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Network virtualization opens the door to novel infrastructure 
services offering connectivity and node manageability. In this 
letter, we focus on the cost-efficient embedding of on-demand 
Virtual Optical Network (VON) requests for inter-connecting 
geographically distributed data centers. We present a MILP 
formulation that introduces flexibility in the virtual-physical 
node mapping in order to optimize the usage of the underlying 
physical resources. Illustrative results show that flexibility in 
the node mapping can reduce the number of add-drop ports 
required to serve the offered demands by 40%. 

Keywords: VON, embedding, cost-efficiency, MILP. 

I. Introduction 

Network virtualization [1] allows network operators to 
capitalize on their network infrastructures by offering parts of the 
capacity in their physical nodes and links as infrastructure 
services to build virtual networks. Network virtualization fosters 
manageability and customizability, that is, service providers 
leasing a virtual network are free to configure and operate it in 
order to effectively deliver services to end users.  

Network operators willing to strike into the virtual network 
service market seek to maximize profits from their network 
infrastructures by supporting as many virtual networks as 
possible, while minimizing equipment costs. With this in mind, 
the virtual network embedding problem [2] deals with the 
efficient mapping of virtual networks over a shared physical 
network substrate. This problem has been generally addressed in 
the literature. However, very few works address this problem for 
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transparent optical networks, the main candidates to implement 
the future metro-core network substrates.  

This work concentrates on the cost-effective embedding of 
Virtual Optical Networks (VONs) realizing the inter-connection 
of data centers (DCs) inside a cloud. We present a novel Mixed 
Integer Linear Programming (MILP) model to optimally embed 
on-demand VON requests over a high-capacity transparent 
optical network. The model balances wavelength utilization at 
physical network links together with the add-drop port utilization 
at physical network nodes when allocating a VON request. This 
serves the purpose of maximizing link resource utilization, while 
minimizing the number of add-drop ports to be equipped per 
physical node to serve the incoming VON demands. 

II. VONs for data center inter-connection 

In this work, we envision VONs as a promising solution for 
Cloud Service Providers (CSPs) lacking physical network 
infrastructure to inter-connect their DCs. Typically, CSPs 
emplace DCs in geographically distributed sites for high 
service reliability. In this way, they can replicate contents 
among them periodically, offering enhanced service 
availability upon failures. Besides, inter-DC workload 
migrations for efficiency reasons are also very frequent, which 
can increase data flows among DCs up to daily totals of 
terabytes or petabytes. In order to realize such operations, a 
high-capacity optical network inter-connecting DCs in a cloud 
is necessary. Moreover, such an optical network must provide 
flexibility and manageability, so as to let CSPs efficiently use it. 

Thus, we believe that the VON solution perfectly suits CSPs 
needs. A VON is composed of virtual nodes (referred as virtual 
ROADMs in this paper), which are mapped over the physical 
nodes of the underlying network substrate (i.e., the physical 
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virtual links. Each virtual link of the VON requests Wv 
wavelengths. We assume that a virtual node should be provided 
with as many add/drop ports as the total number of 
output/input virtual wavelengths from/to it. We use the 
terminology a and b to refer to the source and destination 
endpoints of a physical link, path or virtual link, respectively 
(e.g., a(ev) and b(ev) denote the s-d endpoints of ev). 

The decision variables of the problem are: 

 ,௡ೡ௡೔= {1 if node ݊௩is mapped on node ݊௜; 0 otherwise}ݕ -

݊௩ ∈ ௩ܰ, ݊௜ ∈ ௜ܰ. 

 ;ݓ ௜ with wavelength݌ ௘ೡ௣೔௪= {1 if ݁௩ is mapped onݔ -

0 otherwise}, ݁௩ ∈ ௜݌ ,௩ܧ ∈ ௜ܲ,	1	 ൑ 	ݓ ൑ ௜ܹ. 
= number of add-drop ports used in ݊௜	ሺ݊௜ሻݐ -  once the 

VON request is allocated. 
 ௠௔௫ሺ݊௩ሻ = maximum add-drop port utilization amongݐ -

all ݊௜ ∈  .ሺ݊௩ሻܣ
 once the	ሺ݁௜ሻ = number of wavelengths used at link ݁௜ݓ -

VON request is allocated. 
௠௔௫ = maximum wavelength usage for all ݁௜ݓ - ∈  .௜ܧ

The proposed MILP formulation is: 

min α ∑ ௠௔௫ሺ݊௩ሻݐ ൅ ሺ1 െ ௡ೡ	௠௔௫ݓሻߙ   

subject to: 

∑ ௡ೡ௡೔ݕ ൌ 1, ∀݊௩	௡೔                   (1.a) 

∑ ௡ೡ௡೔ݕ ൒ 1, ∀݊௩௡೔                   (1.b) 

