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Abstract

Extracting knowledge from big network traffic data is a matter of foremost im-
portance for multiple purposes including trend analysis, network troubleshoot-
ing, capacity planning, network forensics, and traffic classification. An ex-
tremely useful approach to profile traffic is to extract and display to a net-
work administrator the multi-dimensional hierarchical heavy hitters (HHHS) of
a dataset. However, existing schemes for computing HHHs have several limita-
tions: 1) they require significant computational resources; 2) they do not scale
to high dimensional data; and 3) they are not easily extensible. In this paper,
we introduce a fundamentally new approach for extracting HHHs based on gen-
eralized frequent item-set mining (FIM), which allows to process traffic data
much more efficiently and scales to much higher dimensional data than present
schemes. Based on generalized FIM, we build and thoroughly evaluate a traffic
profiling system we call FaRNet. Our comparison with AutoFocus, which is the
most related tool of similar nature, shows that FaRNet is up to three orders
of magnitude faster. Finally, we describe experiences on how generalized FIM
is useful in practice after using FaRNet operationally for several months in the
NOC of GEANT , the European backbone network.

Keywords: Network Operation and Management, Traffic Profiling, Data
Mining

1. Introduction

In recent years, the Internet traffic mix has changed dramatically. Mobile
applications, social networking, peer-to-peer applications and streaming services
are only a few examples of the ever-growing list of applications that mold Inter-
net traffic today. Furthermore, existing applications continuously change their
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behavior, while new applications, services and cyber-threats are emerging. In
this rapidly changing network environment, it is critical to build traffic profiling
tools that efficiently process big traffic data to extract knowledge about what is
happening in a network.

The most basic traffic profiling technique (and likely the most widely-used
one) is extracting heavy hitter reports [1, 2, 3, 4] about top elements e.g., IP
addresses that receive or generate most traffic. Finding a heavy hitter out of
a given set of elements consists of identifying those elements with a frequency
above a user-defined threshold. However, a simple traditional report of, for
example, the source IP addresses consuming most traffic, does not give any
information about what these hosts are actually doing, which reduces a lot
the usefulness of such reports. To address this problem, previous work has
studied the problem of finding multi-dimensional and hierarchical heavy hit-
ters (HHHs) [5, 6, 7, 8, 9]. Notably, AutoFocus [10] is the best known tool
for finding multi-dimensional HHHs. A HHH is an aggregate (e.g., an IP ad-
dress prefix) on a hierarchy that appears frequently. The input data can be
single- or multi-dimensional (e.g., IP address pairs) which gives rise to single-
and multi-dimensional HHHs. An example multi-dimensional HHH provided by
AutoFocus is <srcIP=%*, dstIP=2.2.2.0/24, srcPort=80, dstPort=1024-65535,
proto=TCP>. This HHH combines five different dimensions and takes the hi-
erarchical nature of IP addresses into account. It highlights the pattern of many
TCP responses from web servers (IP *, port 80) to IP addresses in the subnet
2.2.2.0/24.

Although AutoFocus is a state-of-the-art HHH-based traffic profiling tool,
it has some important limitations. First, its computational complexity grows
exponentially with the number of dimensions. This is because Autofocus re-
quires n passes over the input data, where n is the total number of nodes in
the multi-dimensional data structure that it builds to operate. This struc-
ture combines all the unidimensional hierarchies (one per dimension), into a
multi-dimensional bigger hierarchy, i.e., each new dimension must be “repli-
cated” along the already existing nodes for all the other dimensions. As a
consequence, AutoFocus is restricted to 5-dimensional HHHs (where the five
dimensions correspond to the source and destination IP addresses, the port
numbers and the protocol) and it is very hard to extend it with additional
traffic features. We would like to provide reports that contain other rele-
vant information, such as the traffic application, the source and the destina-
tion ASes and the geographical location, so that we can provide a more pre-
cise and extensive summary of what is really happening in a network. For
example, a report could look like <srcIP=* dstIP=2.2.2.0/24, srcPort=80,
dstPort=1024-65535, proto=TCP, srcGeo=“Mountain View”, srcAS=Google,
dstGeo=Barcelona, dstAS=UPC, app=Youtube>. This 10-dimensional HHH
reveals additionally that the web traffic was specifically exchanged between a
particular subnet within the Barcelona campus of UPC and a particular Youtube
data center of Google located in Mountain View.

Second, even with 5-dimensional HHHs, AutoFocus exhibits very high com-



putational complexity and cannot typically meet near real-time' guarantees even
at low input rates. In particular, AutoFocus can process at most 10,000 flows/sec
on commodity hardware, while commercial monitoring systems need to handle
much higher rates.

We introduce a fundamentally new approach to extract HHHs based on
generalized frequent item-set mining (FIM). In contrast to AutoFocus, which
uses a straightforward approach that is not optimized for computational com-
plexity [10] and leads to many passes over the data and high computational
requirements, we build our proposal on state-of-the-art FIM algorithms that
have been extensively optimized over the years. While adding new dimensions
to AutoFocus requires to replicate each new dimension for all nodes, in FIM
it simply consists of increasing the transaction length by one (as it will be de-
scribed later, a transaction represents each of the entries in the input data, i.e.,
a set of items). Generalized FIM scales much better to higher dimensional data
than AutoFocus and supports attributes of hierarchical nature, like IP addresses
and geolocation. We exploit FIM to design and implement a new system, called
FaRNet (FAst Recognition of high multi-dimensional NETwork traffic patterns),
for (near) real-time profiling of network traffic data, which we first briefly de-
scribed FaRNet in [11]. Our system is capable of analyzing multi-dimensional
traffic records with both flat and hierarchical attributes.

We thoroughly evaluate the performance of FaRNet using real traffic traces
from the European backbone network of GEANT [12] and show that it scales
very well to analyzing multi-dimensional data. We find that on commodity
hardware that FaRNet can process up to 416,000 flows/sec with flat attributes
and up to 127,500 flows/sec with hierarchical attributes. We also show that
sampling can drastically reduce the memory consumption and CPU usage, while
introducing only a very small error. Compared to AutoFocus, FaRNet is much
faster, scales better to higher dimensions and produces traffic reports that are
more meaningful for a network operator.

FaRNet has been deployed and used operationally for more than six months
in the NOC of GEANT. We report experiences on how generalized FIM is useful
in practice.

In summary, we make the following contributions:

1. We introduce a new approach for discovering hierarchical multi-dimensional
network traffic heavy hitters based on generalized frequent item-set min-
ing.

2. We build a new system for network traffic profiling and thoroughly evalu-
ate its performance. We show that FaRNet is much faster than AutoFocus.
With flat attributes FaRNet can process up to 416,000 flows/sec and with
hierarchical attributes up to 127,500 flows/sec on commodity hardware.
In addition, it scales better than AutoFocus to higher dimensional data.

1We define near real-time as the requirement of fully processing an z-minute interval of
traffic data in no longer than x minutes, where z is typically a small constant, like a 5-minute
window.



3. Our system has been deployed and used for more than six months in
the NOC of GEANT, the European backbone network. We describe our
experience on how generalized FIM is useful in practice.

The rest of this paper is organized as follows. Section 2 describes the FIM
algorithms we evaluate. In Section 3, we describe FaRNet and propose modifi-
cations to existing FIM algorithms to efficiently deal with flat and hierarchical
network traffic data. Section 4 shows the results after evaluating FaRNet and
validating it against the well-known AutoFocus tool. Afterwards, Section 5 re-
ports on the deployment of a prototype version of FaRNet in a real backbone
network. Finally, Section 6 discusses the related work and Section 7 concludes
our paper.

2. Background

FIM mines efficiently an input set of transactions to discover frequent pat-
terns. Each input transaction T' consists of a set of [ items T' = {ey,...,e;}. A
frequent item-set is a set of items that occur in at least s transactions. The
threshold s is called minimum support and can be defined either as an absolute
number or as a fraction of the total number of transactions. A classical appli-
cation of FIM is in market basket analysis for finding groups of products that
are purchased frequently together.

The downward-closure property of FIM states that an item-set is frequent
iff all its subsets are frequent. For this reason, all the subsets of a frequent
item-set are also frequent and the output of FIM can include many redundant
item-sets. To address this problem, maximal frequent item-set mining has been
proposed. Maximal item-set mining only returns the longest frequent item-sets
and discards all the redundant subset frequent item-sets.

