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The main challenge in developing large data network in the wide area is in dealing with the scalability of
the underlying routing system. Accordingly, in this work we focus on the design of an effective and scal-
able routing and wavelength assignment (RWA) framework supporting advance reservation services in
wavelength-routed WDM networks crossing multiple administrative domains. Our approach is moti-
vated by the observation that traffic in large optical networks spanning several domains is not controlled
by a central authority but rather by a large number of independent entities interacting in a distributed
manner and aiming at maximizing their own welfare. Due to the selfish strategic behavior of the involved
entities, non-cooperative game theory plays an important role in driving our approach. Here the domi-
nant solution concept is the notion of Nash equilibria, which are states of a system in which no partici-
pant can gain by deviating unilaterally its strategy. On this concept, we developed a selfish adaptive RWA
model supporting advance reservation in large-scale optical wavelength-routed networks and developed
a distributed algorithm to compute approximate equilibria in computationally feasible times. We showed
how and under which conditions such approach can give rise to a stable state with satisfactory solutions
and analyzed its performance and convergence features.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The large potential bandwidth available in next generation
wavelength-division multiplexed (WDM) optical networks makes
this technology of crucial importance for satisfying the ever-
increasing capacity requirements in communication networks.
Such networks will be based on dynamically configurable switch-
ing nodes, connected though a mesh of fiber links and operating
transparently at the wavelength layer according to several auto-
matic control plane strategies and protocols. These nodes set up
and tear down, on a customer’s request basis, pure photonic end-
to-end communication channels (lightpaths) that can traverse
multiple physical links on a common wavelength and essentially
create a virtual topology on top of the physical topology. Informa-
tion sent via a lightpath does not require to be converted from the
optical to electrical form when passing through an intermediate
node and converted back to the optical domain for retransmission
to the next station, greatly reducing delay and latency phenomena
and achieving transfer rates in the order of tens of THz. The effi-
cient allocation of lightpaths on the fiber mesh, given a set of
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requests between pairs of nodes wishing to communicate through
a dedicated end-to-end channel, poses several interesting theoret-
ical problems. Given an optical network and a set of end-to-end
communication requests, the routing and wavelength assignment
(RWA) problem concerns routing each request on the optical trans-
port network, and assigning wavelengths to these routes so that
the same wavelength must be assigned along the entire route
(wavelength continuity constraint), by realizing a lightpath [1].
Obviously, lightpaths that share a common physical link cannot
be assigned the same wavelength (clash constraint). The objective
of the RWA problem, that has been shown to be NP-complete [2],
can be usually associated to the optimization of the overall net-
work resources usage together with the minimization of the num-
ber of wavelengths used, or the maximization of the number of
lightpaths successfully set up subject to a limited number of avail-
able wavelengths. However, if the needed wavelength resources
are not immediately available at the request time, the connection
setup will be blocked and the associated request refused. This
may be intolerable for all the network users that require connec-
tion services being set up within a specified time frame and for a
specified duration, according to a request/booking schema. To pro-
vide such services, it is desirable that the network resource control
and management logic support advance reservations, i.e. reserving
wavelength resources in advance respect to when they are actually
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needed. This is obviously another useful network service model,
which cannot only provide guaranteed services to network users
but also allow networks to better plan their wavelength alloca-
tions. In fact, advance reservations of network resources are espe-
cially useful in environments that require reliable synchronized
allocations of various resource types at different locations. Such
co-allocations are necessary in order to assure that all the resources
required are available at a given time. Each request specifies an
end-to-end connection between two involved nodes, with a spe-
cific duration and a scheduling window, i.e. the time period within
which the requestor would accept the connection to be set up. The
flexibility of network-aware advance resources reservation intro-
duces a new temporal dimension into the overall resource
allocation problem. To support advance reservations, an RWA algo-
rithm must take into account not only the network’s spatial and
topological characteristics (links, wavelengths, traffic matrix) but
also their temporal characteristics. This would greatly increase
the computational complexity of an RWA algorithm. Furthermore,
in a real-world large-scale scenario the switching nodes and fiber
links are owned and managed by several independent socio-
economic organizations often operating in a non-cooperative fash-
ion. According to the distributed nature of the Internet, in fact,
these entities typically prefer to take almost unilateral decisions,
such as selecting a path to route a connection request from one
of their customers, in order to optimize their own resource usage
and, of course, maximize their revenue. The lack of a central regu-
lation forcing all the nodes to behave according to a common strat-
egy makes network-wide resource optimization very difficult or
even impossible. It should also be noted that end-to-end lightpath
selection schemes are selfish by nature in that they allow the pro-
viders handling the connection request to greedily select the best
available routes to optimize their own performance without con-
sidering system-wide criteria. Hence, the understanding of the
mechanisms behind the selfish behavior of the involved entities
in such non-cooperative network systems is of primary importance
in resolving large-scale RWA problems where each organization
that has to route a set of end-to-end connection request is driven
by completely different and even conflicting measures of perfor-
mance and optimization criteria. A natural framework in which
to study such multi-objective optimization problems is the classic
game theory. In such a context, our optimization problem can be
modeled as a non-cooperative game of independent entities (play-
ers). These entities do not operate according to a common strategy
and act in a purely selfish manner, aiming to maximize their own
objective functions. The algorithmic game theory predicts that self-
ish behavior in such a system can lead to a Nash equilibrium, that
is a state of the system in which no player can gain by unilaterally
changing its strategy [3]. This approach can be used to optimize
global objective functions taking into account the selfish behavior
of the participating entities. That is, in such situations where it is
difficult or even impossible to impose optimal routing strategies
on network traffic, we exploit some less evident interaction
dynamics between all the player’s choices so that selfish behavior
leads to a socially desirable outcome. Players, according to an ad-
vance reservation scheme, selfishly choose their private strategies,
which in our environment correspond to best paths from their
sources to their destinations, apparently without considering the
other players’ strategies. In doing this, our schema, ensures that,
at the beginning of each reservation, specific additional taxes/mar-
ginal costs – associated to the conflicts with the other strategies
insisting on the same resources – are bounded to the network re-
sources. These costs can implicitly condition the selection process
so that the global game may be kept into an equilibrium state. In
other words, although each connection request is handled selfishly,
it is deterministically assigned on its minimum-latency path (con-
sidering the network ‘‘congestion’’ effect due to the other players’
impact), from which the corresponding entity/player has no incen-
tive to deviate unilaterally. Extensive simulations have been car-
ried out to evaluate the performance and scalability of the
proposed approach in terms of tolerance to large number of simul-
taneous advance reservation requests as well as in slow connection
rejection rate growth in presence of increasing network conges-
tion. Good performance, limited cooperation between nodes and
low computational complexity make the proposed model attrac-
tive for the future optical wavelength switched Internet.
2. Background

