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Strategies for Virtual Optical Network Allocation
Albert Pagès, Jordi Perelló, Salvatore Spadaro, Member, IEEE, and Gabriel Junyent

Abstract—This paper presents Integer Linear Programming
(ILP) formulations to optimally allocate Virtual Optical Networks
(VONs) over a transparent optical network substrate. These
formulations serve the purpose of building either completely
transparent VONs or opaque ones, where electrical termination
capabilities are assumed at each virtual network node. In
addition, a lightweight Greedy Randomized Adaptive Search
(GRASP) heuristic is provided for the transparent case. The
obtained results validate the accuracy of the proposed heuristic
and reveal the benefits of the presented solutions against simpler
shortest-path-based VON allocation strategies.

Index Terms—Optical networks, virtualization, allocation.

I. INTRODUCTION

NETWORK virtualization will allow transport network
owners to not only offer data transport services over

their physical infrastructures, but also portions of such in-
frastructures as a service for exploitation by external service
providers [1]. To this goal, virtualization techniques have
been well applied to Layer-2/3 networks. However, their
applicability to optical networks is still under research [2],
[3].

In a virtualized optical network environment, completely
isolated VONs belonging to different service providers can
coexist over the same optical network substrate. VONs are
composed of a set of virtual optical nodes connected together
by a set of virtual links. Each virtual optical node is mapped on
a particular physical device, allowing the management of the
resources assigned to the VON on that device. In turn, virtual
links are mapped over physical paths, allocating a portion of
network resources along them.

An efficient virtual network allocation arises of paramount
importance to maximize the resource utilization of the under-
lying physical infrastructure, which impacts directly on the
resulting revenues [1]. Looking at the literature, the problem
of mapping virtual network demands over a physical network
substrate has been referred as the virtual network embedding
problem (e.g., see [4], [5]). Solutions to this problem seek the
optimal allocation of virtual network demands over a physi-
cal substrate with scarce network resources, mostly realized
through a Layer-2/3 network, such as an IP network, for which
virtualization techniques are quite mature. To the best of our
knowledge, however, no work in the literature has addressed
this problem in the context of VONs. In light of this, the
present paper addresses the planning problem of optimally
allocating a set of VON demands over an optical network
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substrate, while accounting for the peculiarities of optical
networks. We denote this problem as the Virtual Optical
Network Allocation (VONA) problem.

As will be illustrated, the VONA problem includes a
Routing and Wavelength Assignment (RWA) that can differ
depending on the service provider’s needs. Two variants of
the VONA problem have been considered in this paper,
namely, transparent and opaque VONA. In transparent VONA,
optically transparent end-to-end services are provisioned over
the VON. This requires the allocation of exactly the same set
of wavelengths for every virtual link. Alternatively, in opaque
VONA, we assume that electronic termination capabilities are
physically present at each VON node and opaque transport
services are provided from the VON viewpoint. In such a
case, there is no need to allocate the same set of wavelengths
for each virtual link, but can differ thanks to the Optical-
Electrical-Optical (OEO) conversion stages.

In both scenarios we assume an all-optical network substrate
without wavelength conversion capabilities (i.e., virtual links
must ensure the wavelength continuity constraint), where
Physical Layer Impairment (PLI) degradations do not compro-
mise the feasibility of the optical channels. Very large network
scenarios may require the introduction of PLI information
in both transparent and opaque VONA problems in order to
ensure the feasibility of the provisioned VONs. However, this
is not considered in this work and left for further study. Also,
note that, in its current form, the presented VONA formulation
is still valid for a wide range of transparent network scenarios.
As recently published in [6], where a quite restrictive scenario
was considered (i.e., impact of both linear and non-linear PLIs
as well as the co-existence of different bit rates and modulation
formats), feasible transparent reaches of 3000 and 1600 km
were obtained for 10 and 40 Gb/s, respectively.

