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ABSTRACT1 
The ever increasing IP traffic volume has finally brought to light the high inefficiency of current wavelength-
routed rigid-grid networks in matching the client layer requirements. Such an issue results in the deployment of 
large-size, expensive and power-consuming IP/MPLS layers to perform the required grooming/aggregation 
functionality. To deal with this problem, the emerging flexgrid technology, allowing for reduced size frequency 
grids, usually referred to as frequency slot, has recently attracted great attention among network operators, 
component and equipment suppliers, and the research community. In this paper, we report the main contributions 
performed in the context of EU STRONGEST project regarding flexgrid optical networks. 
Keywords: Flexgrid Optical Networks, Multilayer IP/MPLS-over-Flexgrid, Elastic Spectrum Allocation. 

1. INTRODUCTION 
The emergence of new disruptive bandwidth intensive services and applications has led to a huge surge of IP 
traffic which, ultimately, has brought to light the clear granularity mismatch between the client layer and current 
wavelength-routed optical layer. This issue results in a highly inefficient use of the network capacity, and 
consequently, in multi-layer networks requiring a large amount of highly expensive, power-consuming IP/MPLS 
equipment to be installed for grooming/aggregation purposes. In this context, flexgrid optical networks [1], [2], 
which provide a highly flexible, spectrally efficient use of resources, have emerged as a potential candidate for 
next-generation optical transport networks. The flexgrid technology, which leverage upon key advances in 
optical multi-level modulation techniques and the design of both Bandwidth-Variable Transponders (BV-Ts) and 
Bandwidth-Variable Wavelength Selective Switch (BV-WSS), are regarded as a viable alternative to the not yet 
mature Optical Packet Switching (OPS) technology enabling both sub- and super-wavelength traffic 
accommodation. 

In flexgrid optical networks, the available optical spectrum is divided into a set of frequency slots (FSs) of a 
fixed (finer) spectral width, e.g. 25GHz, 12.5GHz or even 6.25GHz, in comparison to the current ITU-T Dense 
Wavelength Division Multiplexing (DWDM) rigid frequency grid (e.g. 50GHz) [3]. The number of contiguous 
FSs an optical demand occupies depends on the requested bit-rate, the modulation technique and the frequency 
grid [2]. Thus, such narrower grids allow for efficient spectrum utilization and favor grooming data directly at 
the optical layer instead of requiring costly IP/MPLS equipment for such functionality. Since network Capital 
Expenditures (CAPEX) is a figure network operators are always striving to reduce, the introduction of flexgrid 
technology is of paramount importance for future multi-layer networks. However, while reducing the need for 
grooming at the IP/MPLS layer, this more advanced optical technology will also imply higher costs at the optical 
layer given the highly demanding (grid-dependent) filtering characteristics required in each BV-WSS. 

The currently deployed DWDM optical networks operate within a rigid frequency grid and with single-line-
rate transponders making use of single carrier modulation techniques. The evolution path of optical transport 
networks can be translated to the application of advanced single-carrier modulation formats (such as the 
quadrature phase shift keying (QPSK), 16-ary quadrature-amplitude modulation (16-QAM)) in mixed-line-rate 
networks, the introduction of multi carrier modulation techniques (such as optical OFDM (O-OFDM) which 
again can be differentiated in an all-optically generated orthogonal-band-multiplexed O-OFDM with a few, e.g. 
4, orthogonal carriers modulated compared to an IFFT-based synthesis of the O-OFDM signal by a digital signal 
processing (DSP) with several hundreds of subcarriers), and the elastic access to spectral resources within 
flexible frequency grids. Thanks to these advances, future flexgrid optical networks will utilize the spectral 
resources efficiently, according to the transmission path characteristics and bandwidth requirements [1], [2]. 

In flexgrid optical networks, the optical path (lightpath) is determined by its routing path and the allocated 
fraction of frequency spectrum (i.e., the subset of frequency slots allocated) around a central frequency (CF). 
The introduction of the flexgrid technology opens new functionalities to be developed at the optical layer, such 
as the adaptation of lightpaths through appropriate spectrum allocation (SA) in a response to bandwidth 
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variation, in particular, expansion/reduction of the spectrum when the required bit rate of a demand 
increases/decreases [4]. 

