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Physical layer impairments severely limit the reach and capacity of optical systems, thereby hampering
the deployment of transparent optical networks (i.e., no electrical signal regenerators are required).
Besides, the high cost and power-consumption of regeneration devices makes it unaffordable for network
operators to consider the opaque architecture (i.e., regeneration is available at every network node). In
this context, translucent architectures (i.e., regeneration is only available at selected nodes) have
emerged as the most promising short term solution to decrease costs and energy consumption in optical
backbone networks. Concurrently, the coarse granularity and inflexibility of legacy optical technologies
have re-fostered great interest in sub-wavelength switching optical networks, which introduce optical
switching in the time domain so as to further improve resources utilization. In these networks, the com-
plex regenerator placement and dimensioning problem emerges. In short, this problem aims at minimiz-
ing the number of electrical regenerators deployed in the network. To tackle it, in this paper both a greedy
randomized adaptive search procedure and a biased random-key genetic algorithm are developed.
Further, we enhance their performance by introducing both path-relinking and variable neighborhood
descent as effective intensification procedures. The resulting hybridizations are compared among each
other as well as against results from optimal and heuristic mixed integer linear programming formula-
tions. Illustrative results over a broad range of network scenarios show that the biased random-key
genetic algorithm working in conjunction with these two intensification mechanisms represents a com-
pelling network planning algorithm for the design of future sub-wavelength optical networks.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The advent of new disruptive bandwidth-intensive services and
applications such as HDTV, VoIP, VoD, interactive teleconferencing,
and storage area networks (SANs), has led to a huge surge of IP traf-
fic which, ultimately, has enabled optical networks to become an
unrivaled contender for the transmission in access, metro and core
areas. In order to be able to better cope with current traffic de-
mands, legacy optical transport networks (OTNs) have evolved
over the last years from SONET/SDH (synchronous optical net-
work/synchronous digital hierarchy) over static point-to-point
dense wavelength division multiplexing (DWDM) links towards
wavelength-switched optical networks (WSONs) (Lee et al.,
2011). By cleverly dealing with the wavelength and space domains,
WSONs enable dynamical reconfiguration of networks and allow
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for efficient network operation. However, based on recent mea-
surements, network operators now foresee a highly dynamic data
traffic scenario in which traffic flows occupying small fractions of
a wavelength and short-lived connections will predominate
(González de Dios et al., 2011). In this context, and due to their
coarse granularity (a whole wavelength), WSONs will not be able
to provide the degree of both flexibility and efficiency required.
Consequently, nowadays sub-wavelength switching paradigms
like the well-known optical packet switching and optical burst
switching (OPS/OBS) (Ben Yoo, 2006), have become potential can-
didates to cope with the needs of next-generation OTNs. By lever-
aging recent advances in nanosecond-range photonic devices such
as fast tunable lasers and fast switching elements, sub-wavelength
technologies exploit the time domain to further improve the utili-
zation of network resources, and consequently, the use of any net-
work resource (e.g., optical–electrical–optical (O/E/O) regenerators
in a node) is subject to the so-called statistical multiplexing con-
cept, whereby resources are accessible according to their timely
availability (i.e., there is a fair competition for the use of resources
ns for the regenerator placement and dimensioning problem in sub-wave-
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among all packets/bursts/flows in the network). Without loss of
generality, we assume in this work a layer 2 (L2) optical transport
technology based on OBS, but the study herein presented is appli-
cable to any of the aforementioned sub-wavelength technologies.
The OBS consideration will however be made explicit only when
strictly necessary. Moreover, hereinafter in this paper, we use the
terms packet and regenerator generically to refer to the optical data
unit of the sub-wavelength optical network (i.e., packets/bursts/
flows) and to the O/E/O device.

So far, OTNs have been classified into three major network
architectures based on the amount of regenerators they require
(Ramamurthy et al., 1999): (i) Transparent networks, where the
data signal remains in the optical domain for the entire end-to-
end path. In this approach, there is no need for regenerators as it
is assumed either an ideal physical layer or availability of all-opti-
cal 3R (re-amplifying, re-shaping, re-timing of the signal) regener-
ators; (ii) opaque networks, where the data signal undergoes
regeneration at every node along its path; and (iii) translucent net-
works, where regenerations are only allowed at selected points in
the network. Although the ultimate objective is to deploy transpar-
ent optical networks, it has precisely been the evolution from tra-
ditional opaque towards transparent network architectures that
has brought to light the serious impact that physical layer impair-
ments (PLIs) have on the optical end-to-end signal quality of trans-
mission (QoT) (Ramamurthy et al., 1999). PLIs severely limit the
reach and capacity of optical systems, and consequently, hamper
the deployment of transparent optical networks, at least until all-
optical 3R regeneration devices become mature enough to be
considered as a viable solution (Rochette et al., 2006). Moreover,
due to the fact that regenerators are both expensive and power-
consuming, the opaque concept is not scalable to next-generation
OTNs which strive for cost-effective power-efficient network archi-
tectures. For these very reasons, the deployment of translucent
optical networks is currently considered the most promising short
term solution to decrease costs and energy consumption in optical
backbone networks. Note that in this paper we use QoT as a generic
term to indicate the quality of a signal. To guarantee negligible bit
error rate (BER) at reception, the received signal QoT must be
above a given threshold. A series of technology-dependent QoT
estimators exist in literature such as the computation of either
the optical signal to noise ratio (OSNR), the Q-factor, or the BER
(Agrawal, 2002).

It is clear then that the development of techniques to perform a
sparse placement of regenerators is crucial to the success of trans-
lucent architectures (Shen and Tucker, 2007). Indeed, in this plan-
ning problem, the identification of the optimal trade-off between
network construction costs (i.e., regenerators are expensive) and
service provisioning performance (i.e., proper optical end-to-end
QoT must be ensured) is of great importance. Hence, both the
regenerator placement (RP), and routing and RP (RRP) if routing
constraints are included, have recently received close attention
from the research community. Although these problems have been
thoroughly studied in the context of translucent WSONs
(Manousakis et al., 2010), the resulting algorithms are not applica-
ble to sub-wavelength switching networks since due to their sta-
tistical multiplexing nature there exists competition for accessing
regenerator resources. Indeed, in sub-wavelength networks, RRP
extends to the so-called routing and RP and dimensioning (RRPD)
problem (Pedrola et al., 2011). Being the locations of regenerators
selected (RP), the dimensioning phase (D) is responsible for obtain-
ing the minimum amount of such regenerators so as to meet a pre-
defined target QoT network performance. In the context of OBS
networks, in Pedrola et al. (2011), we show that the joint RRPD
problem leads to a very complex formulation, and consequently,
we propose to solve both the routing and RPD subproblems
separately. To be precise, we provide a mixed integer linear
Please cite this article in press as: Pedrola, O., et al. Metaheuristic hybridizatio
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programming (MILP) model for the routing problem (minimizing
congestion in network bottleneck links), and an optimal MILP
formulation to solve RPD. It is worth pointing out that the routing
formulations proposed are optimal and can be efficiently solved,
and hence, the reader is referred to Pedrola et al. (2011) for further
details. In contrast, RPD results in a complex formulation for which
only fairly small problem instances can be solved exactly. Hence,
we also provide both MILP-based and heuristic RPD algorithms
and assess their performance (Pedrola et al., 2011).