This section briefly introduces some of the concepts that will be
useful to better explain the RWA optimization approach, by pre-
senting the existing related literature together with the underlying
architectural scenario, the basic assumptions, building blocks and
modeling details as long as the theory behind them.
2.1. Related work

The RWA problem in large-scale all-optical networks has been
intensely studied. In recent years, many research efforts have tar-
geted the improvement in the efficiency of the management and
control layer, following several directions, among which fuzzy ILP
[4], and resource-criticality based heuristics aiming to delay as
much as possible the utilization of critical resources, reserving
them for future lightpath demands [5,6]. Advance reservation in
optical networks has also been extensively studied. Zheng et al.
[7] present a basic framework for automated provisioning of ad-
vance reservation services based on GMPLS protocol suites. In
[8], a simulated annealing based algorithm is proposed to find a
solution on predetermined k-shortest paths. Lee et al. [9] propose
an efficient Lagrangean relaxation approach to resolve advance
lightpath reservation for multi-wavelength optical networks. Other
works (for example [10]) concentrate on the flexibility in reserving
the connections, considering that clients may prefer a moderate
delay in the start time of their request rather than having a request
blocked. Finally, the exploitation of game theoretic approaches
based on the analysis of uncooperative interactions and Nash equi-
libria in communication networks gave rise to a vast literature
[11,12]. The work in [13] analyzed Nash equilibria, by considering
their Price of Anarchy (PoA) and Price of Stability (PoS), in selfish
routing games on multiple parallel links, where each player desires
to minimize his experienced transmission time and seeks to com-
municate a message by choosing one of the links. In [14] the
authors studied atomic routing games on networks, where each
player chooses a path to route the traffic from an origin to a desti-
nation, with the objective of minimizing the maximum congestion
on any edge of the path. Selfish path coloring in single fiber all-
optical networks has been studied in [15,16], where the authors
investigate the existence and performance of Nash equilibria, con-
sidering several information levels of local knowledge that players
may have and give bounds for the PoA in chains, rings and trees.
Selfish routing games have also been explicitly studied in ring net-
works [17] by adopting the asymmetric atomic routing model with
a load-dependent linear latency on each link. The work in [18] ana-
lyzed the existence and complexity properties of pure Nash equi-
libria and best-response strategies in congestion games with
time-dependent costs, in which travel times are fixed but QoS var-
ies with load over time. The complexity of recognizing and com-
puting Nash equilibria under various payment functions has been
also studied in [19] where Fanelli et al. analyzed the payment func-
tions in two different settings, both characterized by the objective
of minimizing the total number of wavelengths used and minimiz-
ing of the number of converters needed. The PoA of selfish routing
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and path coloring, under payment functions that charge a player
only according to his own strategy is discussed in [20,21]. Selfish
path multi-coloring games where routing decision are taken in ad-
vance and players choose only colors are introduced in [22], pro-
viding bounds for the pure price of anarchy and also constant
bounds for the PoA in specific topologies.

2.2. Network congestion games

Rosenthal [23] introduced a class of games, called congestion
games, in which each player chooses a particular subset of re-
sources out of a family of allowable subsets for him (its strategy
set), constructed from a basic set of primary resources for all the
players. The cost or delay associated with each primary resource
e is a non-decreasing function ce(x) of the number of players x
who choose it, and the total cost received by each player is the
sum of the costs associated with the primary resources he chooses.
In a multi-commodity network congestion game, each player is asso-
ciated to a traffic flow to be routed throughout a network and its
strategy set is represented as a set of origin–destination paths in
such a network, whose edges play the role of resources. The flow
may be unsplittable, in which case each player must choose a single
path for its entire flow, or splittable, if the opposite is true. Further-
more, in the atomic case, there are a finite number of players, each
with a specific amount of flow to route whereas, in the non-atomic
case, there are an infinite number of players, and each one controls
only a negligible fraction of the total flow. In addition, a weighted
congestion game allows users to have different demands for service
and, thus, affects the resource delay functions in a different way,
depending on their own weights. In modeling the RWA optimiza-
tion problem we refer to the atomic unsplittable model, where
players have to route their connection demands along a single path
(as general case, a demand may be split into n flows, but in the
optical domain these streams will appear as n unsplittable optical
flows). In such a multi-commodity network congestion gamethe
strategy set of each player is represented as a set of origin–destina-
tion paths in a network, where the adjacencies between nodes and
the associated weights/costs play the role of resources. A game
with n P 2 players is defined by a finite set of strategies Si with
i 2 [1,n] where Si denote all the possible strategies of the player i,
and n cost functions fi :S1 � � � � � Sn ? R, one for each player, map-
ping the set of all the possible strategies for each player to the real
number set (some of the works present in the literature focus on
payoff functions instead of cost functions; clearly, the difference
is only a change in sign). The elements of S1 � � � � � Sn are called
states. The possible strategies for each player are implicated by
both the topology of the network and the cost associated to each
link. A pure strategy profile, or simply strategy profile, is a vector
S
!
¼ ðs1; . . . ; snÞ of deterministically chosen strategies, one for each

player. Starting from the strategy profiles for all players and given a
set of the strategies unilaterally chosen from each player, we say
that the game is in an equilibrium if no player can decrease its
own cost by changing its choices. This equilibrium concept was
first introduced by John Nash [24] and it is known as Nash equilib-
rium. Such equilibrium defines a fundamental point of stability
within the system, because no player can unilaterally perform
any action to improve its situation. It is very interesting to explore
the existence of pure Nash equilibria (PNE) in such games: a strat-
egy profile is a pure Nash equilibrium if for each player i it holds
that:

fiðs1; . . . ; si; . . . ; snÞ 6 fiðs1; . . . ; s0i; . . . ; snÞ ð1Þ

for any strategy s0i 2 Si.
Although Nash showed that each non-cooperative game can

converge to a Nash equilibrium, the existence of a PNE is an open
question for many games. Moreover, due to the selfish behavior of
the players, such a pure equilibrium does not necessarily optimize
a global goal. Such a goal is also known as the social cost of a strat-
egy profile S

!
, defined as:

scð S
!Þ ¼max

i2½1;n�
fið S
!Þ: ð2Þ

Depending on the involved cost function, the players’ selfish behav-
iors might not optimize the social cost. It is also well known that a
Nash equilibrium does not necessarily need to minimize the social
cost. At the other end, the network management objective is mini-
mizing the social cost measured by the total cost incurred by all
players. The global performance of Nash equilibria is measured by
the so-called Price of Anarchy (PoA) or coordination ratio which is de-
fined as the ratio of the social cost of the worst Nash equilibrium
over the optimal solution [25], and reflects the loss in the global
performance due to lack of coordination between players:

PoA ¼
max

S
!

is a NE
scð S
!Þ

opt
ð3Þ

where

opt ¼min
S
!
2ðS1�����SnÞ

fið S
!Þ ð4Þ

denotes the optimum social cost for a game.
Clearly, a game with a low Price of Anarchy can be reasonably

left almost unconditioned, since the involved selfish players — by
virtue of being selfish — are guaranteed to achieve an acceptable
performance. On the other hand, in presence of a large Price of
Anarchy, it is necessary to introduce some social control and coor-
dination mechanisms (such as taxes, costs or incentives, etc.) that
implicitly force players to collaborate more efficiently. Some con-
gestion games admit a potential function defined over the set of
pure strategy profiles, with the property that the gain of a player
unilaterally shifting to a new strategy is equal to the corresponding
increment in the potential. It has been shown [26] that the exis-
tence of such a potential function implies that at least one Nash
equilibrium exists. Formally, a real function Uð S

!Þ : S1 � � � � �
Sn ! R is a b-potential function if it has the property that:

fiðs1; . . . ; si; . . . ; snÞ � fiðs1; . . . ; s0i; . . . ; snÞ
¼ bi � ðUðs1; . . . ; si; . . . ; snÞ �Uðs1; . . . ; s0i; . . . ; snÞÞ; ð5Þ

where the bi are the real-valued components of a vector b. The effect
on the cost function fi of a strategy change by player i will then be
the projection, weighted through the vector b, of the variation in po-
tential associated to the change, so that local minima of the poten-
tial function will correspond to Nash equilibria. Such equilibria
exist, and can be computed in pseudo-polynomial time, in games
with linear cost functions ce(x) associated to the individual resource
e [3], where each c(x) function can be defined as:

ceðxÞ ¼ aexþ be; ð6Þ

where ae, be P 0 are constant values conditioning the cost function
trend.

2.3. Marginal costs in congestion games

As already sketched in the previous section, to mitigate the per-
formance degradation due to the players’ non-cooperative and self-
ish behavior, we can introduce some incentives that influence the
players’ selfish choices and hopefully induce an optimal network
configuration. These incentives can be naturally modeled by non-
negative per-unit-of-traffic taxes (or prices) assigned to the re-
sources. Such taxes become an additional cost factor, which the
players should take into account. Simply stated, a player’s cost
for adopting a strategy should be calculated by adding such
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marginal cost associated to choosing a specific resource to the la-
tency due to the resource’s congestion. Although these additional
costs increase the players’ individual cost, they do not affect the so-
cial cost because they are payments inside the system and can be
feasibly ‘‘refunded’’ to the players. The goal is to find a set of mod-
erate and efficiently computable optimal marginal costs, which
make the Nash equilibria of the modified game coincide with the
optimal solution. Designing optimal taxes is a central topic in game
theory. In general, any traffic equilibrium reached by the selfish
players who are conscious of both the resource usage latencies
and the taxes will minimize the social cost, that is, will minimize
the total latency [27]. According to [28], we can formally define
the marginal cost associated to a resource e by:

c�eðxÞ ¼ ceðxÞ þ x � c0eðxÞ; ð7Þ

where c0eðxÞ denotes the derivative d
dx ceðxÞ.

Observe that the function c�eðxÞ describing the marginal cost of
increasing traffic on the resource e is composed by a first term
capturing the per-unit latency incurred by the additional traffic
introduced by the other players’ choosing e and a second one
accounting for the increased congestion experienced by the traffic
already using the resource. Essentially, the only difference between
an optimal route assignment and an assignment in the context of a
Nash equilibrium is that the former accounts for this ‘‘conscious’’
second term while the latter disregards it.

3. The reference model

We will model our approach to the RWA problem with a game
theoretic formulation by working in an atomic unsplittable
weighted multi-commodity scenario where the communication
resources are booked and allocated according to a time-slotted ad-
vance reservation paradigm. This means coping with a ‘‘scheduled’’
traffic model where the setup and teardown times of the demands
are known in advance.

It is common in this setting to view the wavelength routed net-
work as a connected graph with its nodes being the optical switch-
ing nodes and its edges being the available wavelengths (i.e.
different channels) on the optical fibers that provide the actual
communication. Since each fiber link can support several WDM
channels, there is typically more than one edge connecting the
same pair of nodes. The resulting structure is a multi-graph and
its construction process is sketched in Fig. 1 below.

To keep the formulation as general as possible, we make no spe-
cific assumption on the number of wavelengths per fiber and the
number of fiber on each link. All these parameters are fully and
independently configurable at the network topology definition
time. Nevertheless, we require that all the network nodes operate
under a unique control-plane providing a common link-state rout-
ing protocol and a signaling facility to handle resource reservations
Fig. 1. Generating the working multi-graph.
(such as those provided in a multi-domain GMPLS-like framework
[29]). Furthermore, we assume that every connection is bidirec-
tional and consists in a single atomic traffic flow that cannot be
split between multiple paths (as we have seen, such assumption
does not cause any loss of generality). Each connection request,
viewed as an independent player in our game-theoretic approach,
can be satisfied by establishing a single lightpath between its
source and destination nodes. Notice that, to enforce the continuity
constraint, this path can only be built on edges associated to the
same wavelength. We are given a network (graph) G = (V,E) and
a set of end-to-end connection requests R = (r1,r2, . . . ,rjRj) arriving
as an ordered sequence according to a Poisson process with expo-
nentially distributed call-holding time. In our advance reservation
model, the time is slotted with a slot size equal to t0, where this
length depends on the minimum duration of an advance reserva-
tion (Fig. 2). Each advance reservation request ri can only start at
the beginning of a timeslot and is described by a 5-tuple, (u,v,d,s,e)
where u and v are the nodes in G that are the connection’s ingress
and egress points, d is the reservation duration expressed in time
slots, and s and e are the starting and ending time of the scheduling
window. The scheduling window defines the acceptable set-up
time range of the connection request, so that if the needed connec-
tion cannot be established within such time period, the request
will be withdrawn. The window size may be fixed if the start and
end times of the connection cannot be altered or flexible when
those time limits can slide within a larger window. Several integer
linear program formulations and algorithms have been proposed to
solve these problems [30,31]. In our work we will consider dy-
namic end-to-end connection requests that belong to a fixed
scheduling window.