௡ೡ௡೔ݕ  ൌ 0, ∀݊௩, ݊௜ ∉  ሺ݊௩ሻ              (2)ܣ

௘ೡ௣೔௪ݔ  	൑ ,	௔ሺ௘ೡሻ௔ሺ௣೔ሻݕ	 ∀݁௩, ,௜݌  (3)           ݓ

௘ೡ௣೔௪ݔ                   	൑ ,	௕ሺ௘ೡሻ௕ሺ௣೔ሻݕ	 ∀݁௩, ,௜݌  ݓ

∑ ∑ ݅݌ݓݓ݅݌ݒ݁ݔ
ൌ ,ݒܹ  (4)              ݒ݁∀

∑ ∑ ݒ݁݅݌	∋݅݁:݅݌	ݓ݅݌ݒ݁ݔ ൑ 1, ∀݁݅,  (5)        ݓ

௣ሺ݊௜ሻݐ		 ൅	∑ ∑ ∑ ௘ೡ௣೔௪௪௣೔:௔ሺ௣೔ሻୀ௡೔ݔ
௣೔:	௕ሺ௣೔ሻୀ௡೔

ൌ௘ೡ ,ሺ݊௜ሻݐ ∀݊௜	  (6) 

ሺ݊௜ሻݐ 	൑ ,௠௔௫ሺ݊௩ሻݐ ∀݊௩, ݊௜ ∈  ሺ݊௩ሻ     (7)ܣ

௣ሺ݁௜ሻݓ ൅ ∑ ∑ ∑ ௘ೡ௣೔௪௪ݔ ൌ௣೔:௘೔∈	௣೔௘ೡ ,ሺ݁௜ሻݓ ∀݁௜  (8) 

ሺ݁௜ሻݓ 	൑ ,	௠௔௫ݓ ∀݁௜              (9) 

Constraints (1) ensure that each virtual node is 
mapped over only one (1.a) or multiple physical nodes 
(1.b), depending if unrestricted 1:1 or unrestricted 1:N 
node mapping is applied. Constraints (2) ensure that 
virtual nodes are only mapped on physical nodes within 
their area. Constraints (3) restrict virtual link mappings 
to paths connecting the physical nodes over which the 

remote endpoints of the virtual links are mapped. 
Constraints (4) ensure that ௩ܹ  wavelengths are 
assigned to all virtual links. Constraints (5) are the 
wavelength clashing constraints. Constraints (6-9) are 
used to store maximum add-drop port and wavelength 
usages once the VON is served. ݐ௣ሺ݊௜ሻ and ݓ௣ሺ݁௜ሻ are 
the number of add-drop ports and wavelengths used in physical 
node ݊௜ and link ݁௜ before serving the VON, respectively. 

V. Results and discussion 

Using the presented model, we quantify the benefits 
that a network operator can achieve by introducing 
flexibility in the virtual-physical node mapping with 
unrestricted 1:1 and unrestricted 1:N node mapping 
approaches. Simulations are run over the extended 
Abilene Internet-2 network shown in Figure 2, where 
boxes denote areas where a DC can be located. In this 
network, 40 wavelengths per fiber are assumed. 

To benchmark the performance of the proposed 
approaches, a restricted node mapping approach has 
been also assumed, where the physical node on which a 
virtual node can be mapped is fixed. We do not show the 
MILP formulation behind this approach due to the lack 
of space. Note, however, that it is considerably simpler 
than the one presented in section IV. Indeed, variables 
 ௡ೡ௡೔ and constraints (1-3) are no needed here, as allݕ
݁௩ ∈  ௩ have already associated the physical nodes overܧ
which a(ev) and b(ev) must be mapped. Conversely, it is 
here enough to enforce ݔ௘ೡ௣೔௪ ൌ 0 for all ݌௜ ∈ ௜ܲ  not 
connecting such physical nodes, which can be added as 
an alternative set of constraints. In any case, execution 
times around 1s were experienced in most occasions for 
all restricted and unrestricted approaches in a standard 
Intel Core i3 PC with 4 cores at 2.93 GHz and 2GB 
RAM running CPLEX v.12.2, which highlights the 
practicality of the proposed formulations in a relatively 
large transport network as the one in Figure 2. 

We assume that VON requests arrive at the network in 
a Poisson traffic process with exponentially distributed 
Holding Times (HTs). VON topologies are built upon 
arrival as follows. For each VON request, the number of 
virtual ROADMs is randomly chosen from 3 to 5. Each 
virtual ROADM pair is connected by a bidirectional 
virtual link with a probability of 0.5. Once the VON 
topology is built, we ensure its connectivity. Otherwise, 
we discard it and a new topology is built. VONs request 
Wv wavelengths for all virtual links, where Wv is 
randomly chosen from {1, 2, 4}. Virtual nodes are 
assigned to the geographical areas with equiprobability, 
meaning that the DCs that should be connected to the 
VON are located in these areas. We consider that an area 
can allocate at most one virtual node of a VON. 
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