1.1. Related work and contributions

In the context of communication networks, operations research
(OR) methodologies provide a means of efficiently solving real life
problems which are currently identified as open issues among net-
work operators, and consequently, their solution is of great inter-
est. Indeed, by applying powerful metaheuristic techniques one
can gain a valuable insight into the problem in hand, as they allow
for the consideration of real-sized, complex network and traffic
scenarios such as the ones used in this paper. Successful applica-
tions of OR in this field are, among others, efficient heuristics for
routing and wavelength assignment (RWA) in optical networks
(Skorin-Kapov, 2007), optimization of network design/planning
problems (Höller et al., 2008), and multicast routing algorithms
for IP networks (Liang et al., 2010).

In this paper, we restrict our attention to the modeling of effi-
cient metaheuristic hybridizations to solve the complex RPD prob-
lem found in sub-wavelength switching networks. To this end, a
greedy randomized adaptive search procedure (GRASP) (Feo and
Resende, 1995) and a biased random-key genetic algorithm
(BRKGA) (Gonalves and Resende, 2010) are proposed. GRASP-based
heuristics have been used to solve a wide range of problems with
many and varied applications in the real life such as the design
of communication networks (Palmieri et al., 2010), and collection
and delivery operations (Villegasa et al., 2012). Similarly, BRKGAs,
have also been recently used to solve complex communication net-
work problems such as routing in IP and optical networks (RWA)
(Reis et al., 2010; Noronha et al., 2010).

In order to further enhance these methodologies, we introduce
an adaptation of the variable neighborhood descent (VND), and the
path-relinking (PR) intensification procedures. Hansen et al. (2010)
proposed VND as a search heuristic within the framework of vari-
able neighborhood search methods. PR, by contrast, was first ap-
plied in the context of GRASP by Laguna and Martı¤ (1999),
thereby developing the powerful and widely used GRASP + PR
algorithm. For a wide variety of examples and applications of
GRASP + PR, the reader is referred to Resende and Ribeiro (2005).
Both VND and PR have proven to be efficient in solving real life
problems. For instance, in the field of optical networks, Martins
et al. (2012) recently applied VND to solve the RWA problem,
and Pedrola et al. (2012) implemented a GRASP + PR algorithm to
tackle the complex multilayer IP/MPLS-over-WSON optimization
problem.

Through extensive experiments, we show that BRKGA-based
hybridizations outperform those based on GRASP and that the
introduction of both VND and PR results in significant performance
improvement for both algorithms. Further, by comparing the re-
sults of the metaheuristic hybridizations with that of MILP optimal
and heuristic algorithms, this work reports yet another successful
application of OR methods in the field of optical networks.

The rest of this paper is organized as follows: Section 2 provides
a detailed description of the problem at hand and refers to the
MILP optimal and heuristic RPD formulations. Sections 3 and 4 pro-
vide detailed descriptions of the metaheuristic methods developed
to solve RPD. Exhaustive computational experiments are provided
in Section 5, and finally concluding remarks are made in Section 6.
ns for the regenerator placement and dimensioning problem in sub-wave-
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2. RPD problem description and MILP models

In order to make this paper self-contained, in this section we
provide the MILP-based optimal and heuristic formulations pro-
posed in Pedrola et al. (2011) to solve the RPD problem in sub-
wavelength switching optical networks.

The network infrastructure consists of a set of nodes V, and a set
of bidirectional links E. Given a set of traffic demands D, which
contains the average traffic load hd 2 Rþ offered to every single
source-termination (s � t) pair of nodes, the single-path routing
model proposed in Pedrola et al. (2011) obtains the valid path pd

to be followed by all packets belonging to demand d 2 D. Thus,
we denote Q ¼ fpd; d 2 Dg as the set of selected paths to be used
to route packets through the network. Consequently, qp = hd de-
notes the average traffic load offered to path p 2 Q; Eventually,
Vp denotes the set of intermediate nodes on path p (i.e., all nodes
in p except sp and tp).

Then, the objective of the RPD problem is to find: (a) the loca-
tion of regenerator sites at selected nodes on those paths not meet-
ing the QoT system specifications; and (b) the number of such
regenerators in each node in order to guarantee a given target
burst loss probability (BQoT).

Let Po #Q denote the subset of paths p 2 Q which, due to their
QoT at the receiving end, require regeneration at some node v 2 Vp.
For each p 2 Po, let Sp ¼ fs1; . . . ; sjSp jg denote the set of different op-
tions to establish a QoT compliant path, where si #V; i ¼ 1 . . . jSpj
and size jSpj depends on the length of the transparent segments in
path p (i.e., the distance an optical signal can travel without the
need to undergo regeneration). In order to obtain Sp, p 2 Po (i.e.,
all possible regeneration options) we can make use of any valid
(sub-wavelength technology-dependent) QoT estimator. The selec-
tion of the regeneration option s from set Sp; p 2 Po is performed
according to a regenerator placement decision variable zps such
that the following constraints are fulfilled:
X
s2Sp

zps ¼ 1; 8p 2 Po; ð1aÞ

zps 2 f0;1g; 8s 2 Sp; 8p 2 Po: ð1bÞ
Moreover, let qo

v denote the offered traffic load requiring regenera-
tion at node v. To estimate qo

v (approximately) we add up the traffic
load qp offered to each path p 2 Po that both crosses and undergoes
regeneration at node v:

qo
v ¼

X
p2Po :Vp3v

X
s2Sp :s3v

zpsqp: ð2Þ

Similarly,

qv ¼
X

p2Po :Vp3v
qp; ð3Þ

denotes an estimation of the maximal traffic load that is subject to
regeneration at node v 2 V.

Eventually, we define a regenerator pool dimensioning function
Fv(�), which for a given traffic load qo

v , determines the minimum
number of regenerators to be allocated in node v. This number
must ensure that a given BQoT is met. Assuming Poisson arrivals
and fairness in the access to regenerator pools among packets, such
a function is given by the following discontinuous, step-increasing
function,

Fvðqo
vÞ ¼ B�1 qo

v ;B
QoT

� �l m
; ð4Þ

where B corresponds to the Erlang B-loss formula, which for a given
number of regenerators r 2 N available at node v can be calculated
as,

B qo
v ; r

� �
¼

qo
v

� �r
=r!

Pr
k¼0 qo

v
� �k

=k!
; ð5Þ
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and where B�1 qo
v ; B

QoT
� �

is the inverse function of (5) extended to

the real domain, and d�e is the ceiling function. For the purpose of
problem formulation, it is convenient to define ar as the maximal
load supported by r regenerators given a BQoT, that is, ar = B�1(r,BQoT).
Finally, let R denote the number of regenerators required in the most
loaded node, that is,

R ¼ maxfFvðqvÞ : v 2 Vg: ð6Þ

Note that we can make use of vector a = (a1, . . . , aR) to obtain the
piecewise linear approximation of Fv(�), which for a single node
v 2 V, can be expressed as Fv qo

v
� �

¼min r : ar > qo
v

� �
. Vector a is

also essential for the dimensioning phase in the heuristic RPD
methods proposed, as it helps determine Fv qo

v
� �

according to Proce-
dure 1, which has a polynomial time complexity O(R).

