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Abstract—Collecting per-flow aggregates in high-speed links
is challenging and usually requires traffic sampling to handle
peak rates and extreme traffic mixes. Static selection of sampling
rates is problematic, since worst-case resource usage is orders
of magnitude higher than the average. To address this issue,
adaptive schemes have been proposed in the last few years that
periodically adjust packet sampling rates to network conditions.
However, such proposals rely on complex algorithms and data
structures of costly maintenance. As a consequence, adaptive
sampling is still not widely implemented in routers.

We present a novel flow sampling based measurement scheme
called Cuckoo Sampling that efficiently collects per-flow aggre-
gates, while smoothly discarding information as it exceeds the
available memory. After a measurement epoch, it provides a
random sample of the input flows, at a close-to-maximum rate
as allowed by the available memory budget.

Our proposal relies on a very simple data structure, requires
few per-packet operations, has a CPU cost that is independent
of the memory budget and traffic profile, and is suitable for
hardware implementation. We back the theoretical analysis of
the algorithm with experiments with synthetic network traffic,
and show that our algorithm requires significantly less resources
than existing adaptive sampling schemes.

I. INTRODUCTION

As networks grow more complex and hard to manage, the
deployment of devices that monitor network conditions has
become a necessity. Network monitoring can aid in tasks such
as fault diagnosis and troubleshooting, evaluation of network
performance, capacity planning, traffic accounting and clas-
sification, and to detect anomalies and investigate security
incidents. However, network traffic analysis is challenging in
high-speed data links. In current backbone links, incoming
packet rates leave very little time (e.g., 32 ns in OC-192
links in the worst case) to process each packet. Additionally,
storing all traffic is inviable; usually, operators only record
traffic aggregates on a per-flow basis, as a means to obtain
significant data volume reduction.

A paradigmatic example and, arguably, the most widespread
flow-level measurement tool is NetFlow [1], which provides
routers with the ability to export per-flow traffic aggregates.
However, in today’s networks, one can expect the number
of active flows to be very large and highly volatile. Under
anomalous conditions, including network attacks such as worm
outbreaks, network scans, or even attacks that target the
measurement infrastructure itself, the number of active flows
can rise by orders of magnitude. Thus, not only must the
router be able to process each packet very quickly, but must
also maintain a potentially enormous amount of state. As a

consequence, provisioning monitors for worst-case scenarios
is prohibitively expensive [2].

The most widely adopted approach both to prevent memory
exhaustion and to reduce packet processing time is to sample
the traffic under analysis. For example, Sampled NetFlow [1]
is a standard mechanism that samples the incoming traffic on a
per-packet basis. Sampled NetFlow requires the configuration
of a fixed (static) sampling rate by the network operator.
The main problem of such an approach is that operators tend
to select “safe” parameters that ensure network devices will
continue to operate under adverse traffic conditions. As a
result, the sampling rates are set with the worst-case scenario
in mind, which harms the completeness of the measurements
under normal conditions.

Several works have addressed the problem of dynamic
packet sampling rate selection, which overcomes the draw-
backs of setting static sampling rates by adapting to network
conditions (e.g., [2]–[4]). Most notably, Adaptive NetFlow
(ANF) [3] maintains a table of active flows; when it fills, it
lowers the sampling rate and updates all table entries as though
packets had been initially sampled at the resulting (lower) rate;
flows for which the packet count becomes zero are discarded.

However, adaptive sampling schemes, including ANF, are
still not widely used. For example, NetFlow still relies on
static sampling. We believe that the main reasons for this
are that existing adaptive sampling schemes are too costly
in terms of CPU requirements, and rely on complex data
structures and algorithms, which makes them less attractive
for implementation in networking hardware (we review the
related work in Sec. II, while Sec. III presents ANF in greater
detail).

In this work, we turn our attention to flow-wise packet
sampling [5] (also known as flow sampling), which allows us
to find an elegant solution to the problem of adaptive sampling.
We present a novel measurement scheme which we have
named Cuckoo Sampling (Sec. IV) that performs aggregate
per-flow network measurements and, when the state required to
track all incoming traffic exceeds a memory budget, maintains
the largest possible random selection of the incoming flows,
i.e., under overload, performs flow sampling at the appropriate
rate. Our algorithm can cope with the extreme data rates of
today’s fast network links. The data structure is extremely
efficient both when the traffic conforms to the available
memory budget, but also under overload, when flow sampling
is necessary. We provide analytic (Sec V) and experimental
(Sec. VI) evidence of the efficiency of our proposal.
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II. RELATED WORK

A classical solution to reduce the load of network monitors
is traffic sampling. Several sampling methods have been pro-
posed in the literature; a review of the most relevant can be
found in [5]. Each sampling method preserves certain charac-
teristics of the input traffic; sampling mechanisms should be
considered to be complementary. An alternative approach to
traffic sampling is sketching (e.g., [6]); a comparison between
sketching and sampling can be found in [7].