The contributions of STRONGEST project [5] in flexgrid networks are multifold: 
1. In the context of dynamic scenarios, where a RSA algorithm is specially designed to cope with the large 

amount of frequency slots foreseen in future flexgrid optical networks is proposed. The optimal frequency 
slot width is analyzed as a function of the traffic profile (TP) to be served by the optical network under 
consideration. 

2. In multilayer IP/MPLS-over-Flexgrid, the CAPEX needed to deploy a multilayer architecture is analyzed for 
a number of candidate slot widths. It is clear that finer grids will allow for more efficient spectrum utilization, 
and as a result, favor grooming data directly at the optical layer instead of requiring costly IP/MPLS 
equipment for such functionality. Thus, given the fact that the network CAPEX, that is, those costs related to 
purchasing and installing fixed infrastructures, is a figure network operators are always striving to reduce, the 
introduction of flexgrid technology is of paramount importance for future multi-layer networks. However, it 
must be noted that while reducing the need for grooming at the IP/MPLS layer, this more advanced optical 
technology will also imply higher costs at the optical layer given the highly demanding (grid-dependent) 
filtering characteristics that BV-WSSs are required to have. Due to the fact that exact costs for such 
components are still not available, we considered a relative cost value so as to effectively determine which 
frequency grid will better address network operator's needs for cost-effective, spectrum-efficient network 
architectures [6]. 

3. In variable traffic scenarios, where the use of OFDM to add elasticity allows flexgrid optical networks to 
accommodate higher amounts of traffic. In this context, three schemes for variable SA are defined and their 
performance compared assuming a multi-hour traffic profile [7]. 

Next Sections detail the above studies and provide the obtained results. All the studies started modeling each 
problem as Mixed Integer Linear Problems (MILP) using the using the formulation proposed in [8]. Next, 
heuristic algorithms were developed to obtain near-optimal solutions and validated against the optimal values 
obtaining solving the MILP models for small instances. 

2. FLEXGRID vs. FIXED-GRID 
The influence of the flexgrid slot width on the performance of the network has been studied and Routing and 
Spectrum Allocation (RSA) algorithms have been developed. Simulation experiments were carried out using 
those algorithms considering the evolution in the expected bandwidth necessities for the years to come, where 
the bit rate demanded by each connection request is 10, 40, 100 or 400Gb/s. 

Results clearly shown that as soon as the frequency slot width is reduced, the amount of traffic served for a 
given blocking probability (Pb) notably increases. This is a consequence of the fact that more efficient spectrum 
utilization is achieved by reducing the slot width for this traffic profile. Table 1 summarizes gains in terms of 
total transported bandwidth at Pb=1% when the width of the used slots is reduced, with respect to using the 
DWDM fixed 50GHz width. 

Table 1 Average gains of using different flexgrid slot width w.r.t. DWDM 
Average bit rate 

(Gb/s) 50GHz 25GHz 12.5GHz 6.25GHz 

22.2 0% 112% 260% 416% 
24.1 2% 99% 247% 354% 
38.4 2% 92% 208% 276% 
52.0 11% 105% 187% 213% 
66.1 16% 105% 180% 182% 
80.0 15% 92% 131% 133% 

 
At shown, increments of 5 times can be obtained using the 6.25GHz grid, when the traffic to be transported 

has low average bit rate. In addition, reducing slot width improves the obtained performance. When, the on 
average bit rate increases the gains are not as high as before, although allow for increments higher than 2 times 
w.r.t the DWDM technology. However, the benefits of using extremely narrow slot widths disappear. The 
reasons for that are: on the one hand, the effect of the more efficient spectrum utilization obtained for low on-
average bit rate traffic is gradually reduced and on the other hand, spectrum fragmentation increases as a 
consequence of requesting connections for a larger amount of frequency slots. In view of the effects of spectrum 
fragmentation, new strategies for spectrum reallocation have been devised. The performance gains obtained 
show an improvement in the range of 20% to 35%. 



Therefore, the slot width used in a given flexgrid optical network should be selected on the basis of the traffic 
to be served by that network. Since that traffic is as a consequence of client layer connection requests, the 
CAPEX costs needed to deploy a multi-layer IP/MPLS-over-Flexgrid architecture need to be also analyzed. 