Despite losing granularity, the above time slotted model allows
the reduction in required processing capacity and increases scala-
bility. When applying it to wavelength routed optical networks we
obtain a multi-dimensional resource management scenario with
hops, wavelengths and time slots. An online instance of the RWA
problem is denoted by (G,R) and is defined as the task of finding
an assignment of valid single-wavelength paths, at the granularity
of a timeslot and for an integer number of timeslots, to a subset of
requests A # R with different wavelengths for overlapping paths,
such that jAj is maximal. This is an online scheduling problem be-
cause the requests arrive dynamically and, at each time slot, for
each request ri 2 R, we check if it is inside its validity time range
and, if so, compute a path and check whether a common wave-
length on each link of this path can be reserved for its duration
d. If such a suitable path is not available, the involved connection
request will be deferred to the next time-slot, and this process will
be iterated until either the request is satisfied or its time window
expires. In order to implement this advance reservation mecha-
nism, the RWA logic needs to maintain a schedule of the valid res-
ervations called the reservation table. Also, the network nodes
must work in a synchronized way according to a common refer-
ence clock. A strategy si for player i is a pair (pi,di) where pi is a sim-
ple path connecting the endpoints of ri and di is its requested
duration, implicitly associated to all the edges in pi. Each player’s
strategy set consists of k different source–destination paths
(s1, . . . ,sk), corresponding to the first k available minimum cost
path choices. For example, these strategies may include the
Fig. 2. Connection set-up time range: scheduling window.
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first-shortest-path route, the second-shortest-path route, the
third-shortest-path route, etc. Hence, the best strategy/path for a
connection request can only be chosen from this set. Any feasible
path from the source node to the destination node can be a candi-
date as the actual strategy for satisfying a connection request. The
choice of a strategy instead of another one depends on the overall
satisfaction of all the players/request and hence on the reachability
of an acceptable pure Nash equilibrium status. A routing strategy
preferentially choosing the paths with minimal number of hops
tends to minimize resources utilization in terms of nodes involved
in routing data traffic for the same source–destination pair. On the
other hand, paths with low number of hops are expected to be
more robust to failures and easy to control/monitor.

We define social cost of our problem as the total number of
edges needed for routing a given set of requests. Minimizing this
quantity is particularly important in cases where fibers are hired
or sold as a whole. It is straightforward to verify that the social cost
of a strategy profile coincides with the maximum player loss of
utility in that profile. To quantify the loss in network performance
caused by selfish behavior, we investigate the following question:
what is the worst-case ratio between the social cost of an uncoor-
dinated outcome and the social cost of the best-coordinated out-
come? Hence, the price of anarchy of such a game is given by the
worst-case number of edges used in a Nash equilibrium (social
cost) divided by the optimum achievable social cost, that is, the
minimum number of edges that can be used.
4. The two-stage algorithm

In this section we detail our RWA schema, based on a two-stage
approach natively conceived to work on large and complex optical
transport networks where little or no coordination can be assumed
among the participating entities (a common case in presence of
multiple independent administrative domains/autonomous sys-
tems), properly conceived to cope with the known drawbacks of
the state of the art routing algorithms (lack of global optimization
objectives). Our main goal is to minimize the total blocking proba-
bility by optimizing wavelength usage together with the cost and
length of designed paths, while keeping the network resource
usage fairly balanced, trying to leave on each link sufficient band-
width to satisfy further requests as much as possible.

While ideally operating in a non-cooperative fashion, all the
entities involved in the proposed RWA framework need to be syn-
chronized in some way to share (and manage) a common view of
the network topology as long as link resources usage and status.
This implies that every node has to run a distributed control-plane
providing the necessary link state routing and signaling protocols
[29]. An OSPF or ISIS-like protocol can be used to distribute wave-
length/label usage and cost information for each link at the optical
layer and bandwidth occupation at the IP one. In the case of OSPF,
for example, the opaque LSA facility, augmented with new TLVs
can support the additional control information to be exchanged
among nodes, such as candidate strategies/paths together with
marginal costs/allocation-dependent taxes. An extended signal-
ing/reservation protocol, such as RSVP-TE or CR-LDP within the
GMPLS framework, can be used to handle all the resource reserva-
tion and allocation operations required during the network activ-
ity. Also, a common time synchronization is necessary between
the network nodes accepting and routing the incoming end-to-
end connection requests. Accordingly, a simplified slotted model
has been chosen where in each time slot we can distinguish two
distinct stages: the reservation and the allocation phase. The reser-
vation phase will start at the beginning of the time slot, with the
network state being the result of the allocation phase that hap-
pened at the end of the previous time slot. During the reservation
phase, each pending connection request within its scheduling win-
dow will act as a player. Each player will selfishly choose its own
strategy, based on its knowledge of the network state, by looking
for the lowest-cost feasible path with a common wavelength. If
such a path cannot be found, the connection request will be de-
ferred to the next time slot, if that is still within its scheduling win-
dow, otherwise the connection request cannot be honored in the
required time range and hence will be discarded. As a consequence
of routing connections according to the chosen strategies, players
will experience an additional latency (in the game-theoretic sense)
caused by the occupation of the available wavelengths on each
physical connection between adjacent nodes. This phenomenon
can be handled by introducing a marginal cost model properly
weighting the proposed strategies by keeping into account the im-
pact of all the proposals and, hence, considering all the available
strategy profiles. The principle of marginal cost pricing asserts that
on each edge, every player whose strategy is described by a route
crossing it, should pay a tax proportional to the additional latency
its presence causes for the other players on such edge.

An assignment of edges to paths motivated only by selfish con-
siderations (its associated Nash equilibria) does not minimize the
total latency; put differently, the result of local optimization by
many selfish network users with conflicting interests does not pos-
sess any type of global optimality; that is, this lack of regulation
carries the cost of decreased network performance. Hence the out-
come of selfish behavior can only be improved upon with some
form of coordination. The inefficiency of selfish routing (and, more
generally, of Nash equilibria) motivates strategies for coping with
selfishness, that is, introducing methods for ensuring that non-
cooperative behavior results in a socially desirable outcome.
Accordingly, we have to consider that whenever each player tries
to minimize its private cost, expressed in terms of its individual la-
tency, we need a common decision point where each strategy
(path) has to be communicated to all other nodes, letting them
to build the strategy profile vectors (s1,s2, . . . ,sjRj) required to con-
struct their final strategies within the congestion game. This infor-
mation must be made available to all the participating nodes
through the aforementioned link state advertisement/update
mechanism available at the control plane layer. For each proposed
path, the edge costs need to be updated, by computing their asso-
ciated marginal cost, to account for the candidate reservations that
have been proposed within the strategy profiles made available to
all the nodes. In simple words, the performance degradation due to
the selfish and non-cooperative behavior of the independent play-
ers can be mitigated (or even eliminated in the best conditions) by
introducing an appropriate set of marginal costs proportionally
taxing each connection resource according to the global demand
(end hence the degree of conflict on each resource) of all the inde-
pendent strategies. These marginal costs implicitly charge each
network connection/player for the congestion effects caused by
its presence. A player, whose ingress node receives a status update,
re-computes the next element in its strategy set and uses the strat-
egy/path information obtained by the other players to build an up-
dated strategy profile. The player checks if the costs along the path
constituting its original strategy have been updated. If they have
not, the player does not change its previous strategy. Otherwise,
the player re-adapts the cost to account for the choice it had pre-
viously made, by decreasing the costs along its preferred path as
if its own reservation had not been made. Note that this step pre-
vents instability: a player would otherwise keep bouncing between
its two best choices, if the difference between their total costs were
less than the ‘‘tax’’ induced by the reservation. Then, the player
computes again a lowest-cost path according to the updated costs,
which can be seen as the next choice in its strategy set. If it finds a
more satisfactory solution, it makes a strategy change. It computes
the necessary adjustments to the costs along the new path and