II. VONA PROBLEM FORMULATION

Let the optical network substrate be characterized by a
graph 𝐺 = (𝑁,𝐸), where 𝑁 denotes the set of nodes and
𝐸 = {(𝑖, 𝑗), (𝑗, 𝑖) : 𝑖, 𝑗 ∈ 𝑁, 𝑖 ∕= 𝑗} the set of physical
links. Let 𝑊 denote the set of available wavelengths per
physical link. Consider 𝐷 as the set of VON demands to
be allocated over the optical network. Each demand 𝑑 ∈ 𝐷,
is characterized by a graph 𝐺′

𝑑 = (𝑁 ′
𝑑, 𝐸

′
𝑑), 𝑁 ′

𝑑 ⊆ 𝑁 ,
𝐸′

𝑑 = {(𝑖, 𝑗), (𝑗, 𝑖) : 𝑖, 𝑗 ∈ 𝑁 ′
𝑑, 𝑖 ∕= 𝑗}. We denote by 𝑈{𝑑}

the number of wavelengths per virtual link desired by demand
𝑑 ∈ 𝐷.

The VONA problem consists in accommodating all or the
maximum number of VONs from the demand set given the
limited capacity of the underlying optical network. VONs are
treated as entities instead of a composition of lightpaths, which
makes VONA differ from the RWA problem with the objective
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to maximize the number of lightpaths established. Indeed, a
specific demand 𝑑 ∈ 𝐷 is accommodated if and only if all its
virtual links in 𝐸′

𝑑 can be mapped over available resources.
Moreover, in transparent VONA, the same set of wavelengths
must be allocated to each of its virtual links, allowing transpar-
ent network services across multiple virtual links. The rest of
this section presents optimal ILP formulations for transparent
and opaque VONA and a heuristic for the transparent case.

A. Transparent VONA

This subsection presents an ILP model of the transparent
VONA problem called TVONA ILP. For this, we define 𝑃 as
the set of paths in the physical network, 𝑆{𝑒,𝑒′} as the set of
𝑝 ∈ 𝑃 associated with virtual link 𝑒′ that traverse edge 𝑒 ∈ 𝐸,
and 𝑆{𝑒′,𝑑} as the set of 𝑝 ∈ 𝑃 associated with virtual link 𝑒′

in demand 𝑑. The decision variables of TVONA ILP are:

𝑥(𝑑, 𝑒′, 𝑝, 𝑤) = {1 if for demand 𝑑 the virtual link 𝑒′ is
supported through path 𝑝 and wavelength 𝑤, 0 otherwise}

and the auxiliary variables are:

𝑦(𝑑, 𝑤) = {an integer number equal to the minimum
number of times wavelength 𝑤 is used to serve demand 𝑑}
𝑧(𝑑) = {1 if demand 𝑑 can be satisfied, 0 otherwise}
Objective function (1) aims at maximizing the number

of VONs to be allocated in the underlying optical network.
Constraints (2) are the wavelength clashing constraints, which
avoid that two virtual links are supported over the same wave-
length in the same physical link. Constraints (3) ensure that
at most 𝑈{𝑑} different (𝑝, 𝑤) will be assigned to every virtual
link belonging to demand 𝑑. Constraints (4) discriminate if
wavelength 𝑤 ∈ 𝑊 is being used by all virtual links in demand
𝑑. Constraints (5) discriminate whether demand 𝑑 is supported
over the requested number of wavelengths 𝑈{𝑑}.

𝑚𝑎𝑥
∑

𝑑∈𝐷

𝑧(𝑑), 𝑠.𝑡. (1)

∑

𝑑∈𝐷

∑

𝑒′∈𝐸′
𝑑

∑

𝑝∈𝑆{𝑒,𝑒′}

𝑥(𝑑, 𝑒′, 𝑝, 𝑤) ≤ 1,∀𝑒 ∈ 𝐸,𝑤 ∈ 𝑊 (2)

∑

𝑝∈𝑆{𝑒′,𝑑}

∑

𝑤∈𝑊

𝑥(𝑑, 𝑒′, 𝑝, 𝑤) ≤ 𝑈{𝑑},∀𝑑 ∈ 𝐷, 𝑒′ ∈ 𝐸′
𝑑 (3)

𝑦(𝑑,𝑤) ≤
∑

𝑝∈𝑆{𝑒′,𝑑}

𝑥(𝑑, 𝑒′, 𝑝, 𝑤),∀𝑑 ∈ 𝐷, 𝑒′ ∈ 𝐸′
𝑑, 𝑤 ∈ 𝑊 (4)

𝑧(𝑑) ≤
∑

𝑤∈𝑊

𝑦(𝑑,𝑤)/𝑈{𝑑},∀𝑑 ∈ 𝐷 (5)

As will be shown in the following section, the execution
time of the TVONA ILP model grows substantially up as the
number of VONs in 𝐷 increases. In view of this, a heuristic
for the transparent VONA problem based on the GRASP meta-
heuristic [7] is presented in this paper, which ensures practical
execution times even when the number of VONs in 𝐷 is large.
The pseudo-code of this heuristic, called TVONA GRASP, is
depicted in Fig. 1.