In this work, we model each traffic low as a transaction where the items
correspond to different flow features. Based on the standard 5-tuple defini-
tion, a flow is the set of packets with common values in the following 5 fields:
the protocol number and the source/destination IP addresses and ports. Flow
features are different characteristics of a flow, like the source/destination IP
addresses and ports and the protocol (e.g., as in AutoFocus). However, many
other can also be considered, like the number of packets or bytes of a flow, its
source/destination AS or the layer 7 application. By default, FaRNet takes
as input transactions that consist of the source and destination IP addresses,
the source and destination port numbers, the protocol number, the inferred
application that generated the flow, the source and destination ASes, and the
geolocation of the IP addresses. The input can be trivially extended by adding
new features, e.g., like path quality metrics, or by removing features, which is
needed to compare the performance of FaRNet with AutoFocus. Each input
attribute corresponds to one dimension in HHH terminology. Therefore, by
default FaRNet processes 10-dimensional data.

In order to select the best performing algorithms for network traffic data,
we evaluate five FIM algorithms. We select Apriori [13], FP-growth [14], and



Eclat [15] because they are the reference algorithms of the three main paradigms
for computing a FIM solution. In addition, we select RElim [16] and SaM [17],
which are two highly-optimized variants of FP-growth. Given a set of input
transactions composed by items, FIM algorithms initially count the frequency
of each single element. Afterwards, they combine these elements and iteratively
discover sets of elements that frequently occur together. Different algorithms
explore alternative and more efficient approaches for storing and combining
items. The most well-known FIM algorithm (i.e., Apriori [13]) systematically
generates combinations of all (single) items and then goes through the input
transactions to check which combinations exist and are frequent, i.e., above the
minimum support. More efficient algorithms (e.g., FP-growth [14]) are faster
because they pass over the input transactions only twice instead of several times.
Moreover, instead of combining items for all the dataset at every step, which
generates a huge number of combinations, only a specific and much smaller
set of items is used at each iteration. Next, we summarize the key features of
each algorithm we have evaluated in this paper, i.e., Apriori, FP-growth, Eclat,
Relim and SaM (further details can be found in [18]).

Apriori [13] is the first and simplest FIM algorithm. It works in breadth first
order by iteratively merging frequent item-sets of increasing length. It starts
by computing frequent item-sets of length one. Based on the downward-closure
property, it then joins them to compute candidate item-sets of length two. Af-
terwards, it makes a pass over the input transactions and discards candidate
item-sets that are not frequent. This procedure is repeated recursively until no
more candidate item-sets can be generated. Apriori has two main drawbacks.
First, it needs k passes over the input data, where k is the length of the longest
item-set. Secondly, candidate generation and testing is extremely slow as the
number of candidate item-sets can be very large. In order to overcome these
issues, faster and more efficient algorithms have been proposed.

Eclat [15], instead of working with the typical horizontal representation of
transactions, i.e., a list of items for each transaction, it uses a vertical layout,
i.e., each item has an associated list of transaction identifiers where it appears in.
It traverses the data in a depth first order and intersects the lists of transaction
identifiers of the corresponding items for the counting.

FP-growth [14] uses a structure called Frequent Pattern Tree (FP-tree). In
an FP-tree, those transactions sharing items will also share the same branch in
the tree, which allows storing the data with higher compactness (especially for
dense datasets). FP-growth skips the process of checking all candidate item-sets
against all the database for each iteration, which is an extremely slow process
and becomes intractable as input data increases or the minimum support gets
lower. FP-growth improves this by significantly reducing the possible candidates
to that part of the database related to a particular item (called the conditional
pattern base). Another factor that explains why FP-growth is faster than Apriori
is that it only reads the database twice.

RElim [16] is based on FP-growth although it does not use Frequent Pattern
Trees. Instead, it proceeds by recursively eliminating items. First, it selects all
transactions that have the least frequent item (among those items that are



sIP dIP sP dP | pr app sAS | dAS sG dG

1.1.1.1 2.2.2.2 5000 | 80 6 n/a n/a n/a | n/a | n/a
Flow-based 1.1.1.2 2.3.3.3 6000 | 80 6 n/a n/a | n/a | n/a | n/a

1.1.1.3 2.4.4.4 7000 | 80 6 n/a n/a n/a | n/a | n/a
[ AutoFocus [ 1.1.1.0/30 | 2.0.0.0/8 T hp [ 8 [ 6 [ n/a [ n/a [ n/a [ n/a [ n/a |
[ FaRNet [ 1.1.1.0/30 | 2.0.0.0/8 | hp [ 80 | 6 | BTTP | X [ Y [ US [ BU |

Table 1: Example of a traditional flow-based report (top three rows) and its equivalent reports
for AutoFocus (middle) and FaRNet (bottom). sIP, dIP, sP, dP, sAS, dAS, sG and dG stand
for the source and the destination IPs, ports, ASes, and geolocation, respectively. pr denotes
the protocol and hp represents the high-ports, i.e., port values above 1023.

frequent). Then, it removes that item from them and recursively processes all
the items left in that set of transactions, i.e., a dataset that is much smaller than
the original. By remembering the items found during this recursion, when there
are no more items left in the reduced dataset to be explored, RElim is able to
compute all frequent item-sets associated with the removed item for which the
recursion started. Afterwards, the algorithm repeats the process with the next
least frequent item and without the already processed item in the database.

SaM [17], purely based on horizontal representation, is a simplified version
of RElim. It performs in two steps: split and merge. In the split step, all arrays
starting with the leading item of the first transaction are copied into new arrays
and that leading item is removed. This process is repeated recursively to find all
frequent item-sets for the leading item. Then, in order to obtain the conditional
pattern base not containing the leading item, a merge step with the rest of the
database not containing that item is needed. Optimized versions of both RElim
and SaM have been recently proposed by the authors [19].

3. FaRNet: Building an efficient FIM system for network traffic

This section presents our system for FAst Recognition of high multi-dimensional
NETwork traffic patterns (FaRNet). FaRNet efficiently analyzes network data
and extracts useful frequent patterns that summarize the traffic activity of the
network. First, Section 3.1 presents the architecture of FaRNet. Afterwards, we
explain how we extend and optimize the FIM algorithms from Section 2 to deal
with flat (Section 3.2) and hierarchical data (Section 3.3). Finally, Section 3.4
describes how we use sampling to improve the performance of FaR Net.

3.1. FaRNet Overview and Architecture

Even though previous works (e.g., HH, HHH) [5, 6, 7, 8, 9] are extremely
useful to find frequent traffic patterns in network traffic, they are limited to
explore a pre-defined set of dimensions (e.g., the well-known 5-tuple in case of
AutoFocus [10]). Adding more dimensions results in an explosion in terms of
runtime because of the exponential growth of generated combinations. The main
objective of FaRNet is building a better tool that 1) is capable of dealing with
high multi-dimensional data; 2) provides more comprehensive traffic reports;
and 3) can perform in a timely fashion.
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Figure 1: FaRNet architecture.

Figure 1 shows the architecture of FaRNet. As we can observe, FaRNet
receives four inputs: NetFlow data, minimum support (s), data treatment and
sampling rate (p). s is the threshold that determines if the size of a set of
flows is big enough to be considered a frequent item-set. The next parameter
indicates the type of mining: flat or hierarchical. Elements that are treated as
plain data are considered indivisible items, i.e., scalar values such as individual
IP addresses or ports without considering their intrinsic structure. On the con-
trary, in the hierarchical scenario, elements are part of an associated hierarchy.
For example, TP addresses consist of prefixes from length 8 to 32 and ports
have a two-level hierarchy (specific port and its group, i.e., well-known or not).
Similarly, the applications have also two elements, the specific application and
its group (e.g., BitTorrent an P2P). Finally, geolocation data has four different
elements for each IP (continent, country, region and city). For traffic classifica-
tion, i.e., to infer the application that generated the flow, we used the technique
described in [20], which uses machine learning and Sampled NetFlow data and
obtains accurate results. First, there is an offline phase where the relation be-
tween a pre-defined set of traffic features (e.g., port numbers or flow sizes) and
each application is analyzed. Afterwards, this set of features is used to build a
classifier using machine learning. Finally, the created model is used to identify
the network traffic online. Note that although our current implementation of
FaRNet is based on these features, any other hierarchical element could be triv-
ially added as the system scales well with the number of dimensions. Finally,
the sampling rate parameter (p, 0 < p < 1) indicates what percentage of the
input data will be sampled. FaRNet has a single output: frequent item-sets.

FaRNet's first step is to sample the input NetFlow according to the sampling
rate r introduced by the user. If p = 1, i.e., if all traffic is taken, no sampling
process is actually needed and, therefore, it jumps directly to FIM. Otherwise,
i.e., if p < 1, a certain percentage of the traffic will be randomly sampled before
running FIM. Afterwards, depending on the selected type of mining, different
paths will be taken. For flat treatment, a FIM algorithm for flat data will be



used. For hierarchical treatment, an optimized FIM algorithm extended to deal
with hierarchical traffic attributes will be run. This extension, called Progressive
Ezxpansion k-by-k (PEK), is explained in Section 3.3.3. The FIM boxes of
Figure 1 perform maximal item-set mining to suppress redundant information.
We adapt, extend and optimize the implementations of different FIM algorithms
by [21] to deal with network traffic data. In particular, these implementations
are designed to treat all input items equally. Consequently, we first adapt them
to identify different data types, e.g., an IP address is not processed like the
protocol number since the former is a hierarchical element and the latter is not.
Second, the extension and optimization phases refer to our proposal, PEK, for
efficiently dealing with hierarchical data.

