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A number of techniques have been recently proposed to implement molecular communica-
tion, a novel method which aims to implement communication networks at the nanoscale,
known as nanonetworks. A common characteristic of these techniques is that their main
resource consists of molecules, which are inherently discrete. This paper presents DIRECT,
a novel networking model which differs from conventional models by the way of treating
resources as discrete entities; therefore, it is particularly aimed to the analysis of molecu-
lar communication techniques. Resources can be involved in different tasks in a network,
such as message encoding, they do not attenuate in physical terms and they are considered
100% reusable. The essential properties of DIRECT are explored and the key parameters are
investigated throughout this paper.
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to the receivers. For instance, in diffusion-based molec-
ular communication, the transmitted particles propagate
by means of diffusion in a fluid medium [20]. Diffusion-

1. Introduction

With the introduction of nanoscale communication net-

works, or nanonetworks [1], molecular communication
has become an alternative approach to electromagnetic
communication at the nanoscale. Although different com-
munication protocols have been proposed to implement
molecular communication [2,24,23,15], they all rely on
the use of small molecules, including ions and hormones,
which are physically transported from the transmitters
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based molecular communication encompasses several
techniques, such as calcium ion (Ca®*) signaling [25], one
of the most important communication mechanisms among
living cells, and pheromonal communication [26].

This paper introduces DIRECT, a general model which
allows the analysis of molecular communication tech-
niques by modeling the molecules used to encode mes-
sages as resources. Formally, DIRECT can be defined as a
set of techniques, models and protocols developed to effi-
ciently operate a network which utilizes and relies on dis-
crete entities, i.e., resources. These resources are used to
encode messages and they act as information carriers over
a medium in a confined environment.

Most of the previous work on molecular communi-
cation treats molecules as entities which disperse in an
unconfined environment. As opposed to this, DIRECT
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considers a closed environment where a group of trans-
mitter and receiver nanomachines communicate by ex-
changing a finite set of molecules, which are interpreted as
resources. Since the amount of resources is fixed and re-
mains constant throughout the network lifespan, nanoma-
chines need to harvest resources in order to transmit new
messages. This harvesting need of nanomachines repre-
sents the main idea behind DIRECT and, as it is later shown,
it represents one of the main constraints of the perfor-
mance of the nanonetwork.

If properly harvested, any resource in a molecular
communication nanonetwork located in a confined space
can be reused. This allows the infinite recirculation of
resources, i.e., the continuous use and harvest cycle, and
naturally introduces the concept of resource conservation
in a nanonetwork based on molecular communication. In
an ideal case, the harvesting of resources by nanomachines
would allow the perpetual operation of the network
without the need of creating new resources. Our intention
with DIRECT is to model the recirculation of resources in a
molecular communication nanonetwork, to investigate its
properties and to define its limits and capacity.

The issue of resource harvesting has been widely stud-
ied in the electromagnetic communication domain [36,37].
However, the concept of electromagnetic energy does
not completely overlap with the concept of resources in
DIRECT, since electromagnetic waves attenuate as they
propagate throughout space (for instance, because of ab-
sorption by obstacles in the wave path). Therefore, we
think that DIRECT is the first model that will allow mod-
eling the recirculation of resources in molecular commu-
nication nanonetworks. Please note that this document
provides an introduction to DIRECT, explaining general
concept and main properties as well as constitutional el-
ements of the model. Some preliminary results from ex-
periments and related observations are given in order to
constitute the first steps of a future analytical model.

The rest of this document is organized as follows. In Sec-
tion 2, we provide the information about the usage of Ca®*
ions in molecular communication and how ER and Mito-
chondria harvests Ca?* for future use. In Section 3 the state
of the art and related works are briefly explained by stress-
ing the differences with respect to DIRECT. In Section 4,
different operating environments are introduced and the
importance of a confined environment is explained. In
Section 5, the formal definitions and explanations for
resources, nodes, lifespan and capacity are given. In
Section 6, a case study for DIRECT in a molecular com-
munication nanonetwork using pulse-based modulation
is analyzed. A number of tests are performed in order to
observe the interdependencies between the essential pa-
rameters that define the environment, and simulation re-
sults are discussed. We conclude the paper in Section 7,
where a path for future work is also given.