Looking at the figure, TVONA GRASP builds a feasible
solution in phase 2, considering the same constraints as the

Phase 1: Preprocessing
Eliminate 𝑑 ∈ 𝐷 with nodes with degree greater than physical ones
𝐵𝑒𝑠𝑡𝑆𝑜𝑙 = ∅
for 𝑖 = 0 to 𝑖 = 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 and Obj(Sol) ∕= ∣𝐷∣ do

𝑆𝑜𝑙 = ∅; Candidate list 𝐶 = ∅
Phase 2: Solution construction
𝐶 ← ∪𝑥(𝑑, 𝑒′, 𝑝, 𝑤)∀𝑑 ∈ 𝐷, 𝑒′ ∈ 𝐸′

𝑑, 𝑝 ∈ 𝑆{𝑒′,𝑑}, 𝑤 ∈ 𝑊
Assign cost equal to physical hops ∀𝑐 ∈ 𝐶
𝑊𝑑 = ∅ wavelengths already allocated to 𝑑,∀𝑑 ∈ 𝐷
while 𝐶 ∕= ∅ do

𝑐𝑜𝑠𝑡𝑚𝑖𝑛 ← min cost from 𝐶
𝑅𝐶𝐿← {𝑐 ∈ 𝐶∣𝑐𝑜𝑠𝑡(𝑐) = 𝑐𝑜𝑠𝑡𝑚𝑖𝑛}
Select an element 𝑐 from the 𝑅𝐶𝐿 at random
𝑆𝑜𝑙← 𝑆𝑜𝑙 ∪ {𝑐}
if ∣𝑊𝑑∣ ∕= 𝑈{𝑑} then

𝑊𝑑 ← 𝑊𝑑∪ {wavelength associated to 𝑐}
Erase from 𝐶 𝑐 and candidates causing wavelength clash
if num wavelengths of 𝑒′ in 𝑆𝑜𝑙 = 𝑈{𝑑} then

Erase from 𝐶 all candidates of 𝑒′

if ∣𝑊𝑑∣ = 𝑈{𝑑} then
Erase from 𝐶 candidates of 𝑑 with 𝑤 not in 𝑊𝑑

for all 𝑐 ∈ 𝐶 do
if some elements of 𝑑 are in 𝑆𝑜𝑙 then

𝑐𝑜𝑠𝑡(𝑐) = num hops
else

𝑐𝑜𝑠𝑡(𝑐) = num hops × multiplicative factor

if Obj(Sol) ∕= ∣𝐷∣ then
Phase 3: Solution improvement
Temporally extract partially satisfied demands 𝑑𝑝
for less constructed 𝑑𝑝 to more constructed do

Find combination of (𝑝,𝑤) that satisfies 𝑑𝑝
if found then

𝑆𝑜𝑙← 𝑆𝑜𝑙 ∪ {𝑑𝑝}

if Obj(Sol) > Obj(BestSol) then
𝐵𝑒𝑠𝑡𝑆𝑜𝑙← 𝑆𝑜𝑙

Fig. 1. TVONA GRASP heuristic pseudo-code

model. The purpose of the multiplicative factor is to assign
higher costs to variables associated with demands not under
construction, thus favoring those demands with elements al-
ready in the solution (i.e., the probability to build full demands
increases). In this work we have fixed this factor to 4, which
provided us with the best accuracy in the scenarios under
study. Nonetheless, its configuration is left to the transport
network owner’s discretion. Phase 3 tries to improve this
solution by local search in the solution space around the
solution from phase 2. After each iteration, if a solution with
a better objective value than the overall best solution found
so far is found, this solution becomes the new best solution.
At the end of the process, the best solution is returned.