Perhaps the simplest and most widely used is uniform
random packet sampling (PS). Flow-wise packet sampling [5],
also known as flow sampling (FS), requires each data flow
to be either completely sampled or discarded, which can be
effortlessly done using hash-based sampling. PS biases collec-
tion towards large flows, and makes it very hard to recover per-
flow properties, such as the flow size distribution [8]. On the
other hand, FS preserves flow aggregates, but is less accurate
for applications such as volume based traffic accounting, or
for heavy hitter detection, due to the heavy-tailed nature of
flow size distributions [9]. Several studies analyze the impact
of sampling on the accuracy of other monitoring applications,
e.g., flow accounting [10] and anomaly detection [11]–[13].

As explained, statically setting sampling rates is prob-
lematic. An alternative solution is to adapt sampling rates
according to traffic conditions. The most relevant related work
to our solution is Adaptive NetFlow [3]. Given its relevance
to our work, we devote Sec. III to introduce this proposal
in detail. Flow Slicing [4] is a recently appeared technique
that combines Sample and Hold [6] and PS in a way that
can simultaneously control memory usage and the volume of
output results. The problem of adaptively choosing sampling
rates in a system running multiple monitoring applications has
been investigated in [2]. The abstract problem of sampling a
pre-defined number of items from a set is called Reservoir
Sampling [14]. The algorithm we present is reminiscent
of Cuckoo Hashing [15] (CH); hence, we have named our
technique Cuckoo Sampling (CS).

III. BACKGROUND

Adaptive NetFlow (ANF) is a proposal to implement adap-
tive packet sampling in routers that export traffic information
via NetFlow records. ANF initially samples all packets, and
starts collecting flow aggregates in a table. The core idea
behind ANF is that, when the memory becomes full, the packet
sampling rate for future packets is lowered and, simultane-
ously, all existing flow entries are modified as though they
had been initially sampled at the resulting rate, a procedure
that is known as renormalization.

The objective of renormalization is to delete flow entries for
which packet counts reach zero, thus freeing space for new
entries. This process is repeated as necessary as new flows
arrive, and runs in parallel with regular packet processing.
Naive renormalization would involve a costly binomial random
number generation. ANF achieves similar results with a single
coin flip per stored flow.

The choice of the new sampling rate is critical since, for
a given sampling rate, the fraction of flows that will be
discarded depends on the distribution of the traffic. For this
reason, ANF also maintains a histogram of flow sizes. Given
a target fraction of flows to discard ! , and the flow size
distribution, the new sampling rate can be computed. This
implies that (e.g., if traffic measurement is about to end) the
algorithm might unnecessarily discard up to ! of its samples.
Of course, this problem could be mitigated by provisioning the
monitor with additional memory. We argue, though, that flow
aggregate collection data structures must not only require a
small number of memory accesses per packet, but should also
be memory efficient to allow line-speed monitoring with fast
(and therefore, more expensive) memory modules.

IV. CUCKOO SAMPLING

Measurement of a single flow. Let us start with the
assumption that we have memory for exactly one flow. We
can easily sample one random flow by using hash-based
sampling, with the intention of storing the flow with lowest
hash. For every incoming packet, a pseudo-random hash of its
flow identifier is calculated and compared against that of the
currently stored flow. If smaller, discard the old flow, and store
the new one. If larger, ignore the packet. If flow identifiers
match, simply update flow information.

Arbitrary memory budget. The algorithm just outlined
could be extended to measure " flows as follows. Maintain as
many instances of the previous scheme as the memory budget
allows. Then, use the hash function ℎ on the flow identifier $%
to randomly pick an instance $ = ℎ($%) mod ". Each instance
then independently runs the algorithm previously described.

This approach is memory effective and CPU efficient, but
wastes a significant amount of memory. In particular, right
when the number of flows matches the memory budget, i.e.,
the monitor is correctly dimensioned, &−1 ≈ 36.8% of the
memory remains unused (see Sec. V).