3. MULTI-LAYER IP/MPLS-OVER-FLEXGRID 
It is clear that finer grids will allow for more efficient spectrum utilization, and as a result, favor grooming data 
directly at the optical layer instead of requiring costly IP/MPLS equipment for such functionality. Thus, given 
the fact that the network CAPEX is a figure network operators are always striving to reduce, the introduction of 
flexgrid technology is of paramount importance for future multi-layer networks. However, it must be noted that 
while reducing the need for grooming at the IP/MPLS layer, this more advanced optical technology will also 
imply higher costs at the optical layer given the highly demanding (grid-dependent) filtering characteristics that 
BV-WSSs are required to have.  

Table 2 reports the average number and bitrate of the installed BV-Ts, and the average reduction in both 
IP/MPLS node switching capacity and actual amount of traffic switched (flow switched) compared with the 
50GHz grid. As expected, these values are strongly dependent on both the frequency grid and on-average bit rate 
traffic evaluated. As long as the on-average bit rate analyzed allows for it, the use of finer frequency grids entails 
a higher number of BV-Ts but with a considerably lower average bit-rate per BV-T, a fact which leads to lower 
switching capacity, and therefore, to cheaper IP/MPLS equipment. 

Table 2 Avg. BV-T number and Bitrate and Node and Flow Switching 

Grid (Ghz) 
#BV-T BV-T bitrate 

24.1Gb/s 52Gb/s 80Gb/s 24.1Gb/s 52Gb/s 80Gb/s 

25 23.1% 21.5% 0.6% -20.8% -21.9% -2.6% 
12.5 54.0% 38.9% 0% -38.2% -33.2% -6.1% 

6.25 78.9% 53.9% 0% -51.1% -40.1% -6.1% 

Grid (Ghz) 
Switching Capacity Flow Switched 

24.1Gb/s 52Gb/s 80Gb/s 24.1Gb/s 52Gb/s 80Gb/s 

25 7.3% 7.3% 7.0% 3.3% 6.3% 8.3% 
12.5 13.0% 13.0% 10.0% 3.7% 11.3% 9.7% 

6.25 18.3% 18.3% 11.3% 3.7% 18.3% 11.0% 

 
From a temporal perspective, an increment of 56.6% in the cost of BV-WSS can be assumed for a 6.25GHz 

grid for low on-average bit-rate traffic, decreasing to 37.7% and 14.4% when medium and high, respectively on-
average bit-rate traffic is considered. Then, as a result of the expected traffic evolution these investments will not 
be profitable. 

Therefore, it can be concluded that investments in flexgrid optical networks using the 12.5GHz, or even the 
25GHz grid, are cheaper in the short-term and more appropriated for medium and long-term scenarios. 

4. ELASTIC SPECTRUM ALLOCATION 
The introduction of the flexgrid technology opens new functionalities to be developed at the optical layer, such 
as the adaptation of lightpaths through appropriate Spectrum Allocation (SA) schemes in a response to 
bandwidth variations, in particular, expansion/reduction of the spectrum when the required bit rate of a demand 
increases/decreases, respectively. 

Three schemes for time-varying SA that put some restrictions on the assigned CF and SA are being 
considered: 
a) in the Fixed SA both the assigned CF and SA do not change in time; 
b) in the Semi-elastic SA the assigned CF is fixed but the spectrum width may vary; 
c) in the Elastic SA both the assigned CF and the allocated spectra are flexibly selected at each time interval. 

Considering 1% as the target un-served bandwidth, increments in the order of 6.5% of offered load can be 
obtained by applying the Semi-Elastic SA scheme with respect to the Fixed SA one. This is as a consequence of 
the elasticity that adding/releasing operations add to the former. Interestingly, the Elastic SA scheme provides 
much higher increments (25%) to the traffic server by the Semi-Elastic SA one, as a result of not only provide 
elastic spectrum allocation, but also dynamically changing the CF of the lightpaths. 



As a final remark regarding the above-defined SA schemes, the complexity of flexgrid operation increases 
when the flexibility degree is increased. Table 3 briefly summarizes each scheme. 

 

Table 3. Summary of the schemes proposed for time-varying SA 
Spectrum 
Allocation Requirements Performance w.r.t 

the Fixed SA 
Fixed No special requirements. -- 

Semi-Elastic 

• Control plane protocols to allow dynamically modify the allocated 
spectrum. 

• Optical transponders and filters to on-demand increase/decrease the used 
spectrum. 