Procedure 1. Regenerator pool dimensioning

1: r 0
2: while qo

v > ar do
3: r r + 1
4: end while
5: Fv r
2.1. Optimal RPD problem formulation (MP1)

Taking into consideration the aforementioned network model-
ing assumptions, the RPD problem can be formulated as the follow-
ing MILP problem:

minimize
u;qo ;z

F ¼
X

v

X
r

ur
vr ðMP1Þ
subject toX
r

ur
var � qo

v P 0; 8v 2 V; ð7aÞ
X

r

ur
v ¼ 1; 8v 2 V; ð7bÞ

X
s2Sp

zps ¼ 1; 8p 2 Po; ð7cÞ
X

p2Po :Vp3v

X
s2Sp :s3v

zpsqp � qo
v ¼ 0; 8v 2 V; ð7dÞ

ur
v 2 f0;1g; 8r 2 ½1;R�; 8v 2 V; ð7eÞ

zps 2 f0;1g; 8p 2 Po; 8s 2 Sp; ð7fÞ
qo

v 2 Rþ; 8v 2 V: ð7gÞ

The objective of optimization Problem (MP1) is to minimize the
total number of regenerators that have to be placed in the network.
In (MP1), decision variables ur

v have been introduced in order to
represent the number of regenerators required in node v. Here,
we consider qo

v to be an auxiliary variable representing the traffic
load requiring regeneration offered to node v 2 V. Constraints
(7a) and (7b) result from the 0–1 representation of the piecewise
linear approximation of Fv(�). Constraints (7c) are the QoT compli-
ant path selection constraints. Constraints (7d) are the traffic load
offered to a regenerator node calculation constraints. Eventually,
7e, 7f, and 7g are the variable range constraints. In MP1, the total
amount of variables can be approximated by jVj � Rþ jPoj �H,
where H represents an upper bound on the maximum size of set
Sp; p 2 Po. Besides, the size of the constraint set is 3 � jVj þ jPoj.
For example, assuming a value of R = 200 and the German network
(see Section 5), the problem size increases up to approximately
5 � 104 variables and 1 � 103 constraints, a fact which makes it
highly difficult to find an exact solution within a reasonable
amount of computational time.
ns for the regenerator placement and dimensioning problem in sub-wave-
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2.2. A MILP-based RPD heuristic

In an attempt to lower the complexity of (MP1), the Reduced
MP1 (R-MP1) algorithm introduces two additional constraints to
the problem, thereby narrowing the search space. To be precise,
the new constraints are the sequentially obtained solutions of
the load-based MILP formulation as detailed in Pedrola et al.
(2011). Although these new constraints may exclude the optimal
solution of (MP1), we expect them to both speed up computation
times and lower optimality gaps while still providing good near-
optimal solutions. Therefore, let us denote, respectively, g⁄ and k⁄

as such load-based sequentially obtained solutions. Then, we refor-
mulate (MP1) as follows:

minimize
u;qo ;z

F ¼
X

v

X
r

ur
vr ðR-MP1Þ

subject to
X

v
yv 6 k�; ð8aÞ

X
v

qo
v 6 g�; ð8bÞ

and subject to constraints (7a)–(7f) and (7g). In constraint (8a), yv
values denote a vector of binary decision variables, that is,
y ¼ ðy1; . . . ; yjVjÞ, where each value corresponds to one node and
determines if it is used as regeneration point by some path
p 2 Po ðyv ¼ 1Þ or not (yv = 0). This constraint ensures that the
solution will have at most k⁄ regeneration nodes. Then, constraint
(8b) is formulated so as to find among the remaining solutions
the one that minimizes the total network load requiring regenera-
tion. Here it is worth pointing out that as long as the scenario con-
sidered does not involve optical paths requiring a large number of
regenerations, constraint (8a) is very unlikely to exclude the opti-
mal solution of (MP1). Basically, it is due to the fact that the dimen-
sioning function of our problem is (4), which favors, to some degree,
the grouping of regenerators. Constraint (8b), by contrast, is just an
heuristic approach to help solve the problem. Notice that (8b) does
not deal with the distribution of the load but with its minimization,
and thus, the optimal solution in terms of the number of regenera-
tors is generally excluded. Given the complexity of (MP1) and in or-
der to provide an improved alternative to (R-MP1), in the next
sections we propose and describe efficient heuristic RPD algorithms.

3. A GRASP-based RPD heuristic

The multi-start GRASP procedure basically consists of two
phases. In the first phase, a greedy randomized feasible solution
of the problem is built by means of a construction procedure. Then,
in the second phase, a local search technique to explore an appro-
priately defined neighborhood is applied in an attempt to improve
the current solution.

3.1. Construction procedure

In order to construct a solution, our problem consists in select-
ing, for each path pi 2 Po ¼ fp1; . . . ; pjPo jg, a regeneration option
sj 2 Spi

¼ fs1; . . . ; sjSpi
jg. For the sake of clarity, let us define a path

instantiation ui
j as the assignment of regeneration option sj 2 Spi

to path pi 2 Po, that is, uj
i ¼< pi; sj >. Moreover, let U ¼

S
pi2Po uj

i de-
note the complete set of path instantiations. Note that we are deal-
ing with an unconstrained problem, and thus, any path p 2 Po, can
take any s 2 Sp independently of the decision taken by other paths
(i.e., no path instantiation can lead to an unfeasible solution).
Hence, once U is generated, a feasible solution to the RPD problem
can be obtained. Let us denote with g(�) the cost function which
aims at minimizing the total amount of regenerators to be de-
ployed given a BQoT target performance. Function g(�) makes use
Please cite this article in press as: Pedrola, O., et al. Metaheuristic hybridizatio
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of Procedure 1 as defined in Section 2 to compute the number of
regenerators. Note that set U helps determine load qo

v ;v 2 V, and
thus, a solution to the problem can be obtained by applying gðUÞ.
However, it must be noted that such an operation is required in
every phase of the GRASP heuristic and performed a very high
number of times. In addition, parameter R (see Eq. (6)) can be ex-
tremely high in some network scenarios. For this very reason, we
use a binary search algorithm to reduce the complexity of Proce-
dure 1 to O(logR). Our approach to construct solutions takes into
consideration the order in which path instantiations are per-
formed, as in fact, due to the already deployed regenerators, such
order has influence on subsequent path instantiations. Thus, we
consider the order Ox ¼ fp1; . . . ; pjPo jg as a guide to iteratively per-
form, for each path p 2 Po, the required path instantiation and gen-
erate U. From this point on, it will be up to the subsequent
intensification strategies to improve set U .

Specifically, the construction procedure that we consider to
solve the RPD problem is the greedy randomized construction
(GRC) as described in the next subsection.