In Table 1, we can observe several examples of network traffic activity re-
ports. The first three lines represent a traditional flow-based report that de-
scribes the activity of different hosts accessing distinct servers on port 80. Line
4 shows the output that AutoFocus would return. As we can observe, this
report offers more detail by showing the specific prefixes of source and desti-
nation IPs as well as the specific range of source ports used. Finally, line 5
shows the output of FaRNet. We can see that, additionally to what AutoFocus
reported, FaRNet is able to find other interesting associations regarding the ap-
plication used (column 6), the destination AS (column 8) and the geolocation
(city, region, country and continent) for both the source and the destination IP
addresses (last two columns). From the point of view of a network operator,
FaRNet offers a much richer summarization of what is happening in a network
w.r.t. to the extensive flow-based reports or the limited 5-tuple view offered by
AutoFocus. As illustrated in Table 1, FaRNet is able to identify all flows as
HTTP and also identifies the ASes and the physical source and destination of
the communication, which is much more interesting and useful for the operator
than only the 5-tuple or the raw set of flows.

3.2. FIM with flat attributes

With flat attributes, each flow record corresponds to a transaction with a
fixed size of 10 items corresponding to the well-known 5-tuple (source and desti-
nation IP addresses, source and destination ports and protocol), the application,
the source and destination AS and the source and destination data for the ge-
olocation. All items are interpreted as plain data. In this case, FaRNet uses
the FIM algorithms described in Section 2 with no further modification. In Sec-
tion 4.2.1, we compare and evaluate the performance of these FIM algorithms
with flat traffic data.

3.3. FIM with hierarchical attributes

Why is hierarchical mining interesting? For instance, suppose there is a high-
volume horizontal scan towards a certain subnet. Although FIM flat would
spot the attack, it would only report its source IP address and destination
port. On the other hand, hierarchical FIM would find the specific subnet under
attack and also discover if a certain range of ports was used (e.g., well-known



ports). AutoFocus would also find this type of information. Suppose now that
there is a large amount of users from different countries in Europe massively
accessing websites located in Asia. In this case, neither FIM flat nor AutoFocus
would be able to discover this pattern. The former because it does not support
hierarchies and the latter because it is limited to the 5-tuple. Nonetheless, FIM
hierarchical would find this association in a higher level of the hierarchy, i.e., it
would report interaction between Asia and Europe. In hierarchical FIM, IPs,
ports, applications and geolocation data are treated as hierarchical elements.

In this paper, we propose the following three approaches to extend FIM
to deal with hierarchical network traffic data: Full Expansion (Section 3.3.1),
Progressive Expansion (Section 3.3.2) and Progressive Expansion k-by-k (Sec-
tion 3.3.3). Next, we present the specific working scheme for each case.

8.8.1. Full Expansion

The straightforward solution for allowing FIM to deal with the hierarchical
nature of network traffic is expanding each item of the transaction with its
corresponding ancestors. For IPs, this means replacing each IP by all its possible
prefixes from length 8 to 32, i.e., 25 items (note that prefixes of length shorter
than 8 have not been considered since they have never been assigned). Regarding
ports, they are translated into two items: its value and its corresponding range.
If it is lower than 1024, it belongs to the well-known or low-ports group (0-
1023). Otherwise (> 1024), it is part of the high-ports (1024-65535). The
protocol remains as a plain attribute. Similarly to ports, applications are also
translated into two items: the specific application (e.g., Skype) and the group
it belongs to (e.g., VoIP). Concerning the geolocation, for each IP address, we
obtain four new elements: the continent, the country, the region and the city.
Consequently, in Full Fzpansion (FE) all transactions are extended from 10
items (flat case) to 67 (25 items per IP, two items per port, one for the protocol,
two for the application, one for each AS and four for the geolocation of each
1P).

Hierarchical FIM will be able to provide greater granularity by automati-
cally finding frequent IP prefixes, interaction between port ranges, associations
between continents, countries, regions and cities and the applications generating
such traffic. Full Expansion results are presented in Section 4.2.2.

3.3.2. Progressive Expansion

In Full Expansion, all transactions are always extended to 67 items when
mining the 10 dimensions. Nonetheless, in most cases, extending all prefixes of
an IP is not necessary because a fully defined 32-bit IP is rarely frequent by
itself. On the contrary, prefixes of inferior length have higher chances of being
above the minimum support. For instance, a certain prefix @.0.0.0/16 might be
frequent even though a more specific subnet (e.g., a.b.c.0/24) is not. Similarly,
while a city is not often frequent by itself, its corresponding region, country or
continent might be.

For simplicity, from here on, all the extensions and optimizations will refer
only to IP addresses. However, note that all the proposals made are applicable



Algorithm 1: Progressive Expansion k-by-k

Input: k: number of bits to expand at each step;
ms: minimum support;
Trees: array of trees for /8 prefixes;

1forl=81<321=1+kdo

2 for every transaction T do

3 for every IP address e in T do

4 if | == 8 or parent_is_frequent(e,l - k,ms) then

5 /*initialize a node if not set*/;

6 n = get_node_by_prefix(Trees,e,l);

7 n.count += T.weight;

8 /*T.weight captures number of bytes, pkts, or flows*/;

9 /*compute unknown frequencies recursively*/;
10 for every tree TR in Trees do
11 if TR.child[left] not NULL then

12 L TR.child[left].count = compute_frequencies(TR.childfleft]);
13 if TR.child[right] not NULL then

14 L TR.child[right].count = compute_frequencies(TR.child[right]);
15 for every transaction T do

16 for every IP address e in T do

17 expand_item(e, Trees,ms);

18 /*walk tree and return frequent ancestors*/

to the other hierarchical features presented in this paper and, in general, to any
other hierarchical element.

Taking into account that an IP address is rarely frequent by itself, Progres-
sive Ezpansion (PE) will not always generate all its 25 prefixes. An IP prefix
of length k will only be explored if its corresponding k — 1 prefix (parent prefix
or ancestor) is frequent. Otherwise, the expansion for that IP will end at level
k — 1. This is because if a certain prefix is not frequent, all prefixes of supe-
rior length will not be frequent either (downward-closure property, Section 2).
The frequency of a particular prefix is calculated by progressively counting the
frequency of its shorter prefixes (see example in Section 3.3.3). Progressive
Ezpansion results are reported in Section 4.2.3.

3.8.3. Progressive Expansion k-by-k

The main drawback of PE is that it needs to go through all transactions
25 times?, which is very costly in terms of runtime. Consequently, this section
presents Progressive Expansion k-by-k (PEK), which seeks to reduce this part of

2Note that this is because of the depth of the IP address hierarchy and, therefore, it would
change depending on the hierarchical element we are dealing with (e.g., 4 for the geolocation).
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Algorithm 2: compute_frequencies

Input: n: node of the tree;

if n == NULL then
L return 0;

else if n.level == 32 then
L return n.count;

N =

else
L n.count = compute_frequencies (n.childfleft]) +

[0 W

compute_frequencies (n.child[right]);
return n.count;

~

the process while avoiding the generation of useless prefixes. This is achieved by
expanding k bits at each step instead of going one by one (PFE is a particular case
of PEK with k = 1). When using PEK, all transactions will be read 1 + 24/k
times instead of 25. Note that the only valid values for k are 1, 2, 3, 4, 6, 8, 12
and 24.

Algorithm 1 shows PEK’s working scheme. First, all prefixes of length [ = 8
are generated for all IPs of all transactions and, uniquely for these that are
frequent, a binary tree is created (only the root node). Afterwards, for each
prefix of length [+ k with a frequent ancestor (prefix of length [, tree level [ —8),
its corresponding tree is expanded up to level [ + k — 8 (line 6). After going
through all possible values of | (8 < I < 32), all frequencies in intermediate
nodes (nodes between explored levels, i.e., among [ — 8 and | + k — 8) are
recursively computed (lines 12 and 14). Details of the recursivity can be found
in Algorithm 2. Finally, transactions are expanded only with those prefixes that
are known to be frequent by going though the corresponding tree from the root
to the leaves following a depth-first approach (line 17).