F. Palmieri et al. / Computer Communications 35 (2012) 366–379 371
communicates them, along with the updated costs on the old path,
to all the participating nodes. The reservation phase terminates at
the completion of each time slot; at this point, all the players have
the complete knowledge of the network status and of all the pro-
posed strategies. At the end of the reservation phase, each node ob-
tains a strategy profile representing the best desiderata of each
player. The use of a common control plane and a link state routing
facility implies that all the nodes share a unique synchronized net-
work view and result in the calculation of the same strategy profile.
Such profile may be compatible or not with the network resource
limitations. In the first case, the strategy profile is a feasible solu-
tion of the allocation problems, in the second case it is partially
unfeasible and a different solution must be obtained by shifting
to the next time-slot the requests that could not be honored be-
cause of resource availability conflicts. In detail, players actually
trigger resource allocation by issuing a provisional reservation for
each resource on the path. If, at the end of this phase, any of the
resources in the path is unavailable because it has been requested
by other players, the current player will be deferred to the next
time slot. The common signaling facility also ensures that all the
nodes actually involved in the reservation and allocation of the
links/wavelengths resources required in setting up an end-to-end
connection (and hence directly involved with a player in our con-
gestion game) have the same view of the resources seizure status
independently from their role in the setup process (i.e. if they are
originator, destination or transit nodes). The reason for having
two phases is that if connection establishment had been allowed
as soon as a successful reservation were made, the connection
might have needed rerouting many times, since the process of
computing a Nash equilibrium involves possibly many strategy
changes. While rerouting a connection can be done in a few milli-
seconds, rerouting of ‘‘live’’ connection carrying user traffic is
undesirable, since it is unavoidable, during rerouting, to cause a
service disruption that, although momentary, is perceived by the
final users.

Note that the order in which players operate in both the reser-
vation and allocation phases plays a crucial role in the outcome of
the overall scheme. Players acting later in the reservation phase
have a greater probability to achieve their best (original) strategy,
because players preceding them could have been forced to aban-
don their first choice in case of conflicts, and this will decrease
the marginal cost of critical resources. Conversely, players acting
first in the allocation phase will have an advantage in securing crit-
ical resources. Different network management schemas may
choose different ordering criteria, depending on their priority
objectives. The ordering may:

� be based on an a priori weighting of the connection request
(maybe for financial reasons or the strategic importance of
clients);
� reflect different priorities calculated from the residual request

lifetime within the scheduling window, privileging those con-
nection whose setup time range is about to expire, so that the
blocking probability will be reduced;
� be conditioned by the connection duration, possibly favoring

long-lasting (thus, more remunerative) connections;
� depend on an absolute measure of the impact on network

resources, such as the length of the path requested, so that
the social cost will tend to be reduced.

4.1. The resource cost and marginal function

To define a reasonable cost function we first have to evidence
the required properties and dynamics characterizing such a func-
tion. It is intuitive that a good cost function should rank each edge
proportionally to both the residual and the maximum number of
wavelength available on the same pair of nodes. However, the
two factors do not need to contribute equally. We have considered
the use, for each edge, of the relative load, i.e. the ratio of the num-
ber of used wavelength over the total number of available parallel
wavelengths. In addition, some provision must be made to appro-
priately penalize long paths over shorter ones, and to avoid that
the cost of an empty link would be zero. Hence, we introduced
an additive fixed nonzero cost to each edge. The resulting cost
function is therefore the linear function:

ceðxÞ ¼ a
x

we
þ b; ð8Þ

where x is the number of used wavelengths on link e, we is the total
number of wavelength on all edges sharing the same pair of nodes
in the multi-graph with edge e, and a and b are adjustable constants
(a > 0, b P 0), whose value will be tuned by empirical consider-
ations. The ratio between a and b will be determined by the number
of hops that an alternative path must have in order to be considered
roughly equivalent to the seizing of a single-hop congested link. If,
for the sake of simplicity, b is taken to be 1, reasonable values for
the number m of hops representing the length of ‘‘equivalent’’ alter-
native paths yield an estimate of a being near m when the load
reaches about 75–90% of the total saturation.

Without introducing any other additional taxation criterion
across the edges/resources composing a path, the congestion game
players experience only their own traffic delay as their cost. By
introducing edge taxation, players are also charged for the right
to use edges across a path. This technique has been studied by
the traffic community for a long time (e.g. [32] and the references
therein), especially in the context of marginal costs [33].

Each selfish player i when using a path pi will experience a total
cost C(pi) obtained by combining its initial cost c(pi) with the influ-
ence of the marginal costs l(pi):

CðpiÞ ¼ cðpiÞ þ si � lðpiÞ; ð9Þ

where cðpiÞ ¼
P

e2pi
ceðxeÞ, is the sum of the individual edge costs

along the strategy/path pi, being xe the occupation of resource e at
the beginning of the current time slot. On the other hand, the cumu-
lative marginal cost function lðpiÞ ¼