3.1.1. Greedy randomized construction (GRC)
GRC relies on a restricted candidate list (RCL) which is made

up of the paths p 2 Po with the best (smallest) incremental costs
c(p). Paths are iteratively processed, and at each step, costs
cðpÞ; p 2 Po are recomputed to account for the paths already
processed (i.e., path instantiations previously performed). All
regenerative options s 2 Sp are considered, and c(p) is given the
value of the option s with the lowest incremental cost (i.e.,
cðpÞ ¼mins2SpfcðsÞg). It is worth mentioning that costs c(s) account
for the increment in regenerators caused by the selection of s as
regeneration option for path p. Therefore, RCL is dynamically built
with all paths p 2 Po whose cost c(p) falls within the interval de-
fined by the real parameter a 2 [0,1] (see lines 5–7 in Procedure
2). Then, one of the paths in the RCL (pi) is randomly chosen and
the regeneration option sj 2 Spi

with the lowest incremental cost
is selected to perform the required path instantiation uj

i. Once Q
becomes an empty set, all paths in Po have been processed, and
hence, we can finally obtain the total number of regenerators de-
ployed by applying gðUÞ. Note that costs cðsjÞ; sj 2 Spi

, are again
recomputed at each iteration in order to take into account previous
path instantiations (i.e., regenerator sites already distributed in the
network). In this algorithm, parameter a needs to be adjusted as
shown in Section 5.

Procedure 2. Greedy randomized construction (GRC)

INPUT: Po;Sp 8p 2 Po;a
OUTPUT: Ox;Ux; gðUxÞ
1: Ux  ;;Ox  ;;
2: Initialize the candidate set: Q  Po;
3: Evaluate the incremental cost c(p) for all p 2 Q;
4: while Q– ; do
5: cmin  minfcðpÞ j p 2 Qg;
6: cmax  maxfcðpÞ j p 2 Qg;
7: RCL fp 2 Q jcðpÞ 6 cmin þ aðcmax � cminÞg;
8: Select an element pi from RCL at random;
9: Ox  Ox [ fpig;
10: Take element sj 2 Spi

such that c(sj) = c(pi);

11: Perform path instantiation uj
i

12: Ux  Ux [ uj
i

n o
;

13: Update candidate set Q;
14: Reevaluate the incremental cost c(p) for all p 2 Q;
15: end while
ns for the regenerator placement and dimensioning problem in sub-wave-
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3.2. Local search
In this section, we provide the details concerning neighbor gen-
eration as well as the pseudo-code and operation of the local
search algorithm adopted, namely the VND technique.

3.2.1. Neighbor generation
Once the path instantiation set Ux is obtained by means of GRC,

local search aims at improving such a solution by exploring its
neighborhood. Note that, due to the fact that path instantiations
are performed taking into account the current location and number
of regenerators deployed, only the last path to be instantiated takes
its decision with a whole view of the problem. Changing one regen-
erator selection may therefore impact on subsequent decisions and
eventually provide a different solution. Neighbor generation tries to
exploit this issue. To this end, random neighbors in the first neigh-
borhood (i.e., 1-move neighbor) of Ux, that is, N1ðUxÞ, are generated
by uniformly selecting a pair of pivots pi, pj among those in set Po.
Then, we take their respective path instantiations um

i ; un
i

� �
and try

to improve the selection of sm and sn as regeneration options for
paths pi and pj respectively. We evaluate the incremental costs of
all sk 2 Spi

; sl 2 Spj
so that both path instantiations are recomputed

and inserted in Ux again. Note that a q-move neighbor is generated
by performing such a random pair selection and re-computation
operation for q consecutive times over the same set Ux.

3.2.2. Variable neighborhood descent (VND)
The pseudo-code for the VND algorithm is illustrated in Proce-

dure 3. Starting at Ux, VND begins the search by constructing a set
of MaxSearch neighbors in N1, and if among them all, an improving
UN solution is found, the algorithm moves to UN and continues the
search in N1. If no improvement is found, by contrast, VND switches
to N2 and so on. Due to the fact that VND switches back to N1 every
time an improvement is found, this algorithm is able to perform an
exhaustive search until the last allowed neighborhood NMAX is
reached. Note that the intensity of the search in each neighborhood
structure depends on the number of neighbors sampled (Max-
Search). The best solution found ðUBESTÞ is returned as output when
neighborhood NMAX is reached and no improvement is found.

Procedure 3. Variable neighborhood descent (VND)

INPUT: Ux;MaxSearch;NMAX;
OUTPUT: UBEST ;
1: UB  Ux; k 1;UBEST  Ux;
2: repeat
3: i 0;UN  UB;
4: repeat
5: Ux0  Create-Nk-neighborðUBÞ;
6: if gðUx0 Þ < gðUNÞ then
7: UN  Ux0 ;
8: end if
9: i i + 1;
10: until i P MaxSearch
11: if gðUNÞ < gðUBÞ
12: UB  UN;
13: k 1;
14: else
15: k k + 1;
16: end if
17: if gðUBÞ < gðUBESTÞ
18: UBEST  UB;
19: end if
20: until k P NMAX
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3.3. Path relinking
PR (Glover, 1996) generates new solutions by exploring the tra-
jectories connecting pairs of high-quality solutions. To ensure a
proper PR operation, the management of the elite set (ES) has to
balance between quality and diversity attributes (Resende and
Werneck, 2004).
3.3.1. Greedy PR (GPR)
To perform PR, we make use of the path instantiation set U so as

to easily detect solution differences. Hence, given an initiating (U i)
and a guiding (Ug) solution, we obtain the set of divergences Wi,g by
identifying those path instantiations in Ug which differ from those
selected in U i, that is, Wi;g ¼ Ug n fUg \ U ig. In this work, we con-
sider the greedy PR (GPR) approach (Resende et al., 2010) to build
the path from the initiating towards the guiding solution. There-
fore, at each single movement we evaluate the impact that all path
instantiations in Wi,g have when introduced in U i. Among them, we
select the one minimizing g(�), that is, u⁄, and replace the corre-
sponding path instantiation in U i. Ties in this case are broken ran-
domly. Finally, u⁄ is removed from set Wi,g. In this way, we
progressively move towards Ug and until Wi,g becomes an empty
set (i.e., the guiding solution has been reached). PR is implemented
using the back-and-forward (PRbf) strategy, which explores the path
in both directions (Resende and Werneck, 2004).

Moreover, the selection of a solution from ES depends on both a
distance measure and a selection policy. We consider the approach
presented in Resende and Werneck (2004), where the authors pro-
pose to select the elite solution with probabilities proportional to their
distance to the solution on which to perform PR (Ux). Note that the
maximum distance between two solutions Ux and Uy, that is, dx,y,
is equal to jPoj. As to ES management (i.e., which solution can be
inserted and which has to be removed in order to keep jESj con-
stant), it is worth noticing that a solution whose quality is lower
than the best stored in ES and higher than the worst in ES, will
be added iff its distance to ES (i.e., dx;ES ¼minU i2ESfdx;ig) is larger
than a pre-established threshold dth, that is, dx,ES > dth, where
dx;ES ¼minU i2ESfdx;ig.
3.4. GRASP + PR algorithm

The GRASP + PR algorithm design considered in this paper is the
evolutionary GRASP + PR (EPR) implementation (Resende et al.,
2010). Specifically, the authors propose three different hybridiza-
tions of GRASP + PR, namely static, dynamic and evolutionary
GRASP + PR. Among them, the evolutionary variant displayed bet-
ter performances. For this reason, in order to tackle RPD, we con-
sider the evolutionary scheme. EPR is based on an evolutionary
post-processing phase for GRASP + PR algorithms introduced by
Resende and Werneck (2004). The pseudo-code for EPR is shown
in Procedure 4. After set ES becomes full, the so-called dynamic
GRASP + PR (DPR) algorithm is executed for LocalItr iterations (be-
tween lines 4 and 12 in Procedure 4). Then, the set of solutions in
ES is evolved. This process is repeated for a maximum of GlobItr
iterations and eventually the best solution in ES is returned as
output.

