
1

Scan Detection under Sampling: A New Perspective
Ignasi Paredes-Oliva∗, Pere Barlet-Ros∗ and Josep-Solé-Pareta∗

∗Dept. of Computer Architecture
Universitat Politècnica de Catalunya BarcelonaTech (UPC)

Campus Nord, Edif. D6, C. Jordi Girona, 1-3, 08034 Barcelona, Spain

Abstract—Nowadays, due to current high-speed links, applying
traffic sampling has become nearly mandatory in order to
make Internet traffic monitoring feasible. However, its impact
on state-of-the-art algorithms is unclear and has become a topic
of foremost importance. Specifically, focusing on the impact
of sampling on the detection of scanning cyberattacks, former
studies concluded that Flow Sampling was the best technique. In
this paper we first evaluate how two well-known algorithms for
scan detection perform under sampling and confirm its dramatic
impact. Unlike previously reported, we show that Packet Sampling
performs better than Flow Sampling under certain scenarios. This
is important because routers only support packet-based sampling.
The second part of this paper, taking into account the good
results for scan detection reported by a sampling technique called
Selective Sampling (SES), proposes a new sampling technique,
Online Selective Sampling (OSES), that samples the same traffic
that SES but uses less resources. Instead of requiring aggregation
of packets into flows before sampling, OSES works online on a
packet-per-packet basis and, therefore, it does not need to capture
all the traffic. We show that OSES is significantly faster and
consumes up to ≈40% less memory than SES while keeping the
same good performance.

Index Terms—Network Security, Scan Detection, Traffic Sam-
pling

I. INTRODUCTION

Traffic monitoring and analysis is essential for cybersecu-
rity. Understanding what is really happening in a network is
increasingly becoming more and more complex due to the
ever-growing list of applications and the tremendous rise of
cyberattacks and cybercrime worldwide [1]. Additionally, in
high-speeds links this becomes even more challenging due to
the common usage of sampled data as opposed to capturing
full packets. Robustness against traffic sampling is now a
topic of paramount importance since network operators tend
to apply aggressive sampling rates when using monitoring
tools like NetFlow [2] (e.g., take 1 packet out of 1000) in
order to handle worst case scenarios and network cyberattacks.
For this reason, it is fundamental to build sampling-resilient
cyberthreat detection mechanisms.

In particular, we are interested in analyzing the performance
of scan detection algorithms under sampling. We focus on
network scanning for many reasons. Firstly, they are frequently
the prequel of other cyberthreats (e.g., worm propagation)
and, therefore, there is general interest in detecting them
reliably. Secondly, scanning activities represent more than
80% of the cyberattacks on the Internet according to a recent
study [3]. Moreover, scans can put monitoring platforms in
serious trouble (the nature of this sort of cyberthreats can
easily overflow flow tables due to the potentially large set

of new flows generated by the scanner). Several methods
for scan detection have been proposed in the literature. The
straightforward approach flags a scanner when it connects to
more than a certain number of destinations during a fixed
interval of time. This method is implemented in both Snort [4]
and Bro IDS [5]. The mechanisms analyzed in this paper
(TRW [6] and TAPS [7]) are more complex and have shown to
be more effective. Bro also implements TRW. The main idea
behind TRW is that a scanner will fail more connections than
a benign host, thus classifying a host as non-legitimate when it
makes too many consecutive failed connections. TAPS is based
on the observation that scanners visit many more destination
IPs vs. ports than normal hosts (or the reverse, depending on
the type of scan; vertical or horizontal). Likewise TRW, when
this condition is accomplished several times, TAPS will report
the host generating such flows as a scanner.