P
e2pi

c�eðxeÞ is the sum of the
marginal cost taxes c�eðxÞ along the edges of the path pi. The factor
si > 0, denotes the sensitivity of player i to the taxes. In the homo-
geneous case, all the players can have the same sensitivity to the
taxation (i.e. si = 1, for all i), while in the heterogeneous case si

can take different positive values for diverse players. Through edge
taxation, we aim to force all equilibria on the network to be reached
by combining strategy profiles that minimize the social cost. In our
approach, we can see the additional marginal cost taxes assigned to
every edge as part of the edge latency function itself. Here, instead
of taxation, we can speak about artificial delays introduced possibly
at the entrance of each edge, in order to minimize the total ‘‘conges-
tion’’ probability due to multiple players that need to traverse the
same adjacency between two nodes, and hence the probability to
be blocked at the ingress of the edges themselves. Accordingly,
we assume that each player’s strategy is further charged according
to the maximum number of paths that share an edge with it and use
the same wavelength. Applying Eq. (7), we can derive the marginal
cost function as:

c�eðxÞ ¼ 2a
x

we
þ b: ð10Þ

Marginal cost taxes increase in general the cost for each player, as
shown in [34]. The natural question that arises is whether taxes
are an efficient mechanism for achieving the desired result. In other
words, if the additional ‘‘disutility’’ caused through taxation propor-
tionate to the desired goal, i.e. a routing assignment that minimizes
the total latency. Our marginal cost taxes have been conceived as an
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implicit coordination mechanism obtained through a cost function
properly chosen from a family of possible ones, according to a
‘‘coordination model’’ in the sense defined as in [35]. In particular,
results presented in [27] suggest that for strictly increasing and dif-
ferentiable linear latency functions, imposing properly chosen taxes
on a selfish routing game not only yields to a game with better coor-
dination ratio, but also that the added disutility for the players is
bounded with respect to the original system optimum. That is, with
a small decrease in network efficiency, we achieve, at equilibrium, a
strategy profile that minimizes the total latency. From Eqs. (8)–(10),
we can see that the total cost for an individual resource e still has a
linear form in the occupation x. Hence, according to the results pre-
sented in [3], at least one pure Nash equilibrium exists and it can be
computed in pseudo-polynomial time.

4.2. Determining a Nash equilibrium

The distributed algorithm starts on the network nodes with an
initial strategy profile S = (s1,s2, . . . ,sjRj) built on the selfishly chosen
Fig. 3. The per-time slo

Fig. 4. An iteration of the N
minimum cost paths for each request/player ri in its valid time
range. More precisely, on each time slot every node n selfishly cal-
culates the strategies si for all the requests/players ri in its locally
originated requests set Rn � R, advertises them on the network
and simultaneously learns, from the received advertisements (pro-
cedure Advertise_and_Receive_Strategies, line 6 in Fig. 3), the strat-
egies proposed by the other nodes so that on each iteration it is
able to construct a complete strategy profile S containing the strat-
egies associated to all the valid players on the entire network.
Then, after a recalculation of the total latencies associated to each
path within S, performed by adding the marginal costs introduced
by the proposed allocations of other players, it iteratively allows
each unsatisfied player to recalculate another path, possibly
reducing the associated cost. The algorithm iteratively strives to
transform a non-equilibrium configuration into a pure Nash equi-
librium, performing a sequence of greedy selfish steps, where each
player switches to the path that minimizes latency, given the cur-
rent strategy profile. Each greedy selfish step consists in a player
on a node re-computing its minimum-cost path with respect to
t RWA procedure.

ashification algorithm.
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the choices selfishly made by the other players and possibly chang-
ing its best pure strategy and diminishing its latency (cost). In
other words, each node dynamically computes, in a stepwise fash-
ion, its local strategy set by indirectly keeping into account (thanks
to the marginal costs mechanism) the selfish choices of the players
on the other nodes. The process terminates when an equilibrium is
reached and no one of the participants is interested in changing its
strategies or when a maximum number of iterations (maxIter) is
reached. However, even without the maxIter performance con-
straint, the linearity of cost functions guarantees [3] the existence
of a potential function (Section 2) that, in turn, ensures [26] that a
pure Nash equilibrium always exists, so the distributed algorithm
will terminate after a finite number of steps into a configuration
in which no user has incentive to deviate. When an equilibrium
strategy profile is available each node can allocate all the paths
associated to its own players (line 8–12 in Fig. 3). Allocation of a
path/strategy si (procedure Allocate, line 9 in Fig. 3) is accomplished
by using the traditional two-directions forward provisional re-
source seizure (i.e. GMPLS RSVP-TE PATH request message) and
backward reservation (i.e. RESV message) paradigm. If for a specific
request/player this last step is not successful, the associated con-
nection request is shifted (to be served) at the next time slot.

The procedure in Fig. 4 details the selfish iteration step de-
scribed above. The procedure is run on each node for all the re-
quests/players originating in that node, and it is triggered by the
reception of an updated strategy profile. This is, in turn, the result
of an invocation of the Advertise( ) procedure which, as previously
asserted, is implemented through the link-state update mechanism
of the control plane layer. After all nodes broadcast their updates
with their new strategy, each node knows the entire strategy pro-
file S⁄. Procedure UpdateMarginalCosts( ) computes the new costs C⁄

associated with a strategy profile S⁄, whereas MinCostPath( ) finds a
minimum-cost path, by using the traditional Dijkstra algorithm,
based on these costs. Finally, in line 7, an advertisement is pro-
duced if there is a strategy change.
5. Performance considerations

Let’s now examine the computational complexity of the above
framework for a network (graph) G = (V,E) with jVj = N nodes and
jEj = M edges. The Selfish_Iteration( ) procedure shown in Fig. 4 is
built up by a number of simple sub-procedures whose complexity
is analyzed in the following. Line 1 removes the path from the cur-
rent strategy profile, while line 2 updates the marginal costs: these
operations have both a cost of O(N). The Dijkstra’s shortest path
algorithm is thus calculated in line 3 requiring O(M + N log N)
[36]. Line 4 requires the computation of the path total costs Cðs�i Þ
and C(si) and all the links in the path are to be taken into account
during this operation in which both delays and marginal costs are
considered. In the worst case, the number of links of a simple path
(i.e. a path without loops) in a network with N nodes is N � 1; since
each of the operation involved in the cost calculation has a con-
stant cost O(1), the computation of the C factors costs at most
O(2 N) = O(N). The strategy is added to the strategy profile at line
5 and the marginal costs of the link associated with the newly pro-
posed path are updated at line 6, both operations requiring O(N). If
the strategy profile has changed (line 7), a link state update mes-
sage is sent to other nodes in order to reflect the change (line 8)
and the new values of S⁄ and C⁄ are stored in S and C respectively
in lines 9 and 10; each of these operations has constant costs
O(1). For each node, the overall cost of the Selfish_Iteration () proce-
dure is thus given by O(N) + O(M + N log N) + O(N) = O(M + N logN).