The complete algorithm. Cuckoo Hashing solves the issue
of memory under-utilization by having each flow hash to
multiple locations. Our data structure is composed of an array
of " buckets and ( + 1 pseudo-random hash functions. Each
bucket contains a flow hash, and the attached flow information,
possibly including its identifier and aggregate statistics, such
as those provided by NetFlow. Per-packet operations are as
follows (the full algorithm can be observed in Figure 1).

When a packet arrives, its flow identifier $% is hashed by (+
1 pseudo-random hash functions. Functions ℎ1..ℎ! have range
[0, "−1], and determine ( positions in the array. Additionally,
function ℎ determines what we call the flow’s hash value,
which is stored in the bucket where the flow resides.

The ( positions in the array are verified. If a matching flow
identifier is found, its entry is updated. Otherwise, the first
empty position, if any, is used. When a new entry is created,
the flow’s hash ℎ($%) is recorded in the flow’s bucket.

When none of the ( positions are empty, the algorithm
checks which of the ( positions holds the largest hash. Let that
position be *. Then, it proceeds to compare the hash stored
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1: function INSERTAGGREGATE(!"#$, %&"'()
2: for i=1, K do
3: )← ℎ!(!"#$); +,!#← -&."([)]
4: if +,!# undefined then ⊳ found empty spot
5: -&."([)]← ⟨ℎ(!"#$), ! "#$, %&"'(⟩; return
6: end if
7: if +,!#.ℎ&2ℎ = ℎ(!"#$) and +,!#.!"#$ = !"#$ then
8: -&."([)].%&"'( += %&"'(; return ⊳ update flow info
9: end if

10: if + = 1 or +,!#.ℎ&2ℎ > 4&5.ℎ&2ℎ then
11: 4&5← +,!#; 4&5)← ) ⊳ track largest hash
12: end if
13: end for
14: if ℎ(!"#$) ≥ 4&5.ℎ&2ℎ then
15: return ⊳ large flow hash, discard
16: end if
17: -&."([4&5)]← ⟨ℎ(!"#$), ! "#$, %&"'(⟩ ⊳ insert new
18: InsertAggregate(4&5.!"#$,4&5.%&"'() ⊳ relocate old
19: end function

Fig. 1. Cuckoo Sampling algorithm.

in bucket "" against ℎ($%). If it is smaller, it means that all of
the ( positions hold smaller hashes. Hence, the current packet
is discarded, and its flow will never have the chance to enter
the data structure, as will be discussed later.

Otherwise, the packet will enter the data structure, and
take position *. However, the flow stored in this position
are not simply discarded. Instead, we attempt to re-locate the
flow recursively. That is, again, we determine its ( possible
positions, and repeat the previous scheme. Note that this might,
in turn, trigger additional relocation of other flow entries (we
will show that the number of necessary relocations is very
small in Sec. V). The main advantage of this scheme is that
it greatly increases worst-case memory usage (see Sec.V).

An alert reader might question the need to recursively
relocate flows. Why not just discard the older flow instead?
The recursive relocation procedure guarantees that, when a
flow is discarded, it will never be considered for re-inclusion
in the data structure. Let position +, occupied by a flow
with identifier $%, have been claimed by a flow with smaller
hash value. The replaced flow hashed to positions , =
{ℎ1($%), .., ℎ!($%)}, with + ∈ , . Then, consider the case that
ℎ($%) is not the largest among the hashes stored in positions
, . When a new packet of flow $% arrived, the algorithm would
determine positions , . Since ℎ($%), as we previously assumed,
is not the highest among , , the algorithm would determine
that the packet should enter the data structure by replacing
the now worst hash of , . Therefore, a new entry for flow $%
would be created. However, this entry would not aggregate all
the packets of $%, which clearly violates the objective of either
sampling or discarding entire flows.

V. ANALYSIS AND PARAMETRIZATION

A. Memory Efficiency

We start by analyzing the memory efficiency of the al-
gorithm with " buckets, ( = 1, i.e., with a single hash
function, and - incoming flows. The probability that a given
bucket is never hit by a flow is (1 − 1/")# ≈ &−#/%.
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Fig. 2. Reservoir usage obtained using cuckoo sampling with different
number of hash functions.