One of the main objectives of this paper is to present
an independent validation on the impact of sampling on
TRW and TAPS. Previous works (e.g., [8]) used the same
percentage of sampled flows as the common metric to compare
the different sampling methods, which resulted in biased
conclusions reporting Flow Sampling as the best technique
for anomaly detection under sampling. Instead, since every
packet must be processed by the router, we proceed by taking
the same fraction of packets. The motivation of this study
came from the fact that given a flow sampling rate, the
fraction of analyzed packets is significantly different among
the sampling methods, which results in an unfair comparison,
specially for Packet Sampling. First, we analyze the impact of
sampling on TRW and TAPS under four sampling techniques
(Packet Sampling, Flow Sampling, Smart Sampling [9] and
Selective Sampling [10]) and confirm that both TRW and
TAPS performance was vastly degraded due to sampling.
While TRW reported quite poor results, TAPS showed to be
more resilient. In contrast to the results reported by previous
works on the poor performance of Packet Sampling for scan
detection under sampling [11], [8], we reach significantly
different conclusions. In particular, we show that when using
the same fraction of packets, Packet Sampling outperforms
Flow Sampling. Moreover, we show that a recently proposed
sampling technique called Selective Sampling, which targets
small flows normally used to perform scanning cyberattacks,
exhibited the best overall performance among the evaluated
sampling algorithms. Taking into account the good results re-
ported by this technique, the second part of this paper proposes
a new sampling method called Online Selective Sampling that
also focuses on small flows but uses less resources because



2

it works on a per-packet basis and, therefore, it can operate
online.

In summary, we make the following contributions:
1) We perform an independent validation on the impact of

sampling on TRW and TAPS.
2) Unlike previously reported, we show that Packet Sam-

pling can perform better than Flow Sampling.
3) We present the first analysis of Selective Sampling for

scan detection and show that it outperforms traditional
sampling techniques.

4) We propose Online Selective Sampling, a sampling tech-
nique equivalent to Selective Sampling that operates on a
per-packet basis without requiring to aggregate packets
into flows to perform the sampling, thus using less
memory and CPU time and being able to work online.

The rest of this paper is organized as follows. First, Sec-
tion II reviews the related work and Section III describes the
datasets, the network scenario and the followed methodology.
Second, Section IV reports on the impact of sampling on
scan detection. Afterwards, Section V describes and evaluates
our sampling technique proposal, Online Selective Sampling.
Finally, Section VI concludes this paper.

II. RELATED WORK

Few previous works have analyzed the impact of sampling
on scan detection [8], [11], [10], [12]. In particular, the impact
of Packet Sampling on TRW and TAPS was analyzed in [11].
It was observed that both the false positives and the false
negatives increased significantly with sampling for TRW. It
was also concluded that TAPS was more resilient to sampling
than TRW because even though TRW had higher success ratio,
TAPS exhibited a significantly lower ratio of false positives.
The same authors extended the analysis to several sampling
mechanisms in [8]. It was shown that Packet Sampling in-
troduced an important bias in the flow size distribution and
that techniques targeting large flows were not convenient for
scan detection (scanning cyberattacks use small flows). It
was concluded that Flow Sampling was the best choice for
scan detection under sampling, while Packet Sampling was
considered among the worst. This was a despairing result as
routers only implement Packet Sampling. In [12] we presented
a preliminary study of the performance of Packet Sampling
using the same fraction of packets and showed that under
some scenarios it could outperform Flow Sampling. Moreover,
in [10], Androulidakis et al. show that opportunistic flow-
based techniques that target a certain part of the traffic can
improve the performance of cyberattack detection algorithms
under sampling w.r.t. to the unsampled case or under random
flow-based sampling techniques.

III. SCENARIO AND METHODOLOGY

For the evaluation, we use four traffic traces from the
Gigabit access link of our university, Universitat Politècnica
de Catalunya BarcelonaTech (see Table I). This link connects
about 10 campuses, 25 faculties and 40 departments to the
Internet through the Spanish NREN (RedIRIS). The datasets
are 60-minute traces from 2012 collected at different times of
the day (morning, noon, evening and night).

TABLE I: Detailed information about the traces used.