2. Molecular harvesting in biological systems

Calcium ions play an important role in the cell life as a
fundamental second messenger in signal transduction
pathways [21]. The variations of cytosolic Ca>* concen-
tration are important regulatory factors for the control

of cellular functions. In fact, an increase in intracellular
Ca?* concentration, in response to extracellular signals,
can trigger and modulate several events, such as muscle
contraction, cell growth, proliferation and many others [9,
8,28]. This may happen through the modulation of the
released ions in terms of frequency, amplitude and spa-
tial-temporal patterning [5,28,35]. These signals are gen-
erated by the cells by using both internal and external
sources of Ca®*. The internal sources are represented by
the several intracellular organelles that act also as Ca’*
storages. These storages accumulate, release and buffer
Ca®* ions constantly, during specific cellular events. The
Mitochondria and the Endoplasmic Reticulum (ER) are the
main ones [21,17], so in what follows are introduced the
main features of these two organelles, but also the Golgi
Apparatus and the Nucleus can be involved too in different
scenarios [33,29,35]. All of these organelle can absorb high
levels of ions in order to keep low the cytoplasmic concen-
tration.

The ER is an important cellular organelle, placed near
the nucleus, occupying at least the 10% of the cell vol-
ume [22]. It is a dynamic reservoir of calcium ions which
can be activated by both electrical and chemical cell stim-
ulation and It can store an high amount of calcium ions, in
the order of mM range (1-3 mM [10]), analogously to the
extracellular concentration (1-2 mM), whereas the cytoso-
lic concentration is very low, in the order of nM range (rest-
ing state: 100 nM). This means that the gradients across
their membranes (ER and plasma membrane) are very sim-
ilar [28,35,7].

The ER channels can be activated by second messengers
(such as InsP3 and cADPr) [8] that promote the calcium
release into the cytoplasm, with a following drop in the
intra-organelle Ca?* concentration of several hundred L M.
The cytoplasmic Ca?t elevates from the resting value
up to 1000 nM, so a great part of this Ca’* is rapidly
extruded by the plasma membrane pumps (PMCA and
Na/Ca exchangers) into the extracellular medium. When
the InsP3 signaling is terminated, the Ca®* ions re-uptake
into the internal organelles [16].

The propagation of Ca®* is based on a positive feed-
back process, where the released Ca* ions trigger the near
stores to release more ions (known as Calcium Induced-
Calcium Release process). As introduced above, the first
release may occur from the second messenger InsP3, and
then the process will go on autonomously, depending only
on: (a) the Ca%* diffusion coefficient, (b) the distance be-
tween the stores and (c) their sensitivity. The release of the
InsP3 is due to the binding of an external ligand to its spe-
cificreceptor on the plasma membrane, and then it diffuses
to the ER, where it causes the opening of the Ca?* chan-
nels. The following release of the previously sequestered
calcium rise sharply the cytosolic concentration to about
10 wM [28].

Once the Ca?* ions have triggered the desired behavior,
they have to be rapidly removed from the cytosol, to
restore the resting conditions. This may happens through
the combined activity of Ca®>* extrusion mechanism, such
as the plasma membrane pumps (PMCA and NCX) and
the refilling processes of the internal stores, such as the
sarco-endoplasmic reticulum ATPase (SERCA) pumps [35].
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Animportant role in sequestering calcium ions from the
cytosol and on intracellular signaling is covered by the En-
doplasmic Reticulum and the Mitochondria, which are typ-
ically located in close proximity to each other [29,28,22].
The first one is normally filled with ions that can be re-
leased to generate or reinforce Ca®* signals, the last ones
is normally empty and can store large amounts of ions that
can be buffered, used to increase the energy production or
even released in the cytosol. The mitochondrial Ca®* accu-
mulation is usually transient and follows the cytosolic Ca>*
spikes which arises during cell activation [12]. Indeed the
mitochondrion is able to sequester Ca?* rapidly during the
development of the Ca?* signal and then releases it back
slowly during the recovery phase. This uptake of Ca®* by
the mitochondrion is important in shaping both the am-
plitude and the spatio-temporal patterns of Ca** signals.