The following example illustrates how PEK computes the prefixes and fre-
quencies for the IP address 192.168.10.5 and k& = 2. The first step consists of
generating the binary tree for its prefix of length 8, i.e., 192/8. Afterwards,
if the root node is frequent, prefixes of length 10 are generated (2-bit expan-
sion). Therefore, frequencies for prefixes 192.192/10, 192.128/10, 192.64/10 and
192.0/10 are calculated. Then, the computation for intermediate nodes (prefixes
of length 9) is calculated by moving backwards in the binary tree. In this case,
prefixes 192.192/10 and 192.128/10 have a common ancestor, i.e., 192.128/9.
Thus, the frequency of the intermediate node 192.128/9 is the sum of frequen-
cies of its two descendants, 192.192/10 and 192.128/10. Likewise, the frequency
for 192.0/9 comes from 192.64/10 and 192.0/10.

For k = 24, PEK would generate all prefixes of length 8 and 32 (same be-
havior as FFE except for the first pruning of infrequent /8 prefixes). In this case,
PEK would be extremely fast (it would go through all transactions only twice).
However, it would use a lot of memory (it would directly expand all trees to the
maximum of 25 levels without performing any sort of prefix pruning). There-
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fore, our goal is finding a value of k£ such that the trade-off between memory
usage and runtime is optimal. This trade-off is investigated in Section 4.2.4.

3.4. Sampling

In order to reduce the volume of input transactions, we can apply random
sampling, i.e., we randomly sample each input record with probability p, where
0 < p < 1. Sampling reduces the volume of input data and therefore speeds up
the mining process. However, sampling can have undesired effects. In particular,
these frequent item-sets obtained from sampled input may differ from those
obtained from the full traffic. We identify the following four cases:

1. Identical item-sets. Both the sampled and the original output yield an
identical frequent item-set that has exactly the same items. These flows
matching such item-sets are true positives.

2. Lost item-set. An item-set that was in the original output but does not ap-
pear after applying sampling because it is undersampled and its frequency
is not above the minimum support anymore. These flows belonging to such
item-sets are false negatives.

3. New item-set. An item-set that is not frequent is oversampled and becomes
frequent in the sampled transactions. Item-sets with frequency close to
the minimum support are more likely to transition to frequent. Flows in
this set are false positives.

4. Transformed item-set. This happens when two or more item-sets in the
original output are merged into a new item-set in the sampled output. Nor-
mally, this new item-set has more defined items than the original because
it is precisely a combination of them. In general, all the flows matching
this item-set are true positives because even though the item-set is not
strictly the same, its pattern defines the same set of flows matching the
union of original item-sets.

Note that frequent item-sets close to the minimum support (s) are more
likely to trigger false positives or negatives. The lower s, the higher the number
of item-sets with frequency close to it. Therefore, the chances of either losing
frequent item-sets or creating new ones are higher for smaller values of s.

To estimate the error due to sampling, we model the process with a binomial
distribution. In particular, if N is the original size of an item-set, n the size of an
item-set after sampling, and p the sampling rate, then the binomial distribution
gives the probability of obtaining exactly n successes, i.e., a frequent item-set
of size n, out of N independent trials, each of which yields a certain probability
of success p. Using the binomial distribution, we can answer the following
question. Given a minimum support s, what reduced s’ should be used in order
to ensure with high probability that the original frequent item-sets will remain
after applying sampling? Our goal is to find what minimum support s’ is needed
in order to guarantee with a certain probability that an original item-set of N
flows will be kept after sampling. Note that in order to keep a realistic view of
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[ label [ #Hows [ #packets [ #bytes [ duration ]

trace-1 0.51M 5.46M 5.55G 15m.
trace-2 1.96M 25.22M 21.88G 1h.
trace-3 3.87TM 47.77TM 42.20G 2h.
trace-4 5.77TM 72.37TM 67.83G 3h.

Table 2: Details of the dataset

what is happening in a network, our primary goal is to ensure that these item-
sets that were originally frequent are also frequent after the sampling process.
In exchange for that, we accept that some false positives might appear in the
output. However, recall that false positives are item-sets that were very close to
the minimum support in the unsampled scenario and, therefore, adding them in
the final summary does not introduce any important error with respect to what
is truly happening in the network. Nonetheless, missing frequent item-sets in
the sampled output would impact significantly its usefulness. Being x the size
of that item-set after sampling:

P(x>s)=1-Plz<s)=1-CDF(s',N,p) = 1- @)p"(lp)“ (1)

=0

From Eq. 1, the probability p of an item-set of 1000 flows of reaching s =
100 flows after applying a 10% sampling does not even reach 50% (p =~ 47%).
However, by using the binomial distribution we can find in advance a desirable
setting. In this example, setting s’ = 60 ensures that the original frequent
item-set will not be lost. Nonetheless, there is no need to reduce the minimum
support so aggressively. Using s’ = 80 would allow keeping all the original
item-sets with high probability (p ~ 98%).

The impact of sampling on the performance and accuracy of FaRNet and
the trade-off between true positives and false positives depending on the choice
of s’ will be discussed in Section 4.2.6.

4. Performance Evaluation

In this section, we first describe the scenario and datasets used in the evalua-
tion (Section 4.1). Afterwards, we report FaRNet results with flat and hierarchi-
cal data, and also evaluate its performance under sampling (Section 4.2). Note
that this part of the evaluation focuses on a simplified version of FaRNet with
a limited number of dimensions (5-tuple) to allow the comparison with Auto-
Focus [10] (Section 4.3). Finally, Section 4.4 reports on the results obtained
by FaRNet when mining the full set of 10 dimensions (5-tuple, application,
source/destination AS and source/destination geolocation).

4.1. Scenario and Datasets

The experiments presented in this section were performed using four NetFlow
traces from 2011 from one of the 18 the points-of-presence of the European
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Figure 2: Density (left), number of unique items (middle) and average transaction length
(right) for varying minimum support on trace-1 (t1), trace-2 (t2), trace-3 (t3) and trace-4

(t4).

backbone network of GEANT [12]. GEANT is a /19 transit network connecting
34 European NRENSs, a dozen of non-European NRENs and two commercial
providers (Telia an Global Crossing). The details of the datasets can be found
in Table 2.

For each traffic trace, Figure 2 reports the average transaction length (1), the
number of unique items (n) and their density (d = I/n) for varying minimum
support (s). As it will be discussed later, these parameters have an important
impact on the performance of the FIM algorithms, and their values depend
not only on the dataset, but also on the particular method applied; i.e., flat,
Full Ezpansion (FE) or Progressive Ezpansion (PE). For example, while in the
flat case e.g., an IP address accounts for a single item, in FE each IP is always
expanded to 25 items. Thus, both mechanisms lead to different dataset densities
as they have different transaction lengths (1) and a distinct number of unique
items (n). Nonetheless, for PFE, these parameters also depend on s. This is
because, as explained in Section 3.3.2, only specific prefixes are expanded in PE
depending on s. Consequently, although the dataset is the same, for PFE, both
[ and n change for different s. Specifically, the lower the value of s, the longer
the transactions (I ~ 8 items for the highest s and | =~ 32 for the lowest). The
figure confirms that network traffic data is extremely sparse (only datasets with
d > 0.1 are considered dense in the literature [17]).
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Figure 3: Memory usage (left) and execution time (right) with flat attributes and varying
minimum support on dataset.

4.2. FaRNet Performance

In this section, we compare the algorithms presented in Section 2 with flat
and hierarchical attributes. Afterwards, we select the best performing algo-
rithm among them and show the achieved gain due to the optimizations pro-
posed in Section 3. Finally, we discuss on the selection of the appropriate
value of s. Recall that for all the experiments in this section, only the 5-tuple
(i.e., source/destination IP addresses, source/destination ports and protocol)
has been used.

We split the four NetFlow traces described in Table 2 in time bins of 15
minutes and show the average and the standard deviation in the results. From
here on, in this section we will refer to that set of bins as the dataset. Note
that the longer the time bin considered, the higher the resources needed (i.e.,
more running time and memory usage). We use an Intel Core2 Quad processor
Q9300 and 3GB of main memory running Debian 5.0.5 (32 bits).

4.2.1. Flat treatment

Figure 3 shows the performance of all the evaluated FIM algorithms for flat
data (i.e., Apriori, Eclat, FP-growth, RElim and SAM). On the left plot, we
observe the memory used for values of s ranging from 0.1% to 10% (we discuss
later in Section 4.2.7 on the appropriate selection of s). In order to clearly
observe how each algorithm managed memory, the plots show two different val-
ues: the maximum total memory used ("Max peak’) and the memory strictly
reserved during the mining task. The main problem of reporting only the max-
imum peak is that the specific behavior of each method is completely hidden
below that peak. In particular, the dotted line labeled as 'Max peak’ in Figure 3
shows the maximum total memory used, which is the same for all the algorithms
regardless of s (= 36 M B). This happens for two reasons. First, because the
part of the code that takes care of reading the input data and performing a
first pass for counting the support of single element item-sets is common to all
methods in the code provided in [21]. And second, because this first pass needs
far more memory than the rest of the mining process.
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Figure 4: Memory usage (left) and execution time (right) with Full Ezpansion for varying
minimum support on dataset.