It is worth mentioning that we use a parallel implementation of
the algorithm in order to better exploit the capacity of our evalua-
tion platform (see Section 5) and to both speed up the algorithm
execution time and enhance its performance. A pool of k threads
is generated, each of them running in parallel the inner loop of
the EPR algorithm, that is, DPR. During LocalItr iterations all
threads share a common ES which is accessed following a mu-
tual-exclusion policy. Once all threads have finished their task, ES
is evolved as dictated by the EPR method.
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Procedure 4. Evolutionary GRASP + PR (EPR)

INPUT: GlobItr, LocalItr, jESj;
OUTPUT: UBEST ;
1: i 0,j 0,ES ;;
2: Execute multi-start GRASP phase until ES is full;
3: repeat
4: repeat
5: Ux  ConstructionProcedure;
6: Ux0  Local Search starting at Ux;
7: Randomly select Ue from ES;
8: Uy  PRbf ðU0x;UeÞ;
9: Uy0  Local Search starting at Uy;
10: Try to insert Uy0 in ES;
11: j j + 1;
12: until j P LocalItr
13: Improvement  1;
14: while Improvement do
15: Improvement  0;
16: Apply PRbf ðUx;Ux0 Þ for every pair ðUx;Ux0 Þ 2 ES and let
Uy be the best solution found;

17: Uy0  Local Search starting at Uy;
18: if Uy0 can be inserted in ES then
19: Improvement  1;
20: end if
21: end while
22: i i + 1;
23: until i P GlobalItr
24: UBEST ¼minUk2ESfgðUkÞg;
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4. A BRKGA-based RPD heuristic

In BRKGA, a population of p individuals is evolved over a num-
ber of generations. Each individual is represented by an array of n
genes (called a chromosome), and where each gene can take any
value in the real interval [0,1]. Thus, each chromosome encodes
a solution of the problem and a fitness value, that is, the value of
the objective function. In BRKGA, individuals of the population
are divided into the elite set pe (those individuals with the best fit-
ness values), and a non-elite set. Whilst the majority of new indi-
viduals are generated by crossover combining two elements, one
elite and another non-elite, elite individuals are copied unchanged
from one generation to the next so as to keep track of good solu-
tions. With the very same objective, in the crossover operation
an inheritance probability (qe) is defined as the probability that
an offspring inherits the gene of its elite parent. Finally, a small
number of mutant individuals are introduced to complete a popu-
lation. A deterministic algorithm, named decoder, transforms any
input chromosome into a feasible solution of the optimization
problem and computes its fitness value.

The decoder algorithm for our BRKGA was first presented in
Pedrola et al. (2011), where our aim was to develop a simple and
straightforward decoding algorithm, as fast cost function evalua-
tions are crucial to BRKGAs. For completeness, the decoder pseu-
do-code is illustrated in Procedure 5. Each chromosome contains
as many genes as nodes in the network, and each gene assigns its
random value to the corresponding node (see line 2 in Procedure
5). Then, the regeneration option minimizing the sum of such node
metric is selected. Hence, a very fast fitness computation can be ob-
tained with this decoding algorithm, even if complex problem in-
stances are considered. However, such simplicity may also hinder
the possibility of approaching optimality. This is indeed an
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important issue to be tackled since the reduction of just one regen-
erator unit implies significant cost and energy savings in the net-
work, and thus, it cannot be neglected. For this very reason, in the
next section, we re-consider the implementation of BRKGA for the
RPD problem, and propose an enhanced method including VND
and PR as intensification strategies, namely the BVR algorithm.

Procedure 5. BRKGA decoder

INPUT: N ; chromo; Po;Sp8p 2 Po;
OUTPUT: Ux; gðUxÞ;
1: for all node n 2 N
2: n.metric chromo.getGene(n);
3: end for
4: Ux  ;;
5: for all path pi 2 Po do
6: for all option sj 2 Spi

do
7: for all node n 2 sj do
8: c(sj) c(sj) + n.metric;
9: end for
10: end for
11: s� ¼minsj2Sp

i
fcðsjÞg;

12: Ux  Ux [ fs�g;
13: end for
4.1. BRKGA with VND and PR (BVR) algorithm

Although in the literature several works report successful
implementations of genetic algorithms working in conjunction
with PR (see e.g., Reeves and Yamada (1998) and Zhang and Lai
(2006)), BVR proposes a novel algorithm implementation in which
both a local search (VND) and a PR strategy are inserted into the
basic BRKGA methodology. The pseudo-code for BVR is illustrated
in Procedure 6. The input parameters gens and GlobItr define the
maximum number of generations over which the initial population
is evolved. After BRKGA is run for gens generations, the chromo-
somes belonging to the elite set (pe) in the resulting population
Pop are all candidate to be inserted in ES. Then, following the same
probabilistic approach as in the GRASP + PR algorithm described in
Section 3, a solution from ES is selected to perform both PR with Ux

and the subsequent local search intensification. Then, the evolution
of the current population is resumed for another gens generations.
Finally, the best solution stored in ES is returned as output.

Again, BVR is implemented following a parallel approach in
which k threads run the algorithm separately sharing a common
ES. Note that the parallel approach not only allows to reduce time
complexity but also generates higher quality elite sets, as ES is con-
currently fed by up to k threads. Finally, all parameters needed to set
up both the BVR and EPR algorithms will be adjusted in Section 5.

