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Abstract— At present, data centers consume a considerable 
percentage of the worldwide produced electrical energy, 
equivalent to the electrical production of 26 nuclear power 
plants, and such energy demand is growing at fast pace due to 
the ever increasing data volumes to be processed, stored and 
accessed every day in the modern grid and cloud 
infrastructures. Such energy consumption growth scenario is 
clearly not sustainable and it is necessary to limit the data 
center power budget by controlling the absorbed energy while 
keeping the desired level of service. In this paper, we describe 
EnergyFarm, a data center energy manager that exploits load 
fluctuations to save as much energy as possible while satisfying 
quality of service requirements. EnergyFarm achieves energy 
savings by aggregating traffic during low load periods and 
temporary turning off a subset of computing resources. 
EnergyFarm respects the logical and physical dependencies of 
the interconnected devices in the data center and performs 
automatic shut down even in emergency cases such as 
temperature peaks and power leakages. Results show that high 
resource utilization efficiency is possible in data center 
infrastructures and that huge savings in terms of energy 
(MWh), emissions (tons of CO2) and costs (k€) are achievable. 

Energy-efficiency, power management, sleep mode, green 
data centers, grid computing, cloud computing. 

I. INTRODUCTION

It is estimated that worldwide data centers alone consume 
26 GW of electrical power corresponding to about 1.4% of 
the worldwide electrical energy consumption, with a growth 
rate of 12% per year [1][2]. To give an idea, the Barcelona 
Supercomputing Center (a medium-size data center) pays 
every year more than € 1 million just for the energy bill and 
consumes 1.2 MW [3], as much power as a town of 1,200 
houses [4]. The power consumption in data centers originates 
from the involved computing, storage and interconnection 
equipment, together with the associated HVAC (heating, 
ventilation and air conditioning), UPS (uninterruptible power 
supply) systems and lighting facilities, with the servers being 
the most energy-hungry devices. The power usage 
effectiveness (PUE) index, defined by the Green Grid [5], 
measures the efficiency of an ICT facility as the ratio of the 
total amount of power used by the facility to the power 
delivered to the computing equipment alone. While larger 

data centers tend to be able to implement more efficient 
cooling, high availability needs may require the use of 
expensive UPS and more redundancy, which then result in a 
higher PUE. A PUE value of 2 is the current average [6], 
meaning that HVAC and UPS double the energy 
requirements. In data centers, a wide variety of computing 
resources are usually available, ranging from small servers 
with computational capabilities comparable to personal 
computers, to large supercomputers. Furthermore, there are 
different types of servers optimized for specific tasks such as 
web and database servers. One of the largest problems of this 
equipment is the relative independence of the power 
consumption with their real operating load [6] and the 
consequent need for energy-proportional architectures [7]. 
This, combined with the fact that many servers are being 
operated far below their actual capacity [7][8], leads to a lot 
of wasted energy in data centers, thus enabling great 
potential energy savings. Next to using optimized 
components, a second level of optimization lies in power 
management. In such a scenario, three energy-saving 
approaches are available: “do less work”, “slow down” and 
“turn off idle elements”. In the “do less work” strategy, the 
processes are optimized so that the load to be executed 
becomes minimal, resulting in lower power consumption. 
The “slow down” strategy considers that the faster a process 
runs, the more resource intensive it becomes. In complex 
processes, the speeds of several sub-processes don't match 
and thus resources are used without being absolutely 
required. There are two ways of slowing down processes. 
They can be run with adaptive speeds, by selecting the 
minimal required speed to complete the process in time. 
Alternatively, buffering can be introduced so that instead of 
running a process immediately upon arrival, one can collect 
new tasks until the buffer is full and then execute them in 
bulk. This allows for components to be temporarily switched 
off resulting in lower power consumption. The “turn off idle 
elements” strategy refers to the possibilities offered by 
exploiting a low-consumption state (sleep mode). Basically, 
the sleep mode aims at switching into an idle mode the 
devices during periods of inactivity. Unloaded servers can be 
dynamically put into sleep mode during low-load periods, 
contributing to great power savings. For data centers and 
grid/cloud infrastructures, if properly employed, the sleep 
mode may represent a very useful mean for limiting power 
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consumption of lightly loaded sites. Data centers are in fact 
inherently modular, as they are built up by a number of 
logical-equivalent elements (bulks of servers). A grid site, 
for example, is basically composed by a disk pool manager 
(DPM) that controls data storage (storage elements SE, disk 
servers DS, storage systems SS), and a computing element 
(CE) that sends jobs to working nodes (WN). While the 
DPM and the CE are usually hosted on individual servers 
(for a grid of medium size), the SEs and especially the WNs 
functions may be distributed over a very large number of 
nodes. All these servers are up and running even if the farm 
is scarcely loaded or idle. Aggregating the jobs on a subset of 
SEs and WNs allows putting into sleep mode all the 
remaining nodes greatly reducing the energy consumption 
(assuming replicated data on SEs). In this direction, we 
started from the PowerFarm software [9] developed to 
manage power losses and temperature/humidity peaks in grid 
sites, that can be used to automatically shut down devices in 
case of emergency (such as temperature peaks, smoke or fire 
alerts, etc). It works by processing the SNMP trap alerts and 
taking the corresponding preconfigured actions, but it lacks 
the intelligence to take any energy saving action. Thus, we 
extended the PowerFarm framework to monitor current loads 
and server power consumptions and to turn on/off servers as 
needed while respecting physical and logical dependencies 
among them. Accordingly, we developed EnergyFarm, a 
simple and effective energy control system, which, through a 
service-demand matching algorithm, determines the subset 
of servers that may be powered off while satisfying the data 
center computing and storage demand. 