B. Opaque VONA

This subsection presents an ILP formulation of the opaque
VONA problem called OVONA ILP. In OVONA ILP, vari-
ables 𝑦(𝑑, 𝑤), unnecessary here, are suppressed along with
constraints (4). The rest of the formulation is almost identical
to the TVONA ILP formulation. Objective function (6) aims
at maximizing the number of VONs to be allocated in the
underlying optical network. Constraints (7) are the wavelength
clashing constraints, which avoid that two virtual links are
supported over the same wavelength in the same physical
link. Constraints (8) ensure that at most 𝑈{𝑑} different (𝑝, 𝑤)
will be assigned to every virtual link belonging to demand 𝑑.
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Constraints (5) are slightly modified to fit the characteristics
of such an opaque scenario, now transformed into constraints
(9), whose purpose is to discriminate whether demand 𝑑 is
fully served or not.

𝑚𝑎𝑥
∑

𝑑∈𝐷

𝑧(𝑑), 𝑠.𝑡. (6)

∑

𝑑∈𝐷

∑

𝑒′∈𝐸′
𝑑

∑

𝑝∈𝑆{𝑒,𝑒′}

𝑥(𝑑, 𝑒′, 𝑝, 𝑤) ≤ 1,∀𝑒 ∈ 𝐸,𝑤 ∈ 𝑊 (7)

∑

𝑝∈𝑆{𝑒′,𝑑}

∑

𝑤∈𝑊

𝑥(𝑑, 𝑒′, 𝑝, 𝑤) ≤ 𝑈{𝑑},∀𝑑 ∈ 𝐷, 𝑒′ ∈ 𝐸′
𝑑 (8)

𝑧(𝑑) ≤
∑

𝑝∈𝑆{𝑒′,𝑑}

∑

𝑤∈𝑊

𝑥(𝑑, 𝑒′, 𝑝,𝑤)/𝑈{𝑑},∀𝑑 ∈ 𝐷, 𝑒′ ∈ 𝐸′
𝑑 (9)

The removal of variables 𝑦(𝑑, 𝑤) and constraints (4), en-
suring that each virtual link 𝑒′ ∈ 𝐸′

𝑑 uses the exact same
subset of wavelengths in TVONA ILP, lightens OVONA ILP
when compared to its transparent counterpart. This makes
OVONA ILP solvable to optimality within a reasonable time
span, as will be illustrated in the following section. Hence, no
heuristic approach has been considered as necessary to solve
the opaque VONA problem.

III. RESULTS AND DISCUSSION

As mentioned in section II, the TVONA ILP model be-
comes impracticable for large 𝐷 sizes, which motivated the
proposal of the TVONA GRASP heuristic, as a way to obtain
results close to optimality but in a much shorter time. In order
to highlight the accuracy of TVONA GRASP, as well as its
running times compared to the exact TVONA ILP model,
we have executed both of them on the 16-Node EON core
network topology [8] with 8 wavelengths per physical link. In
particular, ∣𝐷∣ equal to 10, 20 and 30 has been considered,
assuming that each demand requests 1 wavelength, that is,
𝑈{𝑑} = 1, ∀𝑑 ∈ 𝐷.

The generation of the demand sets for all experiments
throughout this section follows a 2-step process. Firstly, 3 or
4 physical network nodes (with equiprobability) are randomly
selected as virtual nodes for each demand. In this way, we
obtain reasonable medium-sized virtual networks compared to
the underlying physical network size. Next, the selected virtual
nodes are then randomly connected using the Erdős-Rényi
algorithm [9], here slightly modified to prevent the generation
of non-connected graphs. The parameter 𝑝 has been set to
0.5 in the algorithm, which leads to the generation of any
connectivity matrix with equiprobability.

For the TVONA GRASP heuristic, we impose some lim-
itations to restrict its execution time while still producing
good results: 1) the 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 field is set to 125;
2) the number of paths associated to the virtual links of
the demands is limited to 30 paths per virtual link; 3) the
number of combinations to check during phase 3 is limited
to 106. Table I compares the performances of TVONA ILP
and TVONA GRASP in terms of execution time and number
of successfully allocated demands. The presented results have

TABLE I
TVONA ILP VS TVONA GRASP

TVONA ILP TVONA GRASP

Time (s.) Result Time (s.) Result % Error

∣𝐷∣ = 10 1533.52 8.68 366.49 8.64 0.46

∣𝐷∣ = 20 1.64× 106 14.48 601.67 13.96 3.59

∣𝐷∣ = 30 2.38× 106 17.76 612.5 16.52 6.98

been averaged over 25 executions, randomly generating a
new set of demands at the beginning of each execution. The
experiments have been launched on Intel Core Duo at 3 GHz
PCs with 4 GB RAM memory.