The calcium released by the ER is closely coupled to mi-
tochondrial uptake, because several micro-domains of high
Ca?* concentration are generated in their proximity and
they are fundamental for the correct interactions between
the two organelles, enabling a direct and highly efficient
transmission channel. This lets the mitochondria to buffer
the local Ca?* released effectively and consistently [28,27].
Microscopy observations show that about 20% of the mito-
chondrial surface is in direct contact with the ER [22].

3. State of the art

Molecular communication has been an attractive topic
for researchers after the introduction of the nanoscale
communications. Numerous potential applications of
nanonetworks make molecular communication even more
appealing. These potential applications range from biomed-
ical applications, such as intelligent drug delivery and
health monitoring systems, to military and environmental
applications such as air pollution monitoring [1].

A number of different models have been proposed to
describe molecular encoding, channel and transmission.
Some of these models use gap junctions [24], whereas oth-
ers use molecular motors [23], and ligand receptors [11].

Another group of researchers are focused on proposing
models and defining capacities from an information
theoretical perspective [3,4,32,31].

An energy model for molecular communications is
introduced in [18], providing biological background of the
energy consumption of different elements of the process.

A broad study for energy harvesting in electromagnetic
communications is given in [37]. [34] refers to the infor-
mation capacity of such networks.

Compared to the research available in the literature, DI-
RECT can be considered as an abstract model defining gen-
eral rules for different models, with similar or common
properties. Our intention in DIRECT is to state common
properties, like the use of discrete resources in a con-
fined environment, and define and model a system through
some related features such as communication capacity and
its limits. In this paper we investigate a way of defining a
system by stating relations between resource concentra-
tion, number of nodes and communication capacity in a
confined environment.

4. Operating environments

Considering the use of discrete resources in DIRECT,
operating environments (or working spaces) can be
classified into three categories according to the scope of the
particle movement due to the existence of the boundaries:
confined, unconfined and locally unconfined (Fig. 1).

A confined operating environment (Fig. 1(a)) is a closed
working environment, bounded with reflective borders.
Any resource reaching to the boundaries reflects back
into the environment. Thus, the number of total resources
within the environment remains the same at any time.

An unconfined operating environment (Fig. 1(b)) has no
boundaries and any resource can pass through the virtual
borders of the monitored environment through time. Thus
the total amount of discrete resources can vary in the
environment.

A locally unconfined operating environment (Fig. 1(c))
is a special case of a confined operating environment,
where the environment dimensions are extremely large
such that we can consider a relatively small portion of the
environment as unconfined.

In this paper, we consider a confined operating envi-
ronment in which the total amount of resources remains
constant over the network lifespan. The constant num-
ber of resources in a confined operating environment can
theoretically make the network indefinitely operational
in terms of resources, if proper harvesting and emitting
mechanisms are applied. During operation, the network
may temporarily stop functioning due to the lack of local
resources. However, that could be overcome by harvest-
ing over time, since resources naturally diffuse from higher
density locations to the lower density ones. On the other
hand, in an unconfined operating environment, the net-
work may become permanently not operational as a result
of resource dispersal.

5. Resources and nodes

In DIRECT, a resource is a discrete physical entity which
is required by a task, such as modulation of the signal,
within the network. Resources can be considered as the
atomic entities within the network. They are perpetual
and reusable; they do not disperse or attenuate. If proper
harvesting mechanisms are applied, resources are 100%
reusable. Ca?t is an analogous example of a resource
involved in molecular communication.