II. RELATED WORK

In order to reduce the energy consumption of data 
centers, a number of directions have been highlighted in the 
literature. In [1] it is argued that significant power savings 
can be realized through virtual server configurations, 
allowing to switch off most servers during night hours and 
only using the full capacity of servers during peak hours. In 
[10], a number of measures are identified: legacy equipment 
requiring appropriate software may undergo hardware 
upgrades (such as modified power supply modules) and their 
network presence may be transferred to a proxy or agents 
allowing the end device to be put in low consuming mode 
during inactivity periods while being virtually connected to 
the Internet. The authors also plead the need to enable 
renewable energy sources, such as solar, wind or hydro 
power, to supply power to ICT systems. This approach 
seems specifically applicable to data centers, which can be 
located at renewable energy production sites. However, since 
renewable energy sources tend to be unpredictable (e.g., 
wind), or vary during day and night (e.g., sun), this would 
imply that the data itself need to be migrated from one data 
center to the other, according a so-called follow-the-sun or 
chase-the-wind scenario [11]. As a consequence, energy-
efficient high bandwidth networks and routing architectures 
will be required. Along this line of thought, a study 
performed in [12] investigates cost-aware and energy-aware 
load distribution across multiple data centers. The study 
evaluates the potential cost and carbon savings for data 

centers located in different time zones and partly powered by 
green energy and founds that, when optimizing for green 
energy use, green data centers can decrease CO2 emission by 
35% by leveraging the green data centers at only a 3% cost 
increase. Several sources [1][6][13][14] in literature have 
pointed out the sleep mode as a solution for achieving 
energy-efficiency. In [6] the authors focus on component 
level where more efficient technologies should be used. In 
[15] a network power manager is presented, which 
dynamically adjusts the set of active network elements (links 
and switches) to satisfy changing data center traffic loads; it 
is focused on the network infrastructure of the data centers. 
Our work is instead focused on improving the operating 
energy efficiency of the computing resources (servers), 
which are responsible for the greatest part of data centers 
energy consumption. 

III. AN ENERGY-AWARE DATA CENTER CONTROL PLANE

A data center is composed by a number of servers 
running jobs (or tasks) that come from the Internet. Every 
server has a processing capacity, depending essentially on 
the number of cores and/or processors. The data center 
workload is thus represented by the jobs that the data center 
has to process in each moment. Typical data centers are 
strongly over-provisioned to work well under peak 
workloads [7][8]. However, idle servers are normally kept 
turned on even if there are no jobs to process. This clearly 
represents a waste in the power utilization and a cost in the 
energy bill. Our goal is to reduce the set of active servers to a 
subset of servers and turn off the idle ones, according to the 
“turn off idle elements” approach. In this scenario, 
EnergyFarm will be the high-level energy-aware control 
plane logic that complements and extends the low-level 
PowerFarm actuator facilities, which physically manage the 
power distribution in the data center. In order to exploit load 
fluctuations by turning off inactive servers and saving 
energy, we defined a specific operating policy within 
EnergyFarm that establishes what should be done, and 
implemented the corresponding mechanisms in PowerFarm 
which specify how it should be realized. Thus, as the job 
traffic load changes, the policy indicates which servers have 
to be turned off and the PowerFarm facilities implement the 
correct procedures to accomplish the task while respecting 
the physical and logical dependencies among the data center 
devices. In particular, the main EnergyFarm operating policy 
has been implemented through a proactive algorithm – 
running within the farm resource broker – that constantly 
monitors the traffic load and dynamically decides the subset 
of servers that may be turned on/off, while the PowerFarm 
actuator functions have the task to correctly power on/off 
such servers. 