Regarding the memory usage of each algorithm, Apriori is clearly the one
with the lowest consumption. FP-growth shows the worst memory usage while
SAM, RElim and Eclat report similar results. The main reason behind such
memory differences between Apriori and the rest lies on the fact that, except
for Apriori, all algorithms use complex data structures that book big memory
blocks (e.g., 21 MB for SAM). On the other hand, Apriori asks for small pieces
of memory every time it needs them.

In contrast, when looking at the execution time of each algorithm (Figure 3,
right), the differences are hardly noticeable among each other. Overall, after
analyzing both the runtime and the memory used for the mining by each of the
algorithms, Apriori turns out to be the best algorithm for FaRNet for dealing
with flat data.

4.2.2. Full Expansion

The objective of this section is to analyze how the presented FIM algorithms
perform on hierarchical data to, later on, apply the optimizations presented
in Section 3 to the best performing method. Recall that the goal of mining
hierarchical data is to obtain higher granularity on the reported frequent item-
sets. For example, if there is a scan, it might be possible to find out the specific
subnet that is under attack (with flat treatment this is not possible).

Figure 4 shows the performance of SAM, RElim, FP-growth and Eclat when
using Full Ezxpansion (FE) on dataset. On the left plot, we can observe the
memory consumption (in logarithmic scale) for different s values. FP-growth
and Fclat show the highest memory consumption. However, while F'P-growth
is the worst performing algorithm for s > 2%, Fclat’s memory consumption
becomes close to SAM’s and RElim’s for s > 4%. In contrast, both SAM and
RElim scale smoothly for decreasing values of s (e.g., the memory usage for the
mining is approximately one order of magnitude lower than FP-growth’s and
Eclat’s for s = 0.1%).

As regards the runtime, RElim and FP-growth are the fastest and, for s <
1%, RElim is slightly better than FP-growth. FP-growth is among the quickest
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Figure 5: Memory usage (left) and execution time (right) comparison between flat, Full Ezpan-
ston, Progressive Expansion and Progressive Expansion k-by-k for varying minimum support
on dataset.

algorithms due to its compact FP-tree representation and RFElim is particularly
designed to deal with sparse datasets, which is the case for network traffic data
(see Figure 2). Eclat performs similarly to RElim and FP-growth but only for
s > 1%. SAM turns out to be the slowest algorithm except for s = 0.1%, in
which case Eclat shows the worst results.

Note that Apriori algorithm does not appear in Figure 4 due to scalability
issues, which impeded us to run it with hierarchical attributes even for the
greatest s = 10%. The main problem with Apriori is the candidate generation
and testing step, which becomes too slow and needs too much memory with
long transactions. Note that in this version of FaRNet limited to 5 dimensions
(5-tuple), transactions have 55 items in FF instead of 5 as in the flat case (25
items for each IP, two per port and one for the protocol).

Based on Figure 4, RElim shows the best trade-off between execution time
and memory consumption for Full Expansion in FaRNet. Therefore, in the fol-
lowing subsections we evaluate the different optimizations presented in Section 3
on top of RElim.

4.2.8. Progressive Expansion

In this section, we discuss the advantages of using Progressive Expansion
over Full Exzpansion. Figure 5 shows the performance of RElim for all proposed
methods: flat, Full Expansion (FE), Progressive Expansion (PE) and Progressive
Ezxpansion k-by-k (PEK). On the memory side (left plot), the effect of applying
PE is clear. The figure reports the total memory consumption, including both
the first pass to compute 1-element item-sets and the rest of the mining process.
Note that unlike in Sections 4.2.1 and 4.2.2, the reported memory accounts for
the total consumed, not only the part necessary for the mining tasks. This is
because in previous sections we were analyzing what algorithm was performing
better but from now on, we will progressively apply several improvements on
the same algorithm, RElim. Therefore, we are not interested anymore in the
memory consumed only during the mining but on the overall. With PE, the
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Figure 6: Results for Progressive Ezpansion k-by-k on dataset. Memory usage (left) and
execution time (right) for varying minimum support. Memory-time trade-off for minimum
support = 10% (bottom).

number of generated prefixes is dramatically reduced compared to FE, because
of the fact that full IPs are rarely frequent enough to be above s and, therefore,
they are generally cut before reaching /32. Consequently, the memory needed
is far lower (e.g., =~ 60% reduction for the lowest s on trace-1). Moreover, as s
increases, PE gets closer to flat treatment. In Figure 2 (middle), we can also
observe that the average transaction length decreases with s. In particular, for
s = 0.1% the average length is ~ 32 elements (32.23), while for s = 10% it
hardly reaches 8 elements (8.06).

Nonetheless, the pruning task results in an important increase of the execu-
tion time. Figure 5 (right) shows that PFE is slower than FE. This is due to the
fact that PE must go through all transactions 25 times, each one for extending
all prefixes by one bit until reaching /32 (in FE every transaction is read only
once and each IP directly expanded into 25 items). The next section evaluates
an optimization that addresses this issue.

4.2.4. Progressive Expansion k-by-k

Figure 6 plots the memory usage (left) and the execution time (right) for all
possible values of k when using Progressive Expansion k-by-k (PEK). In terms
of memory usage, k = 24 is the worst option (it expands directly all trees and,
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[ label [ #transactions [ #transaction_size [ Funique_items [ #bytes_fixed_per_IP ]

Scenario 1 100,000 5 262714 0
Scenario 2 100,000 5 262226 1
Scenario 3 100,000 5 164904 2
Scenario 4 100,000 5 63257 3

Table 3: Details of the 4 synthetic datasets created

therefore, needs a lot of memory), while all the other values of k behave much
better and very similarly among each other. On the contrary, when switching
to the runtime comparison, k = 24 turns out to be the best choice together with
k = 12 while k = 1 is the worst (it needs to analyze all transactions 25 times).
Clearly, k = 12 offers the optimal trade-off in our scenario as it is almost as fast
as k = 24 but uses much less memory. Figure 6 (bottom) reports the execution
time and memory usage for s = 10% (other values of minimum support show
almost identical results). This plot further confirms that k£ = 12 offers the best
balance between speed and memory usage in our dataset.

Figure 5 shows that PEK with k = 12 outperforms both FE and PFE in terms
of both execution time and memory consumption. Although PEK and PFE use
approximately the same memory, PEK’s execution time is vastly reduced with
respect to PE’s (transactions are only read three times to generate /8, /20 and
/32 prefixes).

4.2.5. PEK: finding the optimal k

Note that the selection of k depends on the specific characteristics of the
dataset (Section 4.1) and, therefore, another value of k might offer better per-
formance in a different scenario. Next, we show how the optimal value of k
changes for different synthetic datasets that have diverse characteristics. These
datasets are composed by 5-tuple transactions. The source and destination
ports and the protocol were randomly generated. In order to clearly observe
the impact of k on the performance of FaRNet, we manipulated the source and
destination IPs, i.e., those elements in the dataset that have a higher impact
in the resource consumption due to their deeper hierarchy. We considered four
scenarios that increasingly reduced the randomness of the dataset: 1) all source
and destination IPs generated randomly, 2) all source and destination IPs with
the first byte fixed, 3) both IPs with the first and the second bye fixed and,
finally 4) both IPs with only the last byte generated randomly and the other
three fixed. For more details on the dataset, refer to Table 3.

The performance of FaRNet varies significantly depending on the dataset
and the value of k. In particular, we observed that while the impact of k in the
runtime is consistent over all scenarios (lower execution time for higher values
of k), its effect on the memory consumption varies a lot among the four datasets
(see Figure 7). Specifically, the 4th scenario (bottom right figure) already shows
that, unlike in Figure 6, £ = 12 is not the best option. While k = 24 is still
the fastest choice, its memory usage is extremely similar to the other values of
k, i.e., k = 24 offers the best overall trade-off in this scenario. This is due to
the fact that all IPs are extremely similar as the only random byte is the last
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Figure 7: FaRNet memory usage for the four different artificial datasets generated: scenarios
1 and 2 (top left and right), and scenarios 3 and 4 (bottom left and right).

one. Consequently, & does not affect the memory usage because all IPs must
be expanded almost fully. No pruning is possible for prefixes up to length 24,
i.e., the 4th byte, as all IPs have frequent prefixes up to that length. As we
increase the number of unique elements in the dataset (3rd scenario, bottom left
plot), we find again that the optimal value of k changes. In particular, for high
values of k and low s, the memory usage increases. The best trade-off in this
scenario is k = 6 or k = 8 because of the higher sparsity of the dataset. Unlike
the previous case, in this scenario PEK will rarely expand IPs beyond the 2nd
byte. Therefore, k = 12 and k = 24 generate prefixes that will not be frequent.
For this reason, lower values of k (e.g., 8 or 6) are better as they do not go
further than the 2nd byte (i.e., they do not generate futile prefixes). Likewise,
if we keep increasing the number of unique elements, (1st and 2nd scenario, top
left and right plots), the previous phenomenon is further exacerbated, i.e., for
higher k, more memory usage and lower execution time. This is because of the
lower density of the datasets. In particular, the memory usage is up to 3 and
5 times higher than in previous scenarios for k = 24 and s = 0.1 (more unique
elements to store, specially for low values of s) and the runtime is reduced by
approximately half in scenario 1. The higher randomness in the data reduces a
lot the number of frequent elements and, therefore, the mining is much simpler
due to the lower number of elements to process after the pruning. Similarly to
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the previous case, in these two last scenarios, the optimal choice is a small value
of k.