6.44% 

Elastic 

• Control plane protocols to allow dynamically modifying the allocated 
spectrum and the CF. 

• Optical filters to on-demand increase/decrease the used spectrum and 
modify the CF. 

• Optical transponders to on-demand modify the CF and/or 
increase/decrease the used spectrum. 

• Network management system to manage various demand changes in the 
network simultaneously. 

24.78% 

 

5. CONCLUDING REMARKS 
In this paper the contributions in flexgrid networks performed in the framework of the STRONGEST project 
have been presented. 

The optimal frequency slot width was analyzed as a function of the traffic profile to be served by each of the 
optical networks under consideration. Interestingly, the narrowest slot width (6.25GHz) provided the highest 
performance when the traffic profile requested to the network included high amount of low bit rate connection 
requests. However, when the relative weight of low bit rate (10Gb/s) connection requests decreased with respect 
to the weight of high bit rate (>100Gb/s) connection requests, the effectiveness of the narrowest slot width was 
canceled, providing then the same performance than that of 12.5GHz. 

Regarding the design of multilayer IP/MPLS-over-flexgrid networks, the cost implications that the frequency 
grid (slot width) has on this emerging multilayer network planning problem was analyzed through extensive 
numerical experiments. For the sake of a comprehensive study, a set of realistic network topologies, equipment 
costs, and traffic instances was considered. 

The results showed that the benefits that can be achieved through the use of finer slot widths are strongly 
dependent on the actual TP under which the network is operating. Whilst investments in costly BV-WSS (finer 
grid) devices are very well motivated under traffic conditions reporting a high number of light bit-rate demands, 
which represent short-term traffic scenarios, do not seem profitable in the long-term, where a reduced number of 
higher bit-rate demands are expected. Consequently, both the 12.5GHz and the 25GHz slot widths are reported 
as potential candidates for the deployment of future multilayer networks based on flexgrid technology. 

Finally, regarding time variable traffic, we investigated the performance of three spectrum allocation 
schemes. Obtained results show that the application of elastic spectrum allocation leads to a significant 
improvement in the network throughput with respect to fixed spectrum allocation when multi-hour traffic 
scenario are considered. Since bit rate increments provided by the Elastic SA scheme are in the range 16%-29%, 
research in suitable methods, including signaling protocols, to implement that SA scheme should be promoted. 

REFERENCES 
[1] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone and S. Matsuoka, “Spectrum-Efficient and Scalable Elastic Optical Path 

Network: Architecture, Benefits, and Enabling Technologies”, IEEE Communications Magazine, Vol. 47, pp. 66-73. 
[2] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, A. Hirano, “Distance-adaptive spectrum resource allocation in 

spectrum-sliced elastic optical path (SLICE) network,” IEEE Commun. Mag., vol. 48, pp. 138-145, 2010. 
[3] ITU-T G.694.1, “Spectral grids for WDM applications: DWDM frequency grid,” May 2002. 
[4] Y. Li, F. Zhang, and R. Casellas, “Flexible grid label format in wavelength switched optical network,” IETF RFC Draft, July 2011. 
[5]  “Scalable, Tunable and Resilient Optical Networks Guaranteeing Extremely-high Speed Transport (STRONGEST)” project: 

http://www.ict-strongest.eu/. 
[6] O. Pedrola, L. Velasco, A. Castro, J. Fernández-Palacios, D. Careglio, G. Junyent, "CAPEX study for grid dependent multi-layer 

IP/MPLS-over-EON using relative BV-WSS costs", in Proc. Optical Fiber Communication Conference (OFC), 2012. 
[7] L. Velasco, M. Klinkowski, M. Ruiz, V. López, G. Junyent, "Elastic Spectrum Allocation for Variable Traffic in Flexible-Grid Optical 

Networks", in Proc. Optical Fiber Communication Conference (OFC), 2012. 
[8] L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, “Modeling the Routing and Spectrum Allocation Problem for Flexgrid Optical 

Networks,” Springer Photonic Network Communications, DOI: 10.1007/s11107-012-0378-7, 2012. 


	1. INTRODUCTION
	2. Flexgrid vs. FIXED-GRID
	3. multi-layer IP/MPLS-over-Flexgrid
	4. Elastic spectrum allocation
	5. concluding remarks