Trace Start Time Duration Flows Packets Bytes
dataset-1 03:00 60 min. 5.5M 59.5M 39.6G
dataset-2 09:00 60 min. 7.9M 128.3M 95.1G
dataset-3 15:00 60 min. 8.6M 136.2M 101.5G
dataset-4 21:00 60 min. 6.5M 94.3M 67.4G

A. Ground Truth

In order to analyze what is the impact of sampling on TRW
and TAPS, we first need to establish a ground truth of true
scanners. We followed the same approach proposed in [7], [8],
[11], i.e., we created a super set of scanners. In our case, we
run TRW, TAPS, Snort and Bro with loose parameters (refer
to Section III-B for details). Afterwards, we used frequent
item-set mining (FIM) and manual inspection as in [3] to
further check that all the scanners were indeed malicious
cyberattacks. FIM is a well-known data mining technique
used to extract knowledge from the data by finding frequent
correlations among elements. It is useful for anomaly detection
because when an attack takes place, many traffic features with
the same values appear together in a large amount of traffic
flows. For example, when a vertical scan occurs, lots of traffic
flows have the same source and destination IPs and, therefore,
FIM easily identifies all of them.

After this process, we obtained the final list of true scanners
(ground truth) against which we will compare the scanners
detected after applying sampling. Note that although we can
not guarantee that the obtained ground truth is purely com-
posed by true scanners, this method increases the reliability
of the ground truth w.r.t. previous works [7], [8], [11]. This is
due to the usage of FIM, which automatically finds common
patterns and, therefore, significantly reduces the need for
human intervention, which is error-prone.

B. Methodology

We analyzed the following four sampling techniques: Packet
Sampling (PS), Flow Sampling (FS), Smart Sampling (SMS)
and Selective Sampling (SES). PS samples each packet ran-
domly with probability p, 0 ≤ p < 1. Similarly, FS samples
each flow also with a random probability p. SMS [9] always
samples large flows and looks down on the small ones. A flow
is considered to be large if its size is above a given parameter
z. The probability of taking shorter flows is inversely propor-
tional to their size. In contrast, SES [10] focuses on sampling
small flows, which are normally used for launching scanning
cyberattacks. It uses three different parameters: z, c and n. z
corresponds to the threshold that defines the size of a small
flow (in packets), c is the probability of sampling a small flow
and n is used to further regulate the percentage of non-small
flows taken.

We configured TRW and TAPS with a false positive ratio
of 0.01, probability of detection to 0.99, probability of having
a successful connection being a scanner to 0.2 and to 0.8 for
a legitimate host as recommended in [6], [7]. As in [11], [8],
the ratio used by TAPS to detect suspicious sources (k) and
the time bin to check it (t) were configured differently for
each traffic trace and sampling rate in order to obtain the



3

optimal results. For further details about TRW and TAPS and
their configuration parameters, refer to [6], [7]. For Snort we
used the sfPortscan detection module with scan type=all and
sense level=low, which ensures low false positives. Finally,
for Bro’s standard scan detection algorithm we used an alarm
threshold of 25.

Even though it is not possible to configure a router to
sample a certain percentage of the incoming flows, previous
works have only considered a scenario where all sampling
methods receive the same fraction of flows to perform the
comparison among techniques [8]. However, most routers
only support packet-based sampling (e.g., Sampled NetFlow).
That is the reason why it is also important to perform the
comparison with the same fraction of packets for all sampling
techniques. Moreover, note that the sampling rate for packet-
based (e.g., PS) and flow-based (e.g., FS) sampling techniques
has different meanings. While in the first case it refers to the
fraction of sampled packets, in the latter it indicates the portion
of sampled flows. This results in a significantly different
amount of sampled packets and flows among the different
sampling methods. For instance, when sampling 10% of the
flows from dataset-3, PS receives 3.01% of the packets, FS
9.2%, SMS 85.35% and SES 0.66%. When sampling 10% of
the packets, PS receives 24.21% of the flows, FS 11.08%, SMS
0.0062% and SES 78.15%. Therefore, from the point of view
of PS, the comparison was unfair in previous works because
it was receiving less packets than FS. The reason why the
same fraction of flows corresponds to such a small percentage
of packets for PS is that the probability of sampling packets
from the same flow is extremely low because most flows are
small. Therefore, sampling more than one packet per flow is
very unlikely.