4.2.6. Sampling

Next, we evaluate the impact of sampling on the output of FaRNet. We use
the following metrics to quantify the error introduced by sampling. Let X be
the union of flows matching all the frequent item-sets after running FaRNet on
unsampled data. Likewise, Y defines this set of flows for the sampled case.

True Positives Rate: TPR = X0Y1

False Positives Rate: FPR = X 2X1

While true positives show the efficiency w.r.t. the unsampled case, the false
positives indicate the correctness of the output (item-sets that were below the
minimum support that turned frequent item-sets due to the sampling process).
False positives are obtained by subtracting the set flows that belong to the
original frequent item-sets detected without sampling (X) from set Y, which
contains all the flows from all the frequent item-sets reported after the sampling
process.

In Table 6, we can observe the error introduced in the output of FaRNet due
to sampling for varying s and sampling rate p on trace-1. Concerning the TPR,
we obtain a percentage close to 94% in the worst case. Moreover, for p > 1%,
the TPR is always extremely close to 100% regardless of s. We see that higher p
and s result in smaller error. As regards the FPR, the worst results are clearly
obtained for the lowest p. The highest value is 2.47%. However, for higher p,
the number of false positives is greatly reduced, especially for low s. The reason
why smaller values of s lead to less false positives is because the number of
frequent item-sets that turn out to be mistakenly reported as frequent, account
for a low number of flows w.r.t. the overall input flows.

For example, for s = 10% and p = 1%, we obtain TPR = 100% and
FPR = 6.42%. These false positives are due to the fact that in the unsam-
pled output, there is an item-set whose frequency is very close to s (9.96%)
that, after sampling, depending on the case, becomes frequent (new item-set
phenomenon described in Section 3.4). This only mistakenly classified item-set
is provoking that peak in the FPR.

All in all, we can conclude that for p = 10% and above, we obtain great
accuracy and low false positives. Also, for the most aggressive sampling rate,
p = 1%, we get acceptable values of both TPR and FPR as long as we use
reasonably high values of s.

In Figure 5, we can observe the memory usage and runtime when applying
sampling to FaRNet. As expected, when we apply a non-aggressive p = 25%, the
improvement in the performance is significant. Runtime beats clearly PEK w/o
sampling and becomes very close to flat treatment. Regarding memory usage, it
becomes the best among all methods, including the flat case. With this sampling
rate, FaRNet needs less than 4 seconds in the worst case to process a trace of
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Figure 8: Number of frequent item-sets for flat and hierarchical data and varying minimum
support for trace-1.

15 minutes with approximately half million flows (¢race-1). This confirms that
FaRNet performs (near) real-time.

4.2.7. Selecting the minimum support

Frequent item-sets are useful for many reasons (e.g., traffic profiling, anomaly
extraction[22], anomaly detection [23]). They tell the operator what is happen-
ing in the network in a compact and summarized way. However, it is essential
to tune the FIM system so that the amount of reported frequent item-sets is
treatable by a human. While low s might lead to huge outputs with too much
information, high s may hide interesting patterns. Therefore, finding the proper
trade-off is crucial so that FaRNet’s output is useful for a network operator.

Figure 8 shows how the top-k of frequent item-sets varies for different s and
data treatments (flat or hierarchical) when mining the 5-tuple on trace-1 (see
details in Table 2). While in the horizontal axis we see s from 0.1% to 10%,
the vertical axis depicts the size of the output for a particular s (in logarithmic
scale). We observe that for both flat and hierarchical attributes the number
of item-sets decreases rapidly as s increases. However, the number of frequent
item-sets changes significantly depending on how we treat the data. For flat
attributes, the size of the output is always, at least, one order of magnitude
lower than for hierarchical data, except for the most aggressive s = 10%. This
difference is due to the growth of frequent combinations between hierarchical
elements, i.e., IP prefixes and ports. Therefore, in order to obtain a reasonable
and humanly treatable number of item-sets in the output, the recommended s
parameter changes significantly depending on the case.

Let us assume that we are interested in extracting the top-10 or top-20 of
frequent item-sets. While we should use a 5% < s < 10% for hierarchical data,
a s close to 1% would be more convenient for the flat case. For example, for
trace-1, s = 1% returns 10 item-sets for flat treatment but, in order to reach a
similar figure for the hierarchical case, s must be increased up to 8%.
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Figure 9: Memory usage (left) and execution time (right) comparison between FaRNet
(PEK12) and AutoFocus for the first 10K flows of trace-1.

4.8. Comparison with AutoFocus

AutoFocus [10] is the only available tool of similar nature to our system (see
Section 6 for details on AutoFocus). In order to validate the implementation
of FaRNet, we compare it with AutoFocus. For the comparison, we configured
both systems so that the same threshold is used to decide whether an item-
set is frequent. While FaRNet uses the minimum support (s), AutoFocus uses a
parameter called resolution. We also limited the number of dimensions analyzed
by FaRNet to only these attributes used by AutoFocus to perform the mining,
i.e., five (the 5-tuple). For the experiments in this section, we used trace-1 (see
details in Table 2).

4.3.1. Performance comparison

Figure 9 shows how FaRNet and AutoFocus perform for different values of s.
Note that only the first 10,000 flows of trace-1 are used for this comparison. This
is because the available implementation of AutoFocus [24] is not dimensioned to
handle more flows (when it receives more than that amount, it does not count
them accurately due to collisions). In terms of runtime (right plot), FaRNet is
clearly faster regardless of s. Moreover, as s decreases, AutoFocus’ execution
time increases exponentially, while FaRNet is able to handle it smoothly. Al-
though for the highest s AutoFocus’ runtime (1s) is relatively close to FaRNet’s
(0.10s), for s = 0.1% AutoFocus is approximately three orders of magnitude
slower (223s vs 0.48s).

Regarding the memory consumption (left plot), AutoFocus is better than
FaRNet for s > 1%. However, for lower values of s, AutoFocus consumption
rises rapidly and ends up consuming far more memory than FaRNet (88.77 MB
vs 7.79 MB for s = 0.1%). All in all, FaRNet shows to be quicker and more
resilient to low s than AutoFocus, although it uses more memory for s = 1%
and above. However, note that the memory consumption of FaRNet (without
sampling) is reasonably low in the worst case (below 10 MB).

In order to improve FaRNet results, we apply sampling to the input data.
In particular, the triangle dotted line in Figure 9 shows FaRNet under a 25%
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sampling rate. As we can observe, FaRNet becomes faster than without sam-
pling and, more importantly, gets really close to the memory consumption of
AutoFocus. Under this sampling rate, FaRNet’s memory usage is lower than
AutoFocus’ for s < 2% and approximately the same for s > 5%. However, for
intermediate values of s (2% and 4%), FaRNet is still slightly worse.

4.3.2. Near real-time processing

An important advantage of FaRNet over AutoFocus is that FaRNet is capable
of operating near real-time (i.e., it can process x minutes of data in less than
x minutes). As shown in Figure 5, FaRNet without sampling can process 15
minutes of NetFlow data (trace-1) in significantly less than 20 seconds regardless
of the minimum support. Note that FaRNet works on fixed time windows, i.e.,
it collects data during a certain time bin and when it ends it processes that data
and produces results in less than the time bin. While processing, FaRNet needs
to store part of the next time bin in a buffer, otherwise some traffic would be
lost.

When applying 25% sampling, FaRNet can analyze trace-1 with low error in
less than 4 seconds in the worst case (lowest s). On the contrary, AutoFocus is
not able to provide near real-time results. As depicted in Figure 9, for the first
10,000 flows of trace-1 (which correspond to approximately 18 seconds of traffic),
AutoFocus struggles for low s. For s = 0.5% it requires 16.25 seconds, which
is slightly below near real-time, and for s = 0.1%, AutoFocus needs almost 4
minutes, which is almost 12 times slower than real-time.