Nodes are autonomous agents, and they constitute the
basic functional unit, capable of processing/storing data,
sensing and actuating. They are either organic or elec-
tromechanical nanomachines [1], with communication ca-
pabilities. We assume that every node operating in DIRECT
includes proper harvesting mechanisms and an internal
reservoir to keep resources within for future use. Any har-
vesting operation fills a node’s reservoir, whereas a com-
munication operation drains it.

The harvesting mechanisms in DIRECT differ from the
ones in electromagnetic communication. Nodes in DIRECT
harvest resources by absorbing discrete particles into
the node’s reservoir. In electromagnetic communication,
instead, the harvesting operation usually refers to the



184

D. Demiray et al. / Nano Communication Networks 4 (2013) 181-188

(a) Confined environment.

(b) Unconfined environment.

(c) Locally unconfined

environment.

Fig. 1. Different operating environments.

Resources in Operating
Environment

random movement
of the resources

Noise:
- background concentration
- random movement
interference

Resources in
Reservoirs

Fig. 2. Resource recirculation.

energy harvesting from different sources such as sunlight,
body heat or vibration, all of which are produced as a result
of external incidents that cannot be controlled within the
system. The harvested energy is consumed by the nodes.
However, in DIRECT, resources are reusable.

This reusability property allows the recirculation of
resources in DIRECT. A resource can be found either inside
a node’s reservoir (in a pure resource form) or at large in
operating environment (Fig. 2).

Resources in operating environment can have two dif-
ferent forms. They can be used to encode the informa-
tion, or they can be considered as noise. The information
in DIRECT is represented by a group of discrete resources,
whereas in electromagnetic communication, the informa-
tion is modulated using electromagnetic waves. Because of
the random movement of the resources during the prop-
agation process, some of the resources may change their
functionality and turn into noise. These resources can be
seen as the attenuated parts of the propagating signal. Note
that no resource would be lost because of such a function-
ality change. Moreover, the emitted signal may attenuate
during propagation.

Every resource in operating environment, which is not
used for information encoding, are considered as noise.
Noise can be generated from random movement of the
resources, interference from other transmitters or can be
initially given to the environment as background noise, to
supply resources to the nodes. In electromagnetic commu-
nication, instead, noise is a fluctuation or a random signal
added to the original signal from an outside source.

As seen in Fig. 2, the information is encoded using re-
sources (emission), although a node can harvest resources

from the information. There is a complete overlap between
the information and resources, which we call duality of the
resources. Duality of the resources also exists between re-
sources and noise in a similar manner. A node can harvest
resources from noise; however, noise is itself made of re-
sources.

The duality of the resources provides a 100% recycling
of resources in the form of both the information and
noise. Thus, DIRECT proposes the reusable information and
noise which, to the best of our knowledge, is a unique
property that cannot be found in any other communication
paradigm.

Theoretically, the infinite recirculation of resources can
provide an infinite lifespan to the DIRECT network, in terms
of resources. The lifespan comes to an end when there is
not a single node left that is capable of communicating in
infinite time. During the network lifespan, there might be
some intervals in which the network may not be opera-
tional due to the lack of resources. However, nodes may
continue harvesting until they collect sufficient resources
from the operating environment and resume with their
operation.

The resource recirculation is broken if and when:

e The working environment is not confined.

e There are not sufficient resources to be harvested by the
nodes which yields starvation.

e Deployment of an excessive number of nodes which
yields starvation.

e Nodes are not supplied with proper harvesting mecha-
nisms.

Definition of capacity in DIRECT is different than in
any other communication paradigm. Considering the pre-
viously introduced properties, the capacity in DIRECT can
be defined as the maximum number of nodes which can be
supported for a given amount of resources in infinite lifes-
pan. From a different perspective, the capacity can be given
as a function of the optimum amount of resources to obtain
infinite lifespan for a given number of nodes.

6. Experiments

A set of experiments has been performed to observe the
behavior of DIRECT in modeling molecular networks. Three
essential parameters are investigated during experiments,
and the relationship between them is studied. These
parameters are:
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(1) Pulse amplitude (A) is the number of resources that
constitute an emitted pulse initially.