As seen, the execution times of TVONA GRASP stay
largely below the ones of TVONA ILP. This reduction is espe-
cially important as the number of offered demands increases
(e.g., a four orders of magnitude reduction is achieved for
∣𝐷∣ = 30). Moreover, TVONA GRASP still provides accurate
results, showing relative errors between 0.46% and 6.98% in
the worst case. Note, however, that such errors represent one
more demand blocked in average barely. As stated before, the
execution times of OVONA ILP are much lower than those
of TVONA ILP. Indeed, additional experiments to the ones
presented in Table I showed us average execution times of
OVONA ILP around 14.2 s, 116.1 s and 131.2 s for ∣𝐷∣ = 10,
∣𝐷∣ = 20 and ∣𝐷∣ = 30, respectively.

Aiming to quantify the benefits of the proposed contribu-
tions for efficient VON allocation, we benchmark them against
more simpler allocation approaches. To this end, we consider
a Shortest-Path (SP) strategy which serves the demands in
𝐷 on a one-by-one basis, mapping their virtual links to the
shortest physical path that connects both endpoints. On these
physical paths, a first-fit wavelength selection is performed.
Note, however, that in the transparent case, the wavelength
selection in the virtual link firstly allocated for a demand
constrains those selections in the remainder ones.

Fig. 2 shows the number of allocated demands as a func-
tion of the demand set size in both transparent and opaque
VON scenarios. Due to the impracticality of TVONA ILP
for large 𝐷 sizes, TVONA GRASP has been used in the
transparent case. The presented results have been averaged
over 100 executions with newly generated demand sets per
execution, which provides us with statistically relevant results.
Again, 𝑈{𝑑} = 1, ∀𝑑 ∈ 𝐷. As observed, both OVONA ILP
and TVONA GRASP outperform their shortest-path-based
counterparts, showing more pronounced improvements as the
number of offered demands increases. In the transparent case,
for example, while a 12.8% improvement is achieved for
∣𝐷∣ = 10, this one raises up to around 30% for ∣𝐷∣ = 30. Even
more pronounced improvements are observed in the opaque
case, ranging from 9.3% for ∣𝐷∣ = 10 to 42.8% for ∣𝐷∣ = 30.
This is due to the fact that more flexibility is given to the VON
allocation in the opaque case, as different sets of wavelengths
can be used to allocate each VON virtual link.

So far, we concluded that TVONA ILP is strongly affected
by 𝐷 size. To complete our study, we have analyzed how
TVONA ILP and OVONA ILP execution times scale as 𝑈{𝑑}
increases. To this goal, we have fixed ∣𝐷∣ = 10 and 100 exe-
cutions of both models have been launched, with newly gen-
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Fig. 2. Average number of allocated demands as a function of the offered
demands set size.
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Fig. 3. Average number of allocated demands as a function of the number
of wavelengths/demand.

erated demand sets per execution. Interestingly, the obtained
results reveal us that neither TVONA ILP nor OVONA ILP
show noticeable scalability issues in this regard. For example,
while the execution times of TVONA ILP remain around
1530 s for 𝑈{𝑑} = 1, they even decrease down to 52.6 s
and 43 s for 𝑈{𝑑} equal to 6 and 12, respectively. In the
case of OVONA ILP, execution times remain in the same
order of magnitude for all 𝑈{𝑑} values (e.g., 14.2 s, 42.3 s
and 31.7 s for 𝑈{𝑑} equal to 1, 6 and 12, respectively).

Fig. 3 shows the number of VONs finally allocated in all
experimented scenarios. As expected, both models present
similar behavior in this sense, due to the resource scarcity in
the optical network substrate as each VON requests more and
more resources. A noteworthy point in the graph appears when
𝑈{𝑑} changes from 8 to 9. Indeed, having 8 wavelengths per
physical link, virtual links must unavoidably be mapped over
multiple physical paths between the virtual link endpoints,
which limits to a large extent the number of VONs that can
be allocated over the optical network substrate.

IV. CONCLUDING REMARKS

This paper proposed exact ILP formulations to solve the
VONA problem over a transparent optical network substrate.
Such models target at different variants of the problem,
depending on whether transparent or opaque services have
to be offered over the VONs. For the transparent case, a
light-weight heuristic was additionally proposed. The obtained
results validated the benefits of these contributions against
simpler VON allocation strategies.
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