4.8.8. Scalability to more dimensions

The main issue of AutoFocus is its lack of scalability as the number of
dimensions increases. Essentially, AutoFocus combines several unidimensional
hierarchies (trees) into a multi-dimensional bigger hierarchy. The problem of
such a pass is that the combinations grow exponentially with more dimensions.
This is because each new dimension considered must be “replicated” for every
single node of every unidimensional hierarchy. In particular, the number of
clusters above the threshold is bounded by r Hle d;, where k is the number of
dimensions considered, i.e., 5 when mining the 5-tuple (i.e., srcIP, dstIP, srcPort,
dstPort and protocol). d is the depth of the hierarchy of dimension i (e.g., 25 for
IPs) and r is the resolution [10]. Therefore, the more dimensions and the higher
the depth of the hierarchies, the worse. In contrast, adding more dimensions to
FaRNet is as easy as increasing the transaction length. We have already seen
that FaRNet easily handles transaction lengths of 55 items for the 5-tuple. In
next section, we report results on analyzing the full set of 10 dimensions and
show that FaRNet is able to process them very quickly.

4.4. Mining more dimensions

By mining the full set of 10 dimensions, item-sets like these reported in
Table 7 can be obtained. In particular, this table shows the top-10 frequent
item-sets reported by FaRNet on trace-1 for s = 1%. This top accounts for
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approximately 10% of the traffic. The table also shows the item-sets returned
by AutoFocus in order to observe the differences among both systems. FaRNet
is able to process this trace (& 0.5 million flows) in approximately 12 seconds.

As we can see in the table, while AutoFocus essentially reports quite general
IP prefixes, FaRNet is able to find much richer item-sets containing more con-
crete prefixes, specific locations, applications and ASes. For example, the 9th
item-set reported by AutoFocus describes the activity of a a host that, judging
by the source port, could be a web server. However, other than its source IP, the
remaining data of the item-set is not extremely useful. However, when looking
at the output provided by FaRNet, we can see that item-sets 1, 9 and 10 uncover
some very interesting hidden associations related to the very same item-set. In
particular, we confirm that the host is indeed a web server (its associated ap-
plication is HTTP), we find its source AS and also discover that it is located
in a city called Bethesda (Maryland, US). Specifically, this web server hosts a
widely used tool in the research community that gives access to a database of
references on life science and biomedical topics. Moreover, we observe that it is
being accessed from several European countries (Great Britain, Germany and
France) ans also find the corresponding destination AS for each case. Note that
for the hierarchical attributes, only the most specific element is reported (e.g.,
in case of Bethesda, only the city is reported because adding the continent, the
country and the region would be redundant). As we have been able to observe
in this example, in order to understand what is really happening in the network,
the item-sets reported by FaRNet are more synthetic and, therefore, much more
informative than these returned by AutoFocus.

5. Deployment

A prototype version of FaRNet [25] based on flat treatment on the 5-tuple [22]
has been deployed in the European-wide backbone network of GEANT (see
scenario details in Section 4.1). It is essentially used by the network operators
for automatically extracting and summarizing in a compact view all the traffic
flows causing an anomaly (anomaly extraction). Even though FaRNet is a tool
for traffic profiling, our main intuition for using it for anomaly extraction is
that anomalies often result in large sets of flows with similar characteristics
(e.g., when there is a DDoS, lots of flows share the same destination IP and
port). Consequently, anomalies will appear in the reports of FaRNet as frequent
item-sets. In particular, FaRNet has been used for two purposes in GEANT:
1) validate anomaly alarms previously triggered by an already existing anomaly
detection tool in the network (NetReflex [26]) and 2) collect malicious evidence
in a compact summary to send it to the involved parties.

The process of analyzing an anomaly works as follows: 1) NetReflex triggers
an alarm and provides the related meta-data (e.g., involved IPs), which is used
to extract a set of candidate flows responsible for the anomaly; 2) each flow is
modeled as an item-set with 5 items and FaRNet is used to extract the frequent
item-sets out of the large set of candidate flows obtained in step 1. FaRNet
also provides the network operators with a GUI that allows them to extract the
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sIP dIP sPort dPort
X.191.64.165 | Y.13.137.129 55548 *
7.66.124.39 Y.13.137.129 * *
* Y.13.137.129 3072 80
* Y.13.137.129 1024 80

Table 4: List of item-sets found by FaRNet for a vertical scan detected by NetReflez.

frequent item-sets associated with an alarm, investigate the raw flows matching
any returned item-set, and tune the extraction parameters if needed (e.g., the
minimum support).

In order to ensure that the prototype of FaRNet was working as expected,
we performed an evaluation during the deployment process in order to validate
its results. During this evaluation, we randomly selected anomalies from 10
days. For 42% of the anomalies, FaRNet found uniquely the item-set strictly
related to the meta-data reported by NetReflex. Additionally, for 26% of the
cases, the algorithm evidenced additional flows related to the anomaly that were
not provided by the anomaly detector. These were particularly interesting cases
because FaRNet was able to discover new anomalies that had been missed by
NetReflex. For example, the following meta-data were signaled and labeled as
a vertical scan by NetRefler: “sIP: X.191.64.165, dIP: Y.13.137.129, srcPort:
55548 and dstPort: *”. When analyzing the same anomaly using FaRNet, the
frequent item-sets in Table 4 were found. The 1st was precisely the item-set
responsible of the anomaly already flagged by NetReflex. The 2nd was another
host doing a similar vertical scan on the same target, while the 3rd and 4th
were two simultaneous DDoS on port 80 against the same target. We believe
that this capability of finding more flows related to an anomaly has general
applicability. Moreover, in 26% of the cases, some additional item-sets related
to legitimate activity were extracted, which could be trivially filtered out by
the network operator. For the remaining 6% of the alarms, FaRNet was not
able to extract meaningful flows, which could be due to a stealthy anomaly not
captured by our extraction technique or due to a false positive-alarm (FP).

Overall, FaRNet was extremely useful for the network operators of GEANT.
In particular, it provided the following;:

1. Fast and more reliable anomaly analysis w.r.t. the time-consuming and

error-prone manual investigation.

2. Discovery of additional information related to an anomaly that was missed
by NetReflex.

3. Easier identification of FP reported by NetReflex.

4. Useful and compact summaries of the traffic.

6. Related Work

A large number of FIM algorithms have been studied in the literature. A
survey of existing algorithms can be found in [18]. More recently, researchers
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[ Related Work “ Hierarchical Items [ Real-Time [ Dimensionality ]

FIM v - High
HHH Vv Vv Low
AutoFocus v - Low
FaRNet v/ v High

Table 5: Taxonomy of the related work

have studied the related problem of finding hierarchical heavy hitters (HHH) [5,
6,7,8,9,1, 2, 3, 4]. Given a stream of items, e.g., IP addresses, a HHH is an
aggregate, e.g., an IP address prefix, on a hierarchy that appears often. The
HHH problem is, in fact, a special case of the more general FIM problem. HHH
algorithms typically process the input data in a streaming fashion, approxi-
mate the HHHs, and can accommodate a small number of dimensions. Most
FIM algorithms operate in an offline fashion, i.e., making multiple passes over
input data, without approximation and scale better to a large number of dimen-
sions. Furthermore, finding heavy hitters over streams of flat (network traffic)
attributes is a widely-studied special case of the more general HHH problem
(and in turn of the FIM problem). Heavy hitters are simply frequent items in
an 1-dimensional stream of flat items.

AutoFocus [10] is a well-known system for finding HHHs over network traffic
data. In contrast, to most other HHH algorithms, it operates in an offline
manner making multiple passes over the input data. It takes as input 5-tuples of
IP addresses, ports, and protocol, it treats IP addresses and ports as hierarchical
attributes, and it finds frequent 5-dimensional aggregates. AutoFocus is the
most related previous work. In fact, AutoFocus is essentially a particular case
of FaRNet. The main contribution of our work is to build a new traffic profiling
system based on FIM principles that is much faster, more flexible and more
general than AutoFocus and allows to easily extend the input 5-tuples to include
a much larger number of dimensions.

In Table 5 we summarize how the main previous works differ in the dimen-
sionality of the input records, the type of items (flat or hierarchical), and the
(near) real-time or offline processing of the input records.

7. Conclusions

In this paper, we analyzed the performance of state-of-the-art FIM algo-
rithms when applied to network traffic data, and extended and optimized them
to deal with hierarchical dimensions such as IP addresses, ports, applications
and geolocation data. We also evaluated the impact of sampling on the perfor-
mance of FIM algorithms, and showed that it significantly reduces both execu-
tion time and memory usage while providing precise output.

Based on this analysis, we built FaRNet, a network traffic profiling system
that offers better performance and flexibility and also scales to a much higher
number of dimensions than AutoFocus. In order to validate the correctness of
FaRNet, we compare it with AutoFocus by using a limited version of our system
configured to produce the same output. Using traffic data from a large backbone
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network, we show that when mining only the 5-tuple, FaRNet is able to process
15 minutes of traffic in less than 4 seconds with a very small error. We show
that FaRNet is up to three orders of magnitude quicker than AutoFocus. As a
consequence, FaRNet is able to process high volumes of multi-dimensional traffic
data in (near) real-time, while AutoFocus was designed for offline analysis of
a pre-defined set of 5 dimensions. Finally, when analyzing the full set of 10
dimensions, FaRNet confirmed its ability to produce more useful and synthetic
reports and also showed that it scales very well with the number of dimensions
by analyzing 15 minutes of traffic in approximately 12 seconds (w/o sampling).