Consequently, unlike previous works [8], we perform an al-
ternative analysis using the same fraction of packets. Previous
studies have analyzed instead the algorithms using the same
fraction of flows. Note that one analysis is not better than the
other but complementary. Our analysis complements previous
results using a different perspective, which helps to better
understand the behavior of these scan detection algorithms
under sampling.

We analyze the performance of the algorithms using
the following metrics previously defined in [7]: SR =
#true scanners detected/#true scanners and FPR =
#false scanners detected/#true scanners. The success
ratio (SR) indicates how efficient a particular algorithm un-
der sampling is by computing what proportion of the de-
tected scanners matches these scanners in the ground truth
(#true scanners). The false positive ratio (FPR) shows how
correct is that algorithm, i.e., it reports the percentage of mis-
classified scanners (sources wrongly classified as scanners).

IV. IMPACT OF SAMPLING ON SCAN DETECTION

In this section, we analyze the impact of the four sampling
techniques presented in Section III-B on TRW (Section IV-A)
and TAPS (Section IV-B) and discuss the obtained results
(Section IV-C).

0 50 100
0

10

20

30

Sampled Packets (%)

S
uc

ce
ss

 R
at

io
 (

%
)

 

 

PS FS SMS SES

0 50 100
0

10

20

30

Sampled Packets (%)

F
al

se
 P

os
iti

ve
s 

R
at

io
 (

%
)

 

 

PS FS SMS SES

Fig. 1: Impact of sampling on TRW (mean ± stdev).

A. Impact of Sampling on TRW

Figure 1 reports on the performance of TRW under sam-
pling. In particular, it shows the average and the standard
deviation among all traces for the success ratio and the false
positive ratio.

First of all, note that TRW is only able to detect ≈ 20% of
the scanners in the ground truth when there is no sampling,
which highlights the fact that its low performance is mainly
caused by the algorithm itself and not only because of sam-
pling. Moreover, we confirm that sampling further degrades
TRW’s accuracy as previously reported [11], [8]. Regarding
the sampling techniques, we can see that except for SES, the
impact of sampling on TRW’s success ratio (SR) is severe.
For instance, under SMS, TRW’s SR reaches zero with more
than 75% of the packets sampled. This is due to the fact that,
while TRW tracks single SYN-packet flows to spot scanners,
SMS samples large flows, i.e., looks down on small flows and,
therefore, keeps flows that are useless for TRW. For PS and
FS, the SR degrades linearly for increasing sampling rates (s)
even though PS is slightly better than FS. Note that previous
works [8] reported that PS was worse than FS. However, the
analysis was performed under the same fraction of flows, i.e.,
under unfair conditions for PS (see Section III-B). Therefore,
this result shows that it is not true that FS is better than PS
or vice versa. It essentially shows that the final conclusion
depends on the metric you use to compare both methods. In
contrast to the other sampling techniques, for SES, the SR
shows to be equal to the unsampled case and gets even higher
for s up to ≈ 1%. Moreover, for lower sampling rates, SES is
still capable of detecting some scanners. The reason why TRW
performs so good under SES is because this sampling method
focuses on small flows, which are precisely these flows that
TRW looks for in order to find scanners. SES outperforms
the unsampled case because it drops non-small flows, and,
therefore, leads TRW to a biased scenario where most of the
hosts are only generating single SYN-packet flows.