(2) Background concentration (b) is the initial concentra-
tion of resources over the operating environment.

(3) Number of nodes (n) is the total number of nodes
available in the operating environment.

The Pulse frequency (p), which is the ratio of the number
of pulses emitted per unit time, is the essential metric
which is monitored according to the variations of the
given parameters. Pulse frequency is an important metric
for communication performance because it represents the
number of pulses (i.e. information bits) per unit time which
can be emitted by a node in the network.

A pulse-based modulation (PBM) is recently applied
to molecular communication as a modulation scheme by
Llatser et al. [13,19]. In our experiments, we used PBM
because its properties and behavior are already studied.

In PBM, in order to represent 1 bit of information, the
sender must instantaneously emit a pulse which com-
prises of Q discrete resources. To emit a pulse, a sender
node should have already harvested at least Q resources
from the operating environment assuming that it pos-
sesses none initially. The emitted pulse will propagate
through the environment, like the ripples in water, even-
tually reaching the receiver’s location. The concentration
of a pulse at time t at a distance x is given by Eq. (1),
where D is the diffusion coefficient of the operating envi-
ronment [6,30].

An interested reader can find more information about
PBM in [13,19]:

_ Q _p /4Dt
px t) = Dit . (1)

Experiments are performed using N3Sim [14], a pre-
viously developed simulation software for nanonetworks
with transmitter, receiver and harvester nodes using
diffusion-based molecular communication. N3Sim models
the movement of the resources according to Brownian Mo-
tion and takes into account the inertia of the particles and
collisions between them. Transmitter nodes encode the in-
formation by emitting a group of resources, i.e. increasing
their local concentration on the simulation environment.
Harvester nodes gather resources from the environment
within their range and store them for future use. Receiver
nodes decode the information by counting the resource
concentration within their range. N3Sim acts according to
a simulation scenario provided by a configuration file. As
a discrete-time simulator, at each time step N3Sim follows
these steps:

(1) N3Sim emits resources (if there is an active emitter
node at this time step according to the configuration
file).

(2) Counts resources on receiver nodes.

(3) Calculate next position of each resource according to
Brownian dynamics.

(4) Solve collisions between resources (if required by
configuration file).

(5) Update positions of the resources.

0.35
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0.1
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= L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Background Concentration (b)

Fig. 3. Pulse frequency (p) for different background concentration (b) and
pulse amplitude (A) forn = 1.

In the first set of experiments, we investigate the max-
imum pulse frequency as a function of background concen-
tration and pulse amplitude Eq. (2), the results can be seen
in Fig. 3. Please note that we used normalized values for
parameters and metric, and we fixed the number of nodes
to 1. Lines in Fig. 3 represent different pulse amplitude val-
ues, and they are arranged from the highest pulse ampli-
tude value to lowest. Lines at the bottom, which represent
a high pulse amplitude value, result in a low pulse frequency,
whereas the upper lines, which represent a low pulse am-
plitude, result in a high pulse frequency:

p=f(b,A) l]- (2)

As we fixed the number of nodes in Fig. 3, we ob-
serve the impact of background concentration over pulse
amplitude, and vice versa. A higher background concentra-
tion value provides more resources to the environment,
whereas a low background concentration value provides
low resources. In order to emit pulses with higher ampli-
tudes, a node requires more resources; thus it requires high
background concentration values. On the other hand, pulses
with a low amplitude require less resources. To obtain a
higher pulse frequency, the environment must provide a
high resource concentration, and the pulse amplitude must
remain low. This claim is confirmed in Fig. 3, in which the
maximum value of the background concentration parame-
ter combined with the lowest pulse amplitude value gives
the highest pulse frequency. Contrarily, we observe a mini-
mum pulse frequency at the point for maximum pulse am-
plitude and minimum background concentration:
p=fb,n | . (3)

A=0.5

In the second set of tests, we monitored the pulse fre-
quency against the number of nodes and background con-
centration Eq. (3) (Fig. 4). Note that a fixed pulse amplitude
value is used during this set of simulations. Each line in
Fig. 4 represents a set of tests for a different number of nodes
parameter. They are arranged in such a way that the one at
the bottom stands for the lowest number of nodes, whereas
upper lines designate the higher number of nodes values.