Procedure 6. BVR algorithm

INPUT: gens, GlobItr;
OUTPUT: UBEST ;
1: i 0, ES ;;
2: init-BRKGA ();
3: repeat
4: Pop  run-BRKGA (gens);
5: Take pe from Pop;
6: for all chromosome ch 2 pe do
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7: Take Uch and try to insert it in ES;
8: end for
9: Randomly select Ue from ES;
10: Uy  PRbf(Ux;Ue);
11: Uy0  Local Search starting at Uy;
12: Try to insert Uy0 in ES;
13: i i + 1;
14: until i P GlobItr
15: UBEST ¼minUk2ESfgðUkÞg;
5. Computational experiments

This section describes the computational experiments con-
ducted so as to both evaluate and compare the performance of
the MILP-based (MP1) (optimal) and (R-MP1) models with that
of the EPR and BVR hybridized heuristic models proposed in this
paper. The heuristic methodologies have all been implemented in
Java SE 1.6.0_17 using a parallel approach. The experiments have
been conducted on an Intel (R) Core (TM) i7 CPU 950 at 3.07
Gigahertz with 4 gigabytes RAM under Windows 7 Professional
Edition (64 bits). We use CPLEX (version 12.1) as the underlying
MILP-solver. Note that with this processor we can make use of
up to eight parallel threads, and thus, in all our problems we set
k = 8.
Fig. 1. (a) Large (37 nodes, 57 links), (b) basic (28 nodes, 41 links), (c) core (16 nodes,
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5.1. Problem instances

The performance of the proposed metaheuristic hybridizations
as well as that of the MILP models has been compared over the
set of optical core transport networks shown in Fig. 1 (see Pedrola
et al., 2011 for more details).
5.2. Sub-wavelength optical network scenario

In this paper, we study the RPD problem under the assumption
that OBS is the underlying sub-wavelength switching technology.
Optical bursts are generated according to a Poisson arrival process
and have exponentially distributed lengths. The mean duration of a
burst is 100 microseconds (i.e., 1 megabyte). The traffic is uni-
formly distributed, normalized to the transmission bit-rate and ex-
pressed in Erlangs. Here, an Erlang corresponds to the amount of
traffic that occupies an entire wavelength.

As to the QoT model, we make use of method proposed in
Pedrola et al. (2011) to obtain the set of paths Po that do not com-
ply with the OSNR system specifications. Hence, it is possible to
identify which bursts will need to undergo a regeneration when
sent into the network. This is achieved by defining an OSNR quality
threshold (Tosnr) below which the optical signal cannot be correctly
read, and thus, the burst is discarded. In Pedrola et al. (2011), we
show that Tosnr is a critical parameter, and that the network config-
uration must be set in accordance. In our experiments, we assume
23 links), (d) USA–Can (39 nodes, 61 links), and (e) German (50 nodes, 88 links).
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Table 1
Network scenarios evaluated.

Scenario A B C D

Erlangs 15 25 15 25
Tosnr (decibel) 20 20 21 21

Table 2
Tosnr impact on jPoj and jC�j.

Tosnr USA–Can German Core Basic Large

jPoj 20 decibels 421 338 18 349 746
21 decibels 657 752 55 462 919

jC�j 20 decibels 21,414 22,987 328 7707 16,438
21 decibels 23,757 38,615 596 6459 13,616
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a realistic scenario with bidirectional network links equipped with
32 wavelengths, each at 10 gigabit/second.

Aiming at performing an exhaustive evaluation of all the meth-
ods proposed, we consider a target QoT performance BQoT = 10�3 in
four different network scenarios (see Table 1). These scenarios rep-
resent load values corresponding to both a medium and a highly
loaded network, and thresholds corresponding to realistic values.
Whilst an increase in load represents an increase in the number of
regenerators required to support each independent burst flow, ris-
ing Tosnr implies increasing the size of setPo as shown in Table 2. Fur-
ther, Table 2 reports the total number of regeneration options C� (i.e.,
C� ¼

S
p2PoSp) under both Tosnr values, thus allowing for a fair estima-

tion of the different problem complexities. One can observe that in
both the Basic and Large networks such amount of options decreases
with the increase of Tosnr. This can happen as higher thresholds may
limit reachability in the resulting transparent graph, and conse-
quently reduce the number of regeneration options. It is also worth
mentioning that in our previous work in Pedrola et al. (2011), the
size of set C� was limited to a maximum of jSpj ¼ 25; 8p 2 Po so as
to reduce complexity. However, such an approach hinders the pos-
sibility of approaching optimality, which is our primary objective.

In order to conduct a thorough analysis of all the RPD methods,
we first obtain the results for both (MP1) and (R-MP1) using CPLEX
as solver. These results provide us with the best known solutions
for each of the scenarios evaluated. Afterwards, a set of preliminary
experiments is carried out so as to obtain the best set up for both
the EPR and the BVR RPD metaheuristics. Finally, we evaluate their
performance in terms of solution quality and study the statistical
significance of the results obtained through non-parametric tests.

5.3. Experimental analysis

5.3.1. MILP methods results
We use CPLEX to solve (MP1) and (R-MP1) under each network

and scenario. Table 3 reports the minimum number of regenerators
Table 3
(MP1) and (R-MP1) Results (total number of regenerators and optimality gaps).

A B

MP1 R-MP1 MP1 R-MP

Network
Core 44 44 62 62
Basic 385 384 572 574
Large 658 661 998 1139
USA–Can 269 264 402 400
German 193 188 277 275
Gap (%)
Core 0 0 0 0
Basic 1.8 0 2.1 0
Large 4.1 0 4.1 0
USA–Can 3.7 0 3.2 0
German 11.9 0 5.42 0
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to be deployed as well as the optimality GAP (%) of the solutions
provided by CPLEX. Note that the MILP optimality GAP is defined
as: GAPð%Þ ¼ best�lb

best , where best refers to the best current solution,
and lb to the best current lower bound found by the CPLEX
branch-and-bound process.

Each execution is stopped when either the running time reaches
24 hours or the tree size grows up to 4 Gigabyte. One can observe
that (MP1) is only able to reach optimality in the most simple
problem instance, that is, the CORE network. Indeed, optimality
gaps of up to 11.9% are observed in the German network. However,
we can observe that with (R-MP1) such gaps are brought to 0 in all
cases except for scenarios C and D in the German network. As
aforementioned, however, this is the consequence of introducing
in (MP1) two additional heuristic constraints, which definitely re-
duce the search space, and thus, the complexity of the problem.
Whilst (R-MP1) works properly in some scenarios (e.g., Basic (A,
C)), in others, such a cut of the solution space excludes high-quality
solutions, thereby hindering the possibility of approaching opti-
mality (USA–Can (C, D), Large (B)). The results in Table 3 are also
in line with the different problem complexities given by the values
provided in Tables 1 and 2. First, we observe that load variations,
which have an effect on parameter R (see Eq. (6)), do not have a sig-
nificant impact on the results obtained, as there are no notable dif-
ferences among scenarios A–B and C–D. Indeed, as shown in
Section 2.1, it is both the number of regeneration options and the
size of set Po what has the greater impact on the number of vari-
ables and constraints of the problem. However, rising Tosnr does
have a clear impact on the problem complexities. As shown in
Table 2, in both the Basic and Large topologies, it represents an in-
crease in Po, but, at the same time, a substantial reduction of jC�j,
thereby lowering the problem complexity. This issue is reflected
in the optimality gaps found by (MP1) in these two topologies, as
they decrease from scenarios (A, B) to (C, D). In the USA–Can and
German networks, as expected, complexities and gaps increase.
We note however that in the German network there is a reduction
from scenario A to C. We attribute this behavior to the very high
gap found in scenario A, which may be due to a specific particular-
ity of this problem instance.