The RWA( ) procedure shown in Fig. 3 is executed by each net-
work node which, after initializing the global strategy profile S at
line 1 with a cost of O(1), repeats (lines 3–5), for each player i in
the local set Rn, jRnj = k, the Selfish_Iteration( ) procedure to con-
struct the local strategy set; at line 6, the node advertises its local
strategies to the other nodes and receives their strategies to con-
struct the global strategy set. These operations (lines 2–7) are re-
peated until there are no improvements or, in the worst case, the
maximum number of iterations has been reached. Thus lines 2–7
have a complexity of maxIter � k � O(M + N logN). Lines 8–12 repeat
the allocation phase for each of the k players and, possibly, remove
them from the request set R, with a constant cost k � O(1). There-
fore, the total cost of the RWA() procedure is given by O(1) +
maxIter � k � O(M + N logN) + k � O(1) = maxIter � k � O(M + N logN). In
the worst case scenario, before the call setup may be admitted,
each network node repeats the RWA( ) procedure at each t0 slot size,
during a maximum time interval given by (e � s) before the as-
signed time slot expires, as specified by the connection setup re-
quest. In the worst case the RWA( ) will be executed exactly
w = (e � s)/t0 times, thus the total computational complexity is
given by w �maxIter � k � O(M + N logN) for each single node, which,
as the results on the average delay show, is an affordable complex-
ity. Nevertheless, these computations will be also done at different
times; more precisely, each one will be done exactly after t0 time
units, for at most a time window of size w so that the parameter
w must be carefully tuned in order to let each node compute its
Selfish_Iteration( ) before a new attempt may be performed. In the
next section, we study the choice of the parameter w along with
the different results in terms of performance and stability.
6. Experimental evaluation and results analysis

In order to evaluate the functionality of the proposed selfish
routing and wavelength assignment strategy, we conducted an
extensive simulation study on several network topologies (mod-
eled as undirected graphs in which each link has a non-negative
capacity). In the following paragraphs we report the simulation de-
tails together with the most interesting results and observations
emerged during the experiments.

6.1. The simulation environment

The evaluation of the proposed routing framework has been
conducted in an optical network simulation environment [37] that
allows the creation of heterogeneous network topologies along
with the specification of simulation parameters and configuration
options. Simulations have been performed on an HP� DL380 Dual
Processor (Intel� Xeon� 2.5 GHz) server running FreeBSD� 4.11
operating system and Sun� Java� 1.4.2 Runtime Environment. In
all the experiments, we used a dynamic traffic model in which
connection requests, defined by a Poisson process, arrive with a
parametric rate of k requests/s and the call-holding time is expo-
nentially distributed. The connections are distributed on the
available network nodes according to a random-generated or pre-
defined traffic matrix.

6.2. Results analysis

The results presented are taken from many simulation runs on
several network topologies with various parameter and bandwidth
unit request values, as summarized in Table 1.

As can be seen from the Table 1, 20 simulations per topology
were executed and, to obtain more confidence in the results, each
run has been repeated 10 times and the average performance met-
ric values have been calculated. We considered several values for
the parameters and measured the blocked connections and the
convergence times of the illustrated ‘‘Nashification’’ process. The
length of used time window w assumes values from the set



Table 1
Simulations performed and parameters used.

Parameters Geant2/Internet2

Number of connections Varying from 0 to 10,000 (step 100)
Random generated

bandwidths (OC-unit)
{1,3,12,24,48,192} with different distribution
probability

a, b, si Varying canonical values: a = 1, b = 0, si = 1 " i
d, s, e Varying according to Poisson process
w, maxIter Varying in the range {2,3,4,5,6,7,8,9}
Number of simulations 20 simulations run per topology; each

simulation repeated 10 times
Measurements Blocked connections and experienced delays
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specified in Table 1 in order to evaluate the algorithm when play-
ers have different time intervals during which they have to choose
their strategy profiles. In our lambda-switched optical framework,
the resources occupied by the routed connections are counted as
sum of the ratio between the free and the busy bandwidths along
the edges. Resources are thus represented as the sum of the band-
widths on all the network edges, while the traffic volume is repre-
sented by the quantity of the utilized bandwidth in a certain time.
We tried out different static, predefined [38,39], or randomly gen-
erated traffic demand matrices on several network topologies, both
randomly generated and well-known, such as Geant2 [40] and
Internet2 [41] (Figs. 5 and 6) with the bandwidths for the links
ranging from OC-1 to OC-768 bandwidth units. When we used
the traffic matrices defined in [38,39] the traffic volumes have been
scaled proportionally to the reported traffic distributions.

In our tests, each connection request was characterized by a
bandwidth demand ranging from OC-1 to OC-192 (i.e. up to
10 Gbps) units, and the s, e and d reservation parameters for each
connection request (Fig. 2) are generated according to a Poisson
process (exponentially negative distribution). As the network load
grows, that is, the number of busy connection resources increases
more and more respect to the free/released ones, we continuously
monitor the network efficiency expressed by the rejection ratio/
Fig. 5. Ge
blocking factor. During the simulations, the performance of the
algorithm was tested against different values of the parameters
of Table 1: the scheduling window size w, the weight factors a
and b of Eqs. (8) and (10), and the order of the connection requests.
The first simulation is to test the performance of the algorithm
with varying time window sizes. The average blocking probability
as function of the network load measured in Erlangs is shown in
Figs. 7 and 8 (canonical values assumed for a = 1, b = 0). Results
show that the blocking ratios grow quite regularly, but with some
differences according to the time window w that has to be chosen.
A time window w = {4,5} achieves better performances in terms of
blocking ratios with respect to too high (w = {6,7}) or too low
(w = {2,3}) time windows that may drive to sub-optimal results.
In fact, in both simulations the best performances have been
achieved with parameter w = {4,5}, meaning that lower blocking
may be achieved by giving only some chances to the nodes to
change their strategy profile. The results obtained with a low value
of the time windows w show that a sub-optimal network equilib-
rium is reached, but the too little available steps avoid the system
to reach optimal configurations in most cases. Similarly, the results
obtained with a high value of w indicate that a sub-optimal, but
sustainable, network equilibrium is reached within too many steps
from the initial strategy profile and that margin of optimizations
are possible by decreasing the windows size. Thus, tuning the
parameter it is possible to obtain a balance between the perfor-
mances and the computational times (steps) needed to efficiently
find good performances. In any case we can observe that blocking
ratio grows quite slowly when the network load increases and that
the highest, unacceptable values are physiologically reached only
when the available network resources are almost totally saturated.

Average time delays experienced by connection requests during
the simulations are plotted in Figs. 9 and 10. In particular, we ana-
lyzed how fast the average setup delays grow with the number of
simultaneous players requesting in each time slot new end-to-end
connections. In this scenario, the network load grows physiologi-
cally with the number of simultaneous requests but the connection
ant2.



Fig. 6. Internet2.