Nodes in Fig. 4 are homogeneously spread over the en-
vironment, forming a grid shape, and they concurrently
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harvest resources from different regions of the environ-
ment. As we fixed the pulse amplitude, we observe the rela-
tionship between background concentration and number of
nodes values.

The higher number of nodes values represent more
nodes, concurrently emitting pulses, and they inherently
increase pulse frequency. More nodes emit more pulses,
and thus require more resources. If the environment can-
not feed nodes with the necessary resources, they cannot
harvest enough resources to emit pulses. We can observe
this fact in Fig. 4 as a minimum at the origin. Lack of re-
sources has a significant effect if more nodes operate con-
currently, for instance the line n = 25 in Fig. 4 has zero
pulse frequency for background concentration b = 0.1 and
b = 0.2 because of the lack of the resources. Furthermore,
for a background concentration value b = 0.3, only 9 out of
the 25 nodes are operational; as a consequence, the pulse
frequency in a scenario with 25 nodes is very similar to the
case n = 9. Contrarily, for background concentration val-
ues greater than 0.3, all of the 25 nodes are operational.
We can observe a maxima at the highest values of the num-
ber of nodes and background concentration. To operate more
nodes, the environment must provide more resources.

In the third set of tests, we monitored pulse frequency
against pulse amplitude and number of nodes Eq. (4) (Fig. 5).
Note that a fixed background concentration value is used

0.7

during this set of simulations. Lines in Fig. 5 represent a
different number of nodes values, the one at the bottom
represents the lowest number of nodes, whereas upper lines
represent the higher number of nodes values:

pzf(A,n)bl - (4)

Pulses with higher pulse amplitude contain more re-
sources than pulses with lower pulse amplitude. Similarly,
the need for resources increases if more nodes concur-
rently operate in the network. However, concurrently op-
erating nodes involve higher pulse emissions per unit time.
A high pulse frequency can be achieved if a high number of
nodes operate concurrently, and each node releases pulses
with low pulse amplitude. Please note that the operating
environment cannot feed an unlimited number of nodes,
especially if they are emitting pulses with high pulse am-
plitude. This fact can be observed in Fig. 5 as a minimum
for the highest value of pulse amplitude. Furthermore, for
the number of nodes n = 25 and pulse amplitude A = 0.9,
we still observe zero pulse frequency because of the lack of
resources. For pulse amplitude A = 0.8, only 9 of 25 of the
nodes are operational and resulting pulse frequency value
is very similar ton = 9 case.

7. Conclusion and future work

Molecular communication presents fundamental dif-
ferences with respect to traditional wireless communica-
tions. Among these, the use of molecules as the informa-
tion carrier is probably the most relevant one. As a con-
sequence, an analytical framework that takes this unique
characteristic into account is needed in order to analyze the
performance of molecular communication nanonetworks.

This paper presents DIRECT, a networking model which
can be used to understand the general properties of
molecular communication nanonetworks. DIRECT models
molecules as discrete entities, representing resources in a
confined environment. According to this model, a nanonet-
work could achieve an infinite network lifespan if proper
resource harvesting mechanisms were applied, even
though the network might be temporarily inactive during
the harvesting periods.

0.6+
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Fig. 5. Pulse frequency (p) for different pulse amplitude (A) and number of nodes (n) for b = 0.5.
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As a result of this analysis, it has been observed that
harvesting operations have a considerable effect over the
signal measured by receivers in a molecular communica-
tion nanonetwork. For instance, both a higher background
molecular concentration and a higher number of transmit-
ting nodes cause an increase in the maximum data rate at
which the information can be successfully transmitted.

As future work, the capacity of DIRECT, and the upper
and lower bounds of the network capacity for a given
amount of resources will be investigated. Next steps will
also consider the equations which establish a connection
between the harvesting and receiving operations.
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