In the rest of our experiments, we exclude the Core network in-
stance as it does not provide any way of differentiating the perfor-
mance of the different methods.
5.3.2. EPR and BVR parameter tuning
To perform a comprehensive quantitative analysis of the results,

we consider the statistics proposed in Resende et al. (2010). Specif-
ically, we provide the number of times (# Best) that each method is
able to obtain the overall best solution value (BestVal) found among
all methods studied. Moreover, we compute the relative percent-
age deviation (Dev) between the best solution value obtained by
C D

1 MP1 R-MP1 MP1 R-MP1

115 115 166 166
580 579 874 873
942 937 1432 1430
472 493 710 755
403 393 601 589

0 0 0 0
0.5 0 0.8 0
2.2 0 2.7 0
7.0 0 6.2 0
8.9 4.8 7.2 5.1
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Table 4
a Performance evaluation in all networks and scenarios.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#Best 2 0 3 1 5 4 1 2 3
Score 72 68 58 70 32 57 66 60 38
Dev (%) 1.68 1.08 1.03 1.31 0.43 1.19 1.41 1.19 0.89

Table 5
Determination of an adequate size for set ES using the DPR algorithm.

jESj 4 6 8

#Best 9 17 4
Score 13 2 22
Dev (%) 1.77 0.42 2.86

Table 6
Study of dth using the DPR algorithm.

dth
5

100P
o 10

100P
o 15

100P
o

#Best 8 12 6
Score 14 6 16
Dev (%) 1.8 0.52 2.1
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a particular method and BestVal for that instance. Finally, we report
the statistic called Score (Ribeiro et al., 2002).

In our first preliminary experiment, our focus is on tuning a,
that is, the value that controls the access into the RCL in the con-
struction algorithm. To this end, we construct, for each a value
and network scenario, 200 solutions with GRC. The results are
shown in Table 4, where the best global value for each parameter
is shown in boldface (and similar for the results provided in Tables
5–7). The results report a = 0.5 as the best method, as it provides
the best value for each of the statistic parameters evaluated. There-
fore, we use GRC(a = 0.5) in the rest of our experiments.

The next preliminary experiment is devoted to the tuning of the
two parameters required to set up the VND local search algorithm,
that is, MaxSearch and NMAX. For this experiment, we make use of
the so-called BRKGA tuning as proposed in Festa et al. (2010),
where authors use a BRKGA algorithm so as to find adequate
parameter values for a GRASP + PR heuristic. In this case, however,
and due to the complexity of the instances considered, we only
tune the VND parameters. Then, we perform a more exhaustive
evaluation of the key PR parameters, namely the size of set ES
and dth, which manages the access to ES.

We test the following values for each parameter: (a)
NMAX = {5,8,12,15}; (b) MaxSearch = {15,25,40,50,70}. Therefore,
a chromosome is defined by 2 parameters. BRKGA in this experi-
ment makes use of: p = 20, pe = 0.2, pm = 0.2, qe = 0.7. The fitness
for each chromosome corresponds to the average obtained over
five independent executions of GRC plus VND, each lasting for 56
iterations (seven iterations per thread). The automatic tuning sets
parameters NMAX = 50 and MaxSearch = 8 (i.e., the values with high-
er frequencies of occurrence).

Next, we conduct two additional preliminary experiments in or-
der to set up the parameters corresponding to the PR procedure,
namely the size of set ES, and the minimum distance dth. First,
we evaluate 4, 6, and 8 as candidate sizes for set ES. We note here
that the size of set ES represents a trade-off between quality and
diversity that needs to be evaluated. To this end, we run 20 inde-
pendent executions of the DPR algorithm for all network scenarios,
each lasting for 100 iterations. According to the statistics reported
in Table 5, jESj = 6 represents the best trade-off to perform PR, and
hence, we consider this value for the rest of our experiments
requiring the PR intensification procedure.

To analyze the impact of dth, and given the fact that the maxi-
mum distance between two solutions is equal to jPoj, we compare
the performance of three different percentages of this value as pos-
sible distance thresholds, that is, 5%, 10%, and 15%. We perform 20
independent executions of the algorithm each lasting for 200 iter-
ations in all network scenarios. According to the statistics reported
in Table 6, the best value is dth = 10%, and hence, we select it for the
rest of our experiments. Note that both the VND and the PR param-
eters found will be used by both EPR and BVR algorithms.
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Finally, to specify the parameters in BVR that deal with the evo-
lution of the population, we consider the values that after some
preliminary experimentation we successfully tested in Pedrola
et al. (2011). These values are the ones used in Section 5.3.2,
though in this case the population size is set to p ¼ jN j and the
chromosome structure as described in Section 4. In the next sec-
tion, we compare the performance of the metaheuristic hybridiza-
tions for the RPD problem proposed in this paper with that of the
MILP-based (MP1) and (R-MP1) models.
5.3.3. RPD methods performance comparison
In this final experiment, we compare the performances of all the

RPD resolution methods proposed throughout this paper. Specifi-
cally, the following five algorithms configurations are executed
(for each method 20 independent executions are run each with
eight threads evolving in parallel):

� BRKGA: Run for a minimum of 1000 generations and stopped
after a maximum of 200 generations without improvement.
� BVR: Run for 500 generations. Three different configurations for

this method are tested, namely BVR (1), BVR (3) and BVR (5).
The number in brackets corresponds to GlobItr, that is, the num-
ber of times that the evolution process is stopped so that both
PR and VND can be executed. Accordingly, for each method
the value of gens corresponds to 500

GlobItr

� 	
.

� GRASP: The GRASP multi-start phase (i.e., GRC followed by
VND). Each thread performs 36 multi-start iterations.
� DPR: The dynamic variant of GRASP + PR, each thread is run

with LocalItr set to 36 iterations. Note that in this case the evo-
lutionary stage is not executed.
� EPR: In this algorithm, each thread is run with the parameters

LocalItr and GlobItr set to 12 and 3 respectively.

The results provided in Table 7, report BVR (3) and BVR (5) as
the best methods, thereby showing the benefits achieved by incor-
porating both VND and PR into the basic BRKGA procedure.
Although one can observe that further iterations (BVR (5)) slightly
increase #Best with respect to BVR (3), it does so at the cost of sub-
stantially increasing computation times. Further, in BVR (5), the
remaining two parameters do not experience any improvement.
Hence, considering that our primary objective is to approach opti-
mality, and that in this respect both BVR (3) and BVR (5) provide
the same performance, this experimental analysis reports BVR (3)
as the most efficient RPD algorithm among the ones evaluated in
this paper. Results obtained by all three GRASP variants also show
the impact of introducing PR and in particular of the evolutionary
stage. As expected, EPR is able to provide better performance,
though requiring more computation time. For the sake of a fair
comparison, if a MILP method obtains a BestVal for a particular in-
stance, its counter of #Best is incremented by 20 units.

Next, in order to be able to numerically compare the heuristic
results with those of the MILP methods, in Table 8, we provide
the final results for the best methods in terms of the number of
regenerators. In this case, the numbers shown in boldface repre-
sent the problem instances in which that particular method has
not been able to at least equal the result obtained by the best of
(MP1) and (R-MP1) for that particular instance. One can note that
BVR (3) improves upon the MILP models in all cases except for the
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Table 7
Statistic results for all RPD methods.