Regarding the false positive ratio (FPR), all sampling tech-
niques behave similarly, i.e., they all report low false positives.
In particular, PS is the sampling technique performing the
worst. Specifically, the highest peak (≈ 3.2%) happens when
sampling 25% of the packets. This is due to the well-known
flow-shortening effect [11], [8], which transforms multi-packet
flows into single packet flows and thus leads to the wrong clas-
sification of many hosts. Similarly, SES presents an unrealistic
scenario where most of the hosts are only generating single
SYN-packet flows. However, SES manages to keep a lower
FPR for all sampling rates (its maximum value is close to



4

0 50 100
0

20

40

60

80

Sampled Packets (%)

S
uc

ce
ss

 R
at

io
 (

%
)

 

 

PS FS SMS SES

0 50 100
0

20

40

60

80

Sampled Packets (%)

F
al

se
 P

os
iti

ve
s 

R
at

io
 (

%
)

 

 

PS FS SMS SES

Fig. 2: Impact of sampling on TAPS (mean ± stdev).

2%). Both FS and SMS show almost no false positives because
the former keeps the flow size distribution and the latter leads
mainly to false negatives (low SR), but not to false positives
due to the systematic drop of small flows.

B. Impact of Sampling on TAPS

Figure 2 reports on the performance of TAPS under sam-
pling. Specifically, it shows the average and the standard
deviation among all traces for the success ratio and the false
positive ratio.

Firstly, note that, on average, TAPS is only able to detect
57.47% of the scanners in the ground truth when there is
no sampling. Although the detection rate is far higher than
TRW’s, this highlights the importance of combining several
mechanisms to detect a broader range of cyberthreats (e.g., in
our case, using Snort, Bro, TRW and TAPS). The performance
degradation among sampling methods is similar to TRW’s.
Specifically, we observe that SES is the sampling method
offering the best success ratio followed by PS and FS, and
finally, SMS. Similarly to the TRW case, the sampling methods
focusing on small flows perform better than these that take
large flows with higher probability. Moreover, we observe
that like for TRW, PS reports higher SR than FS, which is
not aligned with previous works [8]. Similarly to what we
observed for TRW, TAPS also reports low false positives.

C. Discussion

It is clear that the performance of both TRW and TAPS is
severely affected by sampling. However, TAPS is able to detect
more scanners. The main reason behind such behavior is that
TAPS does not depend on any specific packet. While TRW
tracks single SYN-packet flows, TAPS does not care about
what particular packet of a flow is taken but about the access
patterns of each host. This makes TRW more sensitive to
the particular packet being discarded. Moreover, while TAPS
detects both UDP and TCP scans, TRW only detects TCP
scans. However, although TAPS systematically reports higher
SR, TRW shows slightly better FPR. Overall, as previously
noticed [11], TAPS is preferable over TRW in the presence of
sampling.

Regarding the sampling techniques, we reach two main
conclusions. First, unlike previous works reported [11], [8],
PS shows better results than FS when using the same fraction
of packets for both TRW and TAPS (previous studies only used
the same fraction of flows to compare them, which was unfair
for PS). Second, SES clearly outperforms the other sampling

techniques. For this reason and considering that most routers
only support per-packet sampling, we propose a new packet-
based implementation for SES (Section V).

V. ONLINE SELECTIVE SAMPLING

Many cyberthreats such as scans use small flows to perform
the attacks. Therefore, keeping these flows rather than the
large ones facilitates identifying the anomalous traffic out of
the whole traffic. There is a recent sampling proposal called
Selective Sampling [10] (SES), whose goal is precisely to take
just these small flows. The problem of Selective Sampling is
that it first needs to capture all the packets and then samples
entire flows, i.e., all incoming flows must be stored in memory
until they expire. This working scheme is contradictory with
the main goal of traffic sampling, which is precisely to save
resources by discarding part of the traffic. Our sampling
proposal, Online Selective Sampling (OSES), targets the same
type of traffic but it does not need to capture entire flows
because it takes per-packet decisions, thus requiring much less
resources and being able to work online.

SES preferentially samples small flows (defined by a thresh-
old in packets) and looks down on large flows. The key idea
of our proposal, OSES, is to maintain a flow (i.e., to sample
all its packets) while it is small. If we define a small flow as a
x-packet flow (x ≥ 1), OSES will sample all flows having at
most x packets with a certain (high) probability and take all
the flows having x+1 packets or more with lower probability
(the more packets, the higher the discarding probability).