Fig. 7. Geant2 blocking probability, varying window size. Fig. 8. Internet2 blocking probability, varying window size.
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requests and release rates are kept balanced by progressively
reducing the connection lifetime. As expected, the greater the time
window w is, the higher the delays are. Lower delays have been re-
ported with smaller values of the time window (w = {2,3}) whilst
higher delays have been experienced with greater values of the
time window (w = {6,7}). Results show also that the delays grow
faster as w increases and grow at slower rates with low w values.
This difference is particularly marked with longer links/lightpaths
(higher distances between nodes) as in the case of the Internet2
network (which spreads, in fact, along longer distances). We also
observe that, with all the chosen time window values, the delay
grows almost linearly with the number of simultaneous players.
Also with an high number of simultaneous players/connections,
the observed delays always remain under the 1000 ms threshold,
which is an affordable time delay for a network [22], thus demon-
strating the scalability of the presented approach also in presence
of significantly high connection loads.

Now we focus on the behavior of the algorithm when varying
the values of the parameters a and b; recall from Eqs. (8) and
(10) that the parameter a weights the relative load of links whilst
b is a fixed cost for traversing the link. In Figs. 11 and 12 we show
the network blocking probability when a is either predominant or
negligible with respect to b (medium values of the window size w
are assumed). Results for both networks show the same behavior:
when choosing values for a greater than b, the cost functions of
Eqs. (8) and (10) forces the connections to be spread over the net-
work to avoid paying high costs for traversing loaded links, thus
better balancing the load over the available resources, resulting
in notable lower blocking probabilities. Anyway, from the Figs.
13 and 14, in which the average experienced time delays are



Fig. 9. Geant2 delays, varying window size.

Fig. 10. Internet2 delays, varying window size.

Fig. 11. Geant2 blocking probability, varying parameters a, b.

Fig. 12. Internet2 blocking probability, varying parameters a, b.
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shown, we can observe that the better load balancing leads to in-
creased delays, due to the longer paths that will be generally pre-
ferred to the shortest ones. Lowest delays have been in fact
obtained for values of a lower than b, since they force shorter paths
to be cheaper and, thus, to be chosen more frequently. Anyway,
shortest paths mean also greater blocking probability, due to the
congestion of critical network links. Therefore, a tradeoff exists be-
tween load balancing and delay; if the objective is to maximize the
number of served connections, a high value of the ratio a/b should
be preferred, whereas if the objective is to minimize the average
delay, low values of a/b should be chosen.

The performance of the proposed algorithm is compared with
three other well-known RWA schemas and the average blocking
probabilities are measured and plotted in Figs. 15 and 16. We eval-
uated our approach against the canonical shortest paths (minimum
hop algorithm, MHA [42]), the shortest widest path algorithm
(SWP) [43] and the minimum interference routing algorithm
(MIRA) [44] transposed into the optical domain [45]. The Dijk-
stra-based algorithms (MHA and SWP) tend to congest critical
links, which results in higher blocking probabilities, more visible
in the Internet2 network topology, which is less meshed than
Geant2. The proposed algorithm has achieved better performance
almost at every load, with MIRA being quite close in terms of rejec-
tion ratio. Anyway, even if MIRA performs sometimes better than
our algorithm (in some points present at high, medium and low
loads), unbalanced network utilization of MIRA and its difficulties
on estimating bottlenecks on critical links for cluster nodes make
our approach preferable for its more linear behavior achieved in
both networks.

Finally, we show the sensitiveness of the algorithm to the order
of the connection requests. As we have seen in Section 4, many dif-
ferent ordering criteria are applicable when selecting connection



Fig. 13. Geant2 delays, varying parameters a, b.

Fig. 14. Internet2 delays, varying parameters a, b.

Fig. 15. Geant2 blocking probability comparison with other RWA algorithms.

Fig. 16. Internet2 blocking probability comparison with other RWA algorithms.
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requests to be served, with the best one depending essentially on
the operating scenario and optimization objectives. In order to per-
form a fair comparison whatever the chosen prioritization is, and
to keep the generality of the results, we differentiate between high
priority and best effort connection requests. The general frame-
work in which prioritized and best effort connection requests oper-
ate is the following. Players (connections requests) choose their
strategies by selfishly competing during the reservation phase, so
that the Nash equilibrium is preserved, and then, only during the
allocation phase, high priority connections are allowed to allocate
their resources first. Main results for a medium loaded Geant2 net-
work (w = 4, a >> b) are shown in Fig. 17 as cumulative distribution
function (CDF) of the time in which a given set of connection re-
quests are accepted at or below a given time slot t0 in the time win-
dow. More than 60% of the prioritized connections are accepted
during the first time slot, i.e. their allocation requests have been
satisfied and the corresponding resources have been assigned to
them, with the acceptance rating growing up to about 95% within
the end of the time windows. Connection requests that have not
been satisfied at the current time slot move farther to the next time
slot, up to the end of the scheduling window. Best effort connec-
tions are in general much more delayed toward the end of the time
window, with a greater probability of being blocked. Such an high
acceptance ratio of the prioritized connections indicate that privi-
leging the connections during the allocation phase is able to differ-
entiate high priority traffic from the best effort one, while keeping
intact the properties of the Nashification process.

In conclusions, the results have shown that it is possible to
achieve good performances and affordable delays with low/med-
ium values of the time window w and by tuning the values for
the parameters a and b in function of the desired optimization cri-
teria (load balancing vs delay). The proposed algorithm has often



Fig. 17. CDF of the connection requests in the scheduling window.
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reached lower blocking ratios with respect to the existing RWA
schema with which it has been compared, even in presence of a
discrete growing number of simultaneous players and in real net-
work topologies where the geographical distances may be quite
long. Finally, we showed that the ordering in which the connec-
tions are served in the allocation phase is decisive for privileging
high priority requests with respect to best effort traffic, while pre-
serving the presented Nash equilibrium-driven strategy and thus
its benefits, especially in presence of highly competitive scenarios
with minimum collaboration such as in interconnections of multi-
ple independent autonomous systems networks.

7. Conclusions

In large-scale communication networks, like the Internet, it is
usually unfeasible to globally manage network traffic. Accordingly,
when modeling the traffic behavior in absence of global control, it
is typically assumed that network users follow the most rational
approach, that is, they behave selfishly to optimize their own indi-
vidual welfare. Such a consideration motivates our RWA approach
based on models from the Game Theory, in which each player is
aware of the situation facing all other players and tries to minimize
his own cost. We re-formulated the RWA problem in modern con-
nection-oriented all-optical network architectures by considering
solution strategies from distributed multi-commodity network
congestion games, which are solved by multiple agents operating
in a non-cooperative but coordinated manner. The simulation re-
sults show that our approach may be particularly attractive for
its scalability features and hence useful in large optical networks
where many nodes, belonging to different administrative domains,
operate selfishly by exchanging only a small amount of informa-
tion needed for the coordination among them.
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