Method BRKGA BVR (1) BVR (3) BVR (5) GRASP DPR EPR (MP1) (R-MP1)

#Best 40 162 168 175 0 0 0 0 140
Score 62 23 1 1 142 115 90 102 58
Dev (%) 0.35 0.1 0.02 0.02 5.46 2.08 1.5 1.23 2.14
Time (seconds) 100.6 75.9 88.1 149.9 1022.3 4008.8 5138.1 24 hours 8236

Table 8
RPD methods results (number of regenerators deployed).

BRKGA BVR (1) BVR (3) EPR (MP1) (R-MP1)

Basic A 384 384 383 386 385 384
B 571 571 571 571 572 574
C 582 579 579 582 580 579
D 874 873 873 875 874 873

Large A 655 653 652 657 658 661
B 985 984 983 986 998 1139
C 937 935 934 940 942 937
D 1419 1418 1417 1423 1432 1430

USA–Can A 265 264 264 265 269 264
B 400 400 400 401 402 400
C 465 463 462 471 472 493
D 701 700 700 703 710 755

German A 189 188 188 191 193 188
B 277 276 276 282 277 275
C 396 394 393 419 403 393
D 589 587 587 626 601 589

Table 9
Rank results and pairwise differences of the RPD algorithms (CD = 3.76).

Method BVR (3) BVR (5) BVR (1) BRKGA (R-MP1) EPR (MP1) DPR GRASP
Avg. Rank (2.125) (2.125) (2.93) (4.53) (4.781) (5.937) (6.5) (7.25) (8.875)

BVR (3) – 0 0.82 2.41 2.66 3.81 4.38 5.13 6.75
BVR (5) – – 0.82 2.41 2.66 3.81 4.38 5.13 6.75
BVR (1) – – – 1.59 1.84 3 3.56 4.31 5.94
BRKGA – – – – 0.25 1.4 1.97 2.72 4.34
(R-MP1) – – – – – 1.15 1.72 2.47 4.09
EPR – – – – – – – 1.31 2.93
(MP1) – – – – – – – 0.75 2.38
DPR – – – – – – – – 1.63
GRASP – – – – – – – – –

10 O. Pedrola et al. / European Journal of Operational Research xxx (2012) xxx–xxx
German (B) scenario, and that even EPR reports best values in some
instances compared to the MILP methods. In fact, considering all
the problem instances, BVR (3) using much less computation time,
provides a reduction of 272 regenerators when compared with
(R-MP1), 106 with (MP1), and of 60 if compared with the best of
both MILP methods. These results also allow us to analyze the ef-
fect of the problem complexity on the performance of the best
BRKGA-based algorithm (BVR (3)), and the best GRASP-based
method (EPR). Using the values reported in Table 8, we compute
the difference between the results of both heuristics (i.e., regs
(EPR)-regs (BVR (3))). Whilst the total difference in the number
of regenerators for scenarios (A,B) is 22, it increases up to 94 for
scenarios (C,D). Further, we confirm that the difference between
both algorithms does not change significantly under a load varia-
tion, as the aggregated difference is 56 and 60 respectively, for sce-
narios (A,C) and (B,D).

Hence, considering only solution quality, these results report
that BRKGA-based heuristics are more appropriated for the RPD
problem because of both their simple decoding algorithm and abil-
ity to obtain high-quality solutions in short computational times.
Further, we can notice that despite the benefits generated by both
VND and PR in GRASP are noticeable, they are not able to match the
fast genetic evolution. The size of both Po and C� make it necessary
to introduce memory into the process, and in this aspect, BVR
clearly outperforms EPR thanks to the joint operation of the genetic
evolution and PR.
Please cite this article in press as: Pedrola, O., et al. Metaheuristic hybridizatio
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5.4. Statistical analysis of the results

In this section, we aim at confirming the results obtained in the
last section. To this end, we conduct tests to analyze whether the
performance differences found among the RPD algorithms are sta-
tistically significant.

Demsar (2006) tackled the issue of statistical tests for comparison
of algorithms on multiple problem instances. In this paper, we use
the non-parametric Friedman Test (Friedman, 1940), and the Neme-
nyi Post hoc test (Nemenyi, 1963) to evaluate our k = 9 algorithms
under the N = 16 different problem instances as reported in Table 1.

The Friedman test ranks the algorithms for each problem in-
stance separately. By comparing the average ranks of the algo-
rithms, the statistical significance of differences between the
methods is examined. In this work, we use the enhanced version
of the Friedman test developed by Iman and Davenport (1980),
which uses the test statistic F F based on the F-distribution with
degrees of freedom ((k � 1), (k � 1)(N � 1)). If the equivalence of
the algorithms is rejected, the Nemenyi post hoc test is applied
in order to perform pairwise comparisons. The average ranks are
reported in Table 9 for each of the nine different RPD methods.
Given the ranking obtained, BVR (3) and BVR (5) represent the best
performing algorithms closely followed by BVR (1). Then, we find
BRKGA and (R-MP1) providing quite similar performance. The next
group is formed by EPR and (MP1), and finally the DPR and GRASP
algorithms reporting the worst results. The next step is devoted to
ns for the regenerator placement and dimensioning problem in sub-wave-
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analyzing the statistical significance of differences between these
ranks. In our scenario, the F F test statistic is distributed according
to the F-distribution with (8,120) degrees of freedom. In this case,
F F ¼ 44:543, a value which is fairly greater than the critical value
2.66 obtained with the F-distribution and a significance level of the
test a = 0.01. Taking into account this test, a significant difference
between the performance of the different RPD methods exists,
and thus, the equivalence can be rejected. Hence, we can proceed
with the Nemenyi Post hoc test to determine differences between
the average ranks for every pair of algorithms. To this end, we com-
pute the critical difference (CD) (see Demsar, 2006) between algo-
rithm ranks. For a significance value a = 0.01, we have that
CD = 3.76. Given the results provided in Table 9, we can clearly
identify two different groups. A first group consisting of BRKGA-
based methods plus (R-MP1), and a second one with the remaining
algorithms. Note that algorithms within a group differ from best to
worst in less than CD. Hence, the Friedman and Nemenyi tests con-
firm the results obtained in the experimental analysis and rein-
force the conclusion that BRKGA-based algorithms are effective
metaheuristics for the RPD problem.
6. Conclusions

The purpose of this paper has been the development of efficient
metaheuristic methods to solve the RPD problem found in translu-
cent sub-wavelength switching optical networks. This problem
deals with the minimization of the number of regenerators re-
quired to mitigate the impact of the PLIs in the network. Due to
both their high cost and power-consumption, this problem is of
great interest for network operators which strive for cost-effective,
energy-efficient architectures. We have developed two different
hybridized metaheuristics based on both GRASP and BRKGA algo-
rithms. Moreover, we have introduced VND and PR into their basic
procedures, and finally implemented the EPR and BVR algorithms
to solve the RPD problem. We have compared their results with
those of both an optimal and a heuristic MILP formulation using
CPLEX. Among them, BVR reported the best overall results in all
the scenarios evaluated except for one, thereby standing as an effi-
cient and competitive algorithm to be taken into consideration for
the planning and design of future sub-wavelength OTNs. Further,
we also observed that genetic methods such as BVR are particularly
recommended for the RPD problem because of their efficient
decoding algorithm and fast genetic evolution.
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