The straightforward solution used in [10] is to first store
all flows in a hash table and then, as they expire, remove
them from the table with a certain probability. However, this
solution requires a lot of memory and is not fast enough in
high-speed links. In particular, the inter-arrival times in links
of several Gb/s are in the order of nanoseconds, thus requiring
the process time per packet to be incredibly fast. In contrast,
we base our solution on bloom filters, which are a feasible
option due to their extremely quick look up time and low
memory requirements. In our case a flow is kept in the hash
table while it is not discarded by OSES (instead of waiting
until it finishes or expires as in SES).

A. Our Proposal: Online Selective Sampling

Since OSES does not capture entire flows, we do not know
their final size to decide whether they must be sampled or
not. We only know the size of a flow until its current packet.
Our goal is to be equivalent to Selective Sampling but without
capturing all the traffic. Therefore, we want that the probability
of taking a flow packet by packet is exactly the same that it
would be when sampling the entire flow. If that occurs, both
sampling methods will be equivalent. Consequently, OSES
probability p must be adjusted at each step (for every packet)
in such a way that the accumulated probability until the last
packet results in exactly the same as directly sampling that
flow with SES. In particular, the per-packet decisions must
compensate for the higher number of random decisions taken
w.r.t. the single decision required by SES.



5

Specifically, OSES works as follows. For each incoming
packet we first check if its corresponding flow has been
previously discarded by looking it up in the bloom filter.
If there is a match, the packet is directly dropped because
it means that the corresponding flow has been previously
discarded. If there is no match, it means that the flow to
which that packet belongs to, has not been dropped yet. In this
case, the new packet is processed as follows. If the adjusted
probability p is lower than a certain random probability, the
new packet is dropped, its flow is deleted from the hash table
and its 5-tuple is set in the bloom filter. Otherwise, the packet
is sampled. Next, we explain how p is computed.

Consider that psesx and posesx are the probabilities of sam-
pling a x-packet flow for SES and OSES, respectively. Our
goal is:

posesx = psesx (1)

While for SES this probability depends on a single random
decision, for OSES it is the accumulation of x random and
independent decisions, one for each packet of the flow:

posesx =
x∏

i=1

rosesi (2)

Consequently, from equations 1 and 2, the probability of
sampling the x-th packet of a flow (rosesx ) is:

psesx = posesx =
x∏

i=1

rosesi → rosesx =
psesx∏x−1

i=1 rosesi

=
psesx

posesx−1

(3)
Recall the probability function of SES from [10] (refer to

Section III-B for parameter details):

psesx =

{
c x ≤ z
z/(n · x) x > z

(4)

In order to accomplish Eq. 1, posesx must be equal to c up to
z packets and to z/(n · x) when the flow is larger. Therefore,
for a flow of x− 1 packets:

posesx−1 =

{
c x ≤ z + 1
z/(n · (x− 1)) x ≥ z + 2

(5)

Next, we compute the probability of sampling the i-th
packet for OSES (rosesi ). First, note that for x = 1, posesx =
rosesx = c to accomplish Eq. 1. For x > 1, from Eq. 3,
Eq. 4 and Eq. 5, the individual probability of sampling the
i-th packet of a flow is:

rosesi =


c i = 1
1 1 < i ≤ z
z/(c · n · i) i = z + 1
(i− 1)/i i > z + 1

(6)

For instance, suppose that we have a flow of size x = 5
packets. We configure SES with c = 0.9, n = 1 and z = 2.
According to SES’ formula (Eq. 4) and these parameters, the
probability of sampling that flow is 2/(1×5) i.e., 40%. Using
the same configuration for OSES, the sampling process works
as follows: poses5 =

∏i=5
i=1 r

oses
i = 0.9 ·1 ·0.74 ·0.75 ·0.8 = 0.4.

Indeed, we confirm that poses5 = pses5 .

TABLE II: Flow size distribution comparison between SES
and OSES on dataset-1 (c=0.9, z=2, n=1).