We deployed a preliminary version of FaRNet, demonstrated in [25], in the
European-wide backbone network of GEANT and showed its usefulness and
good results for assisting network engineers when dealing with anomalies in an
operational environment.

Acknowledgements

We thank DANTE for having provided us the GEANT traffic traces. This
work was partially supported by the TMA-COST Action IC0703, the Spanish
Ministry of Education under contract TEC2011-27474 and the Catalan Govern-
ment under contract 2009SGR-1140.

28



"A[oA1300dsa1 ‘sy10d-y31y pue sjprod-mof
10y puess dy pue di ‘(9 7=s) Adousnboij Surpusdosep Aq poajIos [-20D47 UO JONYD] PUR sndojony Aq pajrodar syes-wolr juenboyy gr-doy, ) 9[qel,

g4 epsayleg 0022 0L dLLH 9 dy 08 * Te/011°68 71V (028
qa epsayleg 089 0L dLLH 9 dy 08 * Ze/0TT' 68 7TV 6
nd s1oAUR( * 2e69 | dLLH 9 dy 08 * ee/¥1°e9eveT A 8
* wepIsuy * €011 * 9 dy dy * 81/0°0°00T"H L
na sI2AuR(] * €69 | dLLH 9 dy 08 * 0€/T1%52%¢2°d 9 PNV
RS} SN 002¢ * dLLH 9 dy 08 €1/0°0°87'd * g
aD projuelg 98L ce dL1H 9 dy 08 * 12/0°021°99°D i
na piojuelg * ce dLLH 9 dq 08 * ¥2/0°551°99°D €
nd sn * * dLLH 9 dy 08 ot/0'0'821°d * z
ad epsayleg 982 0L dLIH 9 dy 08 * 2e/011°68 71V T
e/u e/u e/u | e/u e/u 9 08 dy * * o1
©/u e/u e/u | e/u ©/u 9 dy 08 * ze/0TT'6C 71V 6
' /u e /u ®/u ®/u ®/u 9 dy 08 % 6/0°00V 8
m“: @“z m“: m“: m“: * ms dp * o&o‘o.o{ L
e/u e/u e/u e/u e/u 9 q 01/0°00'V 9
e /u e /u e /u e /u ®/u 9 dy Qﬂ H « g S0y
e /u e /u ®/u e /u e/u 9 dy dy % 8/0°0°0°V ¥
®/u ®/u ®/u ®/u ®/u 9 dy dy % % ¢
e/u e/u e/u | e/u e/u 9 dy 08 * * 4
e/u e/u e/u e/u e/u 9 dy dp « « 1
20[09H)P D01095)S SYP SVys dde ojoxd 1104p 1104S dIp diIs 19S-ta91

*(d) segex Surdwres pue (s) spioddns
wnwuILL UISIIP 10J () orel searisod asfe] pue (YJ.I,) 91el searyisod anIg 10J aapis F unaws :J-220.43 10§ 22\ yD,J uo Surdures jo joedwy :9 o[qe],

0Fo0 0 F 00T 0Fo0 0 F 00T 68'C F 62°1 0 F 00T 88C T el 0 F 00T %01 = s

0Fo0 0 F 001 0Fo0 0 F 00T 0F0 0 F 00T 9L0OF IV 0 | SFTFT1686 | %S=5
ZE0FSE0 | 6T0F 8866 | c€0F €0 | 920F 8L°66 | 6SCF VT | 920 F GL66 | 98 CFL¥C | &I FELS6 %9 =s
TZ0FIT0 | ¥WIFeI66 | 120FIT0 | ¥€TF 9866 | SCOFIE0 | ¢9TFEE86 | 9€0F 90 | 3¢S FIL'G6 | %v =5
00 F 900 | €00F 6666 | ¥YOOFIT0 | €00F 9666 | 00 F 10 | L& 0FTL 66 | S90FFZT | ¢9TF 1896 | % =S5
TT0F %20 | SZ0F 6166 | 600F 920 | ITP0OFEE66 | 2c0FS8L0 | STOFL886 | SPOFLLT | S90F 9246 | %I =S5
900FSE0 | TOTF966 TOFSS0 | STOF9266 | 600F 60 | 9T0T 9486 | cTOFSET | 2€0F¥9€6 | YT 0=s
(%) ¥dd (%) ¥dL (%) ¥da (%) ¥dL (%) ¥udd (%) 4d.L (%) udd (%) ¥dL

%06 =d %Sz =d %01 =d %r=d

29



1]

2]

[9]

C. Estan, G. Varghese, New directions in traffic measurement and account-
ing, in: Proc. of ACM SIGCOMM, 2002.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, F. True,
Deriving traffic demands for operational IP networks: methodology and
experience, in: Proc. of ACM SIGCOMM, 2000.

B. Babcock, C. Olston, Distributed top-k monitoring, in: Proc. of ACM
SIGMOD, 2003.

A. Metwally, D. Agrawal, A. El Abbadi, Efficient computation of frequent
and top-k elements in data streams, in: Proc. of ICDT, 2005.

G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Finding hierarchi-
cal heavy hitters in data streams, in: Proc. of VLDB, 2003.

G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Diamond in the
rough: Finding hierarchical heavy hitters in multi-dimensional data, in:
Proc. of ACM SIGMOD, 2004.

G. Cormode, F. Korn, S. Muthukrishnan, D. Srivastava, Finding hierarchi-
cal heavy hitters in streaming data, ACM TKDD 1 (4) (2008) 2:1-2:48.

J. Hershberger, N. Shrivastava, S. Suri, C. Téth, Space complexity of hier-
archical heavy hitters in multi-dimensional data streams, in: Proc. of ACM
SIGMOD/PODS, 2005.

Y. Zhang, S. Singh, S. Sen, N. Duffield, C. Lund, Online identification
of hierarchical heavy hitters: algorithms, evaluation, and applications, in:
Proc. of ACM IMC, 2004.

C. Estan, S. Savage, G. Varghese, Automatically inferring patterns of re-
source consumption in network traffic, ACM CCR 33 (4) (2003) 137-150.

I. Paredes-Oliva, P. Barlet-Ros, X. Dimitropoulos, FaRNet: Fast Recogni-
tion of High Multi-Dimensional Network Traffic Patterns, in: Proc.of ACM
SIGMETRICS (poster), 2013.

GEANT, http://www.geant.net.

R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large
databases, in: Proc. of VLDB, 1994.

J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate gener-
ation, ACM SIGMOD Record 29 (2) (2000) 1-12.

M. Zaki, S. Parthasarathy, M. Ogihara, W. Li, et al., New algorithms for
fast discovery of association rules, in: Proc. of KDD, 1997.

C. Borgelt, Keeping things simple: finding frequent item sets by recursive
elimination, in: Proc. of OSDM, 2005.

30



[17]

[18]

[19]

[20]

[26]

C. Borgelt, X. Wang, Sam: A split and merge algorithm for fuzzy frequent
item set mining, in: Proc. of IFSA/EUSFLAT, 2009.

J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status
and future directions, Data Min. Knowl. Discov. 15 (1) (2007) 55-86.

C. Borgelt, Simple algorithms for frequent item set mining, Advances in
Machine Learning IT 263 (2010) 351-369.

V. Carela-Espafiol, P. Barlet-Ros, A. Cabellos-Aparicio, J. Solé-Pareta,
Analysis of the impact of sampling on netflow traffic classification, Com-
puter Networks 55 (5) (2011) 1083-1099.

Christian Borgelt’s Software, http://www.borgelt.net/software.html.

D. Brauckhoff, X. Dimitropoulos, A. Wagner, K. Salamatian, Anomaly
extraction in backbone networks using association rules, in: Proc. of ACM
IMC, 2009.

I. Paredes-Oliva, 1. Castell-Uroz, P. Barlet-Ros, X. Dimitropoulos, J. Solé-
Pareta, Practical Anomaly Detection based on Classifying Frequent Traffic
Patterns, in: Proc. of IEEE GI, 2012.

AutoFocus implementation, http://www.caida.org/tools/.

I. Paredes-Oliva, X. Dimitropoulos, M. Molina, P. Barlet-Ros, D. Brauck-
hoff, Automating Root-Cause Analysis of Network Anomalies using Fre-
quent Itemset Mining, in: Proc.of ACM SIGCOMM (demo), 2010.

Guavus, NetReflex, http://www.guavus.com.

31



