two main outcomes. First, the origin from the data used in the training impacts on

the accuracy of the classification (i.e., spatial obsolescence). Even both traces carry

traffic from a similar scenario (i.e., educational/research network) there is a

substantial difference of accuracy as can be seen in the left part of the figure. The

second outcome arises in the right part of the figure where both experiments obtain

similar accuracy and this accuracy is gradually decreasing as long as times goes by

(i.e., temporal obsolescence). On the other hand, our solution keeps stable during

the whole evaluation. Figure 4b, that presents the results when 1/1,000 sampling

rate is applied, emphasizes the outcomes previously mentioned. Here, the

application of sampling totally deprecates the classification model created with

Fri, 04 Feb 2011 Tue, 08 Feb 2011 Fri, 11 Feb 2011 Mon, 14 Feb 2011 Thu, 17 Feb 2011
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Avg. accuracy =  92.73 % -- trained with UPC-II
Avg. accuracy =  94.3 % -- trained with first 3M CESCA flows
Avg. accuracy =  98.24 % -- 108  retrainings -- 98% threshold, naive training policy with 500K
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Fig. 4 Comparative of the Autonomic Retraining System with other solutions. a Comparative without
sampling. b Comparative with 1/1,000 sampling rate
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the unsampled traffic of UPC-II producing a very inaccurate classification. In both

scenarios, the experiments that use CESCA for training and classification start with a

very high accuracy given that they are classifying the same flows used for the

training. Because of that, after the first 3M of flows the accuracy decreases even

below than 86 %. However, our solution with its continuous retraining is able to

deal with both temporal and spatial obsolescence achieving a stable accuracy

beyond 98 %.

3.4 Retraining Evaluation by Institution

As described in Sect. 3.1, the CESCA trace was collected in the 10-Gigabit access

link of the Anella Cientı́fica, which connects the Catalan Research and Education

Network with the Spanish Research and Education Network. This link provides

connection to Internet to more than 90 institutions. So far, the evaluation has been

performed using the complete traffic of the link. This section presents the results of

the performance of the Autonomic Retraining System with the disaggregated traffic

by institution.

Similarly to the previous evaluation we have used 500K flows as training size

(i.e., X = 500K), the naive retraining policy (Sect. 3.2) and the highest accuracy

threshold (i.e., 98 %). Two different approaches are used in order to study the

performance by institution. First, the Autonomic Retraining System uses its normal

operation (i.e., using all the traffic and performing the retrainings based on the total

accuracy). However, only the accuracy related to the specific institution is

presented. Second, the operation of the Autonomic Retraining System is changed

and, instead of using all the traffic, it only uses the traffic related to the specific

institution. Also, the decision of retraining is carried out based on the particular

accuracy of the institution and not with the total one. Figure 5 presents the results of

this evaluation for three different institutions. The results show the reliability of the

Autonomic Retraining System for achieving high accuracies with different

institutions and scenarios. Although the accuracy is very similar between the three

institutions, three different behaviors can be observed. Institution A plotted in

Fig. 5a has a very volatile accuracy. Even when the model is trained with its own

traffic the accuracy is sharply changing, although almost always keeping an

accuracy higher than 92 %. On the other side, Institution C plotted in Fig. 5c has a

more stable accuracy. This is translated into a smaller number of trainings compared

with Institution A. Finally, the behavior of Institution B would be among the other

two. These three behaviors plotted in Fig. 5 are the result of different grades of

heterogeneity (i.e., Institution A) and homogeneity (i.e., Institution C) in the traffic

of the institutions.

Another interesting output from this evaluation is the impact of the origin of the

training data on the accuracy. Figure 5a shows that Institution A achieves higher

accuracy performing the retrainings with data from the complete link. However,

Fig. 5c shows that Institution C achieves higher accuracy when the classification

model is created with its own data. It is important to note that the amount of

retrainings is not comparable between the two approaches. Although the config-

uration is the same between them, the amount of data available for each approach is
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different. These two different results regarding the two approaches could be also

related to the grade of heterogeneity of the traffic. Training the classification model

with traffic from others institutions can help to classify unexpected traffic (e.g., new

applications) in networks with heterogeneous traffic.

All these results confirm that the combination of the three techniques and the

ability to automatically update the classification model outperform the solutions

proposed in the literature for Sampled NetFlow traffic classification [5, 11]. The

proposed system has been deployed in production in the Catalan Research and

Education network and it is currently being used by network managers of more than

90 institutions connected to this network.

4 Conclusions

In this paper, we presented a realistic solution for traffic classification for network

operation and management. Our classification system combines the advantages of

three different techniques (i.e., IP-based, Service-based and ML-based) along with

an autonomic retraining system that allows it to sustain a high classification

accuracy during long periods of time. The retraining system combines multiple DPI

techniques and only requires a small sample of the whole traffic to keep the

classification system updated.
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Fig. 5 Comparative of the Autonomic Retraining System by institution. a Institution A. b Institution B.
c Institution C
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Our experimental results using a long traffic trace from a large operational

network shows that our system can sustain a high accuracy ([96 %) and

completeness during weeks even with Sampled NetFlow data. We also evaluated

different training policies and studied their impact on the traffic classification

technique. From these results we can draw several conclusions:

• The classification models obtained suffer from temporal and spatial obsoles-

cence. Our results in Sect. 3.3 confirm this problem which was already pointed

out by Li et al. [16]. Our system addressed this problem by implementing the

Autonomic Retraining System that is able to automatically update the

classification models without human supervision.

• The life of the classification models is not fixed. As indicated by the results in

Sect. 3.4, we show that the frequency of retrainings partially depends on the

grade of heterogeneity and volatility of the traffic in the network.

• Although several classification techniques have been proposed by the research

community, there is no one suitable for all the types of traffic and scenarios. We

truly believe that the combination of different techniques is the best approach for

properly classifying all the different types of traffic. Our approach, based on

three different techniques, is able to achieve very high accuracy and

completeness, something that would not be possible if they were not combined.

In summary, we presented a traffic classification system with several features that

are particularly appealing for network management: (1) high classification accuracy

and completeness, (2) support for NetFlow data, (3) automatic model retraining, and

(4) resilience to sampling. These features altogether result in a significant reduction

in the cost of deployment, operation and maintenance compared to previous

methods based on packet traces and manually-made classification models. The

proposed system has been deployed in production in the Catalan Research and

Education network and it is currently being used by network managers of more than

90 institutions connected to this network.

Although this work is mostly completed and our system has been already

deployed in a production network (CESCA), there are three lines of future work we

plan to study. First, the increasing importance of Content Delivery Networks has

decremented the power of IP-based classification techniques. Consequently, it

would be interesting to study the inclusion of more classification techniques as those

based on host-behaviors [4, 19, 20]. Second, we plan to include new techniques [33–

35] to reduce the amount of unknown traffic and improve the generation of the

ground truth. Finally, we plan to study the viability of using stream-oriented ML

techniques, given that its streaming operation seems more suitable for processing

the network traffic.
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