Thus, the expectation of the number of measured flows is
/[0] = "(1− &−#/%). Of course, the data structure can only
measure up to " flows. We can define the memory efficiency
ratio of the data structure as 0/0$-(-, "). This expression is
minimized when - = ", which renders &−1 buckets unused.

Additional hash functions mitigate this worst case. We
provide a lower bound on the expectation of the number of
used buckets from a simplified model of the algorithm, under
which, if all ( hashes of a previously unseen flow key map
to a occupied location, the flow is simply discarded. Suppose
- distinct keys have arrived, and let 1# ≤ - be the number
of these that are stored. Then {1# : - ≥ 1} is a pure birth
process indexed by “time” -, with 11 = 1, and transitions:

1# (→ 1#+1 =

{
1 +1#, with probability 1− +(1#)
1#, with probability +(1#)

where +(2) = (2/")! is the probability that all ( hash
functions maps to an occupied location. The “lifetime” in each
level 2 of 1 , i.e., the number of additional unseen keys before
1 increments, is then geometrically distributed 1/(1− +(2)).
Thus the average total “time” taken to get to a level 3 (i.e.
the average number of distinct keys that result in 3 slots
being occupied) is 4 (3) =

∑&−1
'=0 1/(1 − +(2)). The benefit

introduced by each additional hash function diminishes, as
can be observed in Figure 2, which presents the percentage
of occupied buckets (including relocations) as a function of
the number incoming of flows. (We normalize the number of
flows by dividing over the reservoir size.)

B. Cost

Collecting traffic aggregates is computationally inexpensive;
the bulk of the cost comes from managing the data structures
and performing the necessary memory accesses. Hence, we
measure the CPU cost of our algorithm in terms of memory
accesses, which we analyze in this subsection.

When it runs out of empty buckets, our algorithm starts to
recursively relocate items in the array of buckets. How large
is this cost? Let us consider an array that is fully populated,
i.e., it contains no unused buckets. This is clearly a worst
case, since it presents less opportunities to cut the chain of
successive relocations.
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We consider the algorithm starts at recursivity level 1, and
wish to calculate the expectation of the number of recurses
that the algorithm will perform. Let ,( be the probability of
advancing past level $, once it has been reached. In recursivity
levels $ ≥ 2, the algorithm has already visited 2( = $ ((−1)+1
buckets in the previous levels. In the current level, it is trying
to relocate the largest hash it has encountered so far into one
of the new ( − 1 positions (one position is shared with the
previous level). Another relocation will be triggered if, in the
new level, an even larger hash is found, which happens with
probability ,( = !−1

'!+!−1 for $ ≥ 2. Let us assume an also
pessimistic ,1 = (/(( + 1), which corresponds to the case
where the array is populated with random hash values that
have never been replaced; ,1 can only be smaller in practice.

Then, the probability that the algorithm performs exactly $
recurses is 5( = (1−,()

∏(−1
)=1 ,) , and the expectation for the

number of recurses is
∑∞

(=1 $5(. It can be shown that each of
the $5( terms is smaller than 1/$! and, thus, the sum is smaller
than &. Therefore, we can conclude that the expected number
of relocations per flow arrival is a constant smaller than &.

Every recurse requires, at most, ( memory accesses. Hence,
expected per-packet cost is no worse than & ( accesses, even in
worst-case scenarios where each packet belongs to a new flow
(i.e., a DoS attack such as a SYN flood [16]). Since small
values of ( are already practical, ( can also be considered
constant. Therefore, our algorithm’s processing cost is linear
to the number of packets. Note also that this bound on the
per-packet algorithm’s cost has the remarkable property that
it does not depend on the reservoir size. This feature clearly
differentiates this measurement scheme from alternative ap-
proaches and, especially, Adaptive NetFlow. As for memory
usage, our algorithm is linear to the reservoir size.

We end by noting that, as revealed by the analysis, the
probability of entering successive recursivity levels greatly
diminishes. This means that, in an implementation of the
technique, the number of relocations can be artificially cut,
while incurring an arbitrarily small risk of damaging the mea-
surements. The probability of performing $ or more successive
relocations is below

∑∞
)=( 1/6!, e.g., for 9 relocations, below

≈ 3×10−6. This is desirable for ease of implementation with
a hardware pipeline.