Method 1 pkt 2 pkts 3 pkts 4 pkts 5 pkts 6 pkts
SES 73.673% 12.893% 5.319% 3.250% 1.930% 0.99%

OSES 73.672% 12.891% 5.317% 3.241% 1.934% 0.997%

0 50 100
−40

−30

−20

−10

0

10

D
iff

er
en

ce
 (

%
)

Sampled Flows (%)

 

 

exec. time.
memory

Fig. 3: Performance differences between OSES and SES in
terms of both execution time and memory usage on dataset-1.

B. Validation

The first goal of this section is to show that the traffic
sampled by OSES is equivalent to the traffic sampled by
SES. The bloom filter was configured with m = 218 (the
power of 2 is due to implementation reasons). We empirically
observed a negligible number of false positives (<< 1% of the
incoming packets). We compare the percentage of sampled
flows and packets, the average flow size and the flow size
distribution. The average and the standard deviation for several
executions on dataset-1 for c = 0.9, z = 2, n = 1 resulted in
76.53%± 0.01 of sampled flows, 11.98%± 0.005 of sampled
packets and an average flow size of 1.68±8.94 ·10−4 packets
for OSES. Similarly, SES showed almost identical results:
76.54% ± 0.01 sampled flows, 11.99% ± 0.01 packets and
an average of 1.68 ± 0.001 packets per flow. As we can
observe, the differences among SES and OSES are negligible.
These minor discrepancies are due to the random decisions.
Moreover, Table II shows that the flow size distribution for
both methods is almost identical. Note that for clarity reasons,
only the percentage of flows from sizes 1 to 6 packets are
reported (the remaining flow sizes account for less than 2%
of the total flows all together). Therefore, after this analysis,
we confirm that the traffic sampled by our proposal, OSES, is
indeed equivalent to the traffic sampled by SES but without
requiring to capture entire flows.

Figure 3 shows the resource consumption differences be-
tween OSES and SES on dataset-1. In particular, we can
observe a percentage that indicates how OSES performs w.r.t.
SES. For the execution time, the difference is computed
as (tOSES − tSES)/tSES , where t is the execution time.
Similarly, for the memory usage, the percentage is calculated
as (mOSES − mSES)/mSES , where m is the maximum
memory used. Therefore, while a positive percentage indicates
that OSES was worse than SES, a negative value implies that
OSES outperformed SES. As we can see in the figure, OSES
is clearly better than SES in terms of both execution time
and memory usage. For low sampling rates, OSES shows its
best performance by using almost 40% less memory than SES



6

due to the quick drop of a large amount of packets by the
bloom filter. Also, OSES shows to be approximately 15%
faster for the same reason. As the sampling rate gets higher,
the differences between both methods are reduced but OSES
still shows significantly better results. As the percentage of
sampled flows gets closer to 100%, the overhead of the bloom
filter in terms of both runtime and memory becomes visible
up to the point that OSES turns out to be slightly worse (only
for more than 99.8% of sampled flows).

The results obtained in this section accomplish our twofold
objective, i.e., continue capturing scanners reliably under sam-
pling and using less resources than SES. Moreover, while SES
is not NetFlow-compatible because it is a flow-based sampling
mechanism, OSES would be easily implementable to work
online in most routers because, like NetFlow, it works on a
per-packet basis.

Finally, we also evaluated the performance of TRW and
TAPS under OSES. As expected, similarly to the results
reported by SES in Section IV, OSES also showed very good
results for scan detection under sampling.

VI. CONCLUSIONS

In this paper we have analyzed the impact of sampling on
two scan detection algorithms to determine if they are robust
enough to continue finding scanning cyberattacks reliably.
In contrast to some previous studies, we have been able
to see that, when treated fairly, Packet Sampling performed
better than Flow Sampling for scan detection. Furthermore,
we proposed a new sampling technique equivalent to Selective
Sampling that keeps its good results for scan detection but uses
less resources and is implementable in the widely deployed
NetFlow.

Regarding the analyzed portscan detection algorithms, we
confirmed that both TRW and TAPS were significantly im-
pacted by sampling. However, even though TRW’s perfor-
mance was poor, TAPS showed higher resilience. Unlike previ-
ously reported, we found that Packet Sampling outperformed
Flow Sampling when using the same fraction of packets as
the common metric to compare techniques (previous studies
had used the same fraction of flows). Smart Sampling showed
to be rather useless for both TRW and TAPS. In contrast,
Selective Sampling presented the best behaviour among all
the sampling techniques achieving remarkable performance for
both TRW and TAPS. Taking this into account, we proposed
Online Selective Sampling, a new sampling technique similar
to Selective Sampling that works on a per-packet basis instead
of taking per-flow decisions, and, therefore uses less resources
while keeping good performance for scan detection.

ACKNOWLEDGEMENTS

We thank UPCnet for the traffic traces provided for this
study. This work was partially funded by the Spanish Ministry
of Education under contract TEC2011-27474 and the Catalan
Government under contract 2009SGR-1140.

REFERENCES

[1] K.-K. R. Choo, “The cyber threat landscape: Challenges and future
research directions,” Computers & Security, vol. 30, no. 8, pp. 719–
731, 2011.

[2] Cisco Systems, “Cisco IOS NetFlow,”
http://www.cisco.com/en/US/products/ps6601/prod white papers list.html.

[3] M. Molina, I. Paredes-Oliva, W. Routly, and P. Barlet-Ros, “Operational
experiences with anomaly detection,” Computers & Security, vol. 31,
no. 3, pp. 273 – 285, 2012.

[4] M. Roesch, “Snort–lightweight intrusion detection for networks,” in
Proc. of LISA, 1999.

[5] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[6] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Proc. of IEEE SP,
2004.

[7] S. Avinash, T. Ye, and B. Supratik, “Connectionless portscan detection
on the backbone,” in Proc. of IEEE IPCCC, 2006.

[8] J. Mai, C. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled data
sufficient for anomaly detection?” in Proc. of ACM SIGCOMM IMC,
2006.

[9] N. Duffield and C. Lund, “Predicting resource usage and estimation
accuracy in an ip flow measurement collection infrastructure,” in Proc.
of ACM SIGCOMM IMC, 2003.

[10] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou, “Network
anomaly detection and classification via opportunistic sampling,” IEEE
Network, vol. 23, no. 1, pp. 6–12, 2009.

[11] J. Mai, A. Sridharan, C. Chuah, H. Zang, and T. Ye, “Impact of packet
sampling on portscan detection,” IEEE JSAC, vol. 24, no. 12, pp. 2285–
2298, 2006.

[12] I. Paredes-Oliva, P. Barlet-Ros, and J. Solé-Pareta, “Portscan detection
with sampled netflow,” in Proc. of TMA, 2009.

Ignasi Paredes-Oliva received his B.Sc. and M.Sc. degrees
in Computer Science in 2009 from Universitat Politècnica de
Catalunya BarcelonaTech (UPC). He is a PhD candidate at
UPC and his research interests are on current challenges for
network cybersecurity in backbone networks such as anomaly
analysis, anomaly detection or anomaly classification. Contact
him at iparedes@ac.upc.edu.

Pere Barlet-Ros received his M.Sc. and Ph.D. degrees
in Computer Science in 2003 and 2008 from Universitat
Politècnica de Catalunya BarcelonaTech (UPC). He is an
assistant professor and researcher at UPC and his research
interests are in the fields of network monitoring, traffic
classification and anomaly detection. Contact him at pbar-
let@ac.upc.edu.

Josep Solé-Pareta obtained his M.Sc. degree in Telecom Engi-
neering and Ph.D. in Computer Science in 1984 and 1991 from
Universitat Politècnica de Catalunya BarcelonaTech (UPC).
He is a full professor at UPC and his research interests are
in Nanonetworking Communications, Traffic Monitoring and
Analysis and High Speed and Optical Networking. Contact
him at pareta@ac.upc.edu.