A. Modeling Resource Allocation and Traffic Fluctuations 
In our model, we follow the usual scenario in which each 

job is assigned to one CPU core, so that a server with 
multiple CPUs making available n total cores may run n jobs 
without experiencing any performance slowdown. For multi-
core CPUs, we take advantage of such characteristic by 
aggregating jobs on a subset of servers in order have more 
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idle servers to turn off. For servers with n CPU cores, several 
aggregation strategies are possible: among the active servers, 
first-fit assigns a new job to the first server with one CPU 
core available. Best-fit tries to compact the jobs as much as 
possible; the new job is assigned to a server with just 1 core 
free (and, thus, n – 1 busy) if any such server exists. 
Otherwise, it looks for a server with 2 free cores, then with 3, 
and so on, up to n. Clearly, first-fit is faster but it leaves a 
great number of servers not fully loaded; best-fit gives the 
best results since it compacts the jobs as much as possible 
and frees the maximum number of servers that may be 
turned off. Besides compacting as much as possible, best-fit 
is also profitable since a multi-core server with a high 
number of busy cores is less probable to get free of all his 
jobs (and, thus, of being put into sleep mode) than a server 
with a low number of jobs. Best-fit computational 
complexity may be improved to work in constant amortized 
time by implementing the server priority queue with a 
Fibonacci heap. If servers are single-core devices, no 
aggregation is possible and all the energy savings come 
exclusively from the shutdown of the idle servers. 

Typical data centers traffic demands are not constant 
over time: on the contrary, they are characterized by high 
utilization periods (e.g., during some hours of the day) 
followed by low utilization periods (e.g., during the night). 
In particular, it has been observed that the traffic load 
fluctuations are almost predictable within certain fixed time 
periods (e.g., day-night, months or years) and resemble a 
pseudo-sinusoidal trend [15][16]. In Fig. 1 it is reported the 
theoretical daily traffic variation of a typical energy-unaware 
production site [15]: the traffic load (demand) follows a 
pseudo-sinusoidal trend whilst the power keeps constant 
during high and low load periods. This behavior is due to 
data center resources that are always on and consume energy 
even during low load periods. The idea is to introduce 
elasticity in the demand-capacity provisioning, by 
dynamically varying the capacity with the demand, like 
depicted in Fig. 2. In theory, the capacity should resemble 
the demand as closely as possible, but two main problems 
have to be addressed. First, the capacity is not a continuous 
curve but is instead a step function in which each step 
corresponds to a computing resource (e.g., a server in the 
farm) turned on/off. Thus, the demand curve has to be 
approximated with a step service curve that serves the 
demand while minimizing the energy consumption (Fig. 3). 
Second, the provisioned capacity should have a safety 
margin (i.e., a distance d between the demand and the 
capacity curves) to cope with peak loads. The margin 
represents the number of servers that are preventively turned 
on for serving new jobs to come. The smaller the d, the lower 
the energy consumption, but also the lower the number of 
jobs that will be served without delay. The higher the d
value, the more the jobs that will be served as they arrive, but 
also the higher the energy consumption (since a greater 
number of servers have to be powered on). The safety 
margin d has to be large enough to avoid oscillating between 
states for little variations of the load. During the start up of a 
server, in fact, peaks in the power absorption are 
experienced, due to the server bootstrap procedure and the 

OS loading process. Therefore, d is upper-bounded by the 
energy consumption and lower-bounded by the peak load 
absorption capacity and oscillation minimization 
requirement. At any instant, the absorbed power is directly 
proportional to the number of active servers; so the closer the 
service curve resembles the demand curve, the lower the 
required power will be. With the safety margin d, a bulk of k
≤ d incoming jobs will not have to wait. Thus, the d