VI. SIMULATION RESULTS

In this section we analyze the methods under synthetic traf-
fic by generating a large number of 1-packet flows, which is a
worst-case scenario for collecting traffic aggregates. Generally,
successive packet arrivals are not overly interesting, since the
sampling decision has already been taken, and have smaller
cost. Additionally, this scenario mimics an extreme DoS
attack, and puts the measurement algorithms under maximal
stress. (We also performed experiments with real traffic that
confirmed the results presented in this section, but were unable
to include them in the interest of space.) We set an example
configuration with reservoir size 10000, and generate 5 times
as many 1-packet flows.
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Fig. 3. Sample size obtained with several configurations.
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Fig. 4. CDF of the number of memory accesses with several values of k,
reservoir of size 104 and 5 times as many flow arrivals.

We have tested several configurations of Cuckoo Sampling
(CS) with ( hash functions (referred to as CS-k), and Adaptive
NetFlow (ANF) with different 7 values (ANF-7), with 1− 7
corresponding to the fraction of flows that ANF evicts in every
renormalization (ANF is thoroughly described in Sec. III).
Our implementation of ANF assumes perfect knowledge of
the flow size distribution, i.e., we do not implement nor count
the necessary memory access to maintain a histogram of flow
sizes. As for the flow table, we use a standard hash table with
as many buckets as the reservoir size.

Figure 3 shows the sample size we obtained. CS-3 achieves
higher than ANF-80% worst-case memory usage (on the 104th
flow), but clearly outperforms it as more flows arrive. The
figure includes CS-1 as a reference. Note that CS-3 performs
as well as ANF-99% after 2 × 104 flow arrivals and, as will
be shown later, has much lower CPU cost. For clarity of
presentation, this figure excludes CS-5, but its behavior can
be predicted from Figure 2.

We next analyze the number of memory accesses that each
configuration requires. Figure 4 presents the CDF of the
number of memory accesses of a few reference configurations.
CS-3 outperforms ANF-80%, while having similar worst-case
memory usage.

However, the CDFs fail to capture an important particularity
of ANF, which is that its cost spikes when the maintenance
procedure starts. Figure 5 shows the average memory accesses
of incoming packets, binned in groups of 1000. The cost
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of ANF decreases in the long term. We argue that this is
irrelevant, since a network monitor will require either the pro-
cessing power to absorb the peak, or a large buffer capable of
absorbing incoming packets while others are being processed.
In contrast, CS does not present spikes, so it will demand less
from the CPU, and will require almost no buffering. Note the
logarithmic axis: ANF-99% peaks at 107; ANF-95% at 28,
while CS-3 is around 5.

Figure 6 analyzes the required necessary buffer to absorb
any cost peaks, according to the processing capabilities of the
monitor, expressed in number of memory accesses that can
be performed per packet arrival. To provide a fair basis for
comparison, we have implemented the normalization process
of ANF as a background process, i.e., packets do not need to
wait until normalization is complete to enter the data structure.
The figure shows that CS is less resource demanding. For
example, CS-5 severely outperforms ANF-99%, since it only
buffers 8 packets using 11 accesses/pkt, whereas ANF-99%
requires 124 accesses/pkt to achieve the same buffer usage
(note the logarithmic axes). As discussed in Sec. V-B, the
number of relocations can be safely capped, which would
reduce buffer usage for CS even further.

VII. CONCLUSIONS

Dynamically adjusting sampling rates is crucial to extract
as much information as possible from the input traffic, without
exceeding the monitor’s resources. The literature provided a
packet-sampling based methods (most notably, Adaptive Net-
Flow) that followed this approach. However, adaptive packet

sampling schemes have not been widely implemented, possi-
bly due to their complexity in terms of both implementation
and hardware requirements.

In this paper, we turned our attention to flow-wise packet
sampling, and presented a novel technique called Cuckoo
Sampling that performs adaptive flow sampling. We propose a
simple randomized data structure that has very small (constant)
per-packet cost and is very easy to parametrize. Compared
to previous approaches, it is based on an extremely simpler
algorithm that can be expressed in a few lines of pseudo-
code and, most importantly, requires fewer hardware resources
than adaptive packet sampling. A very notable feature of this
algorithm is that its per-packet cost is independent of the size
of the flow store.

Additionally, we have shown that it is suitable for imple-
mentation with a hardware pipeline. We have analyzed the
method using both synthetic and real traffic to verify that the
method behaves as predicted by the theoretical analysis. Our
experiments included an extremely challenging traffic profile
formed of 1-packet flows that mimicked a distributed denial of
service attack. As a conclusion of this work, we believe this
method to be very practical and, in particular, to be suitable
for implementation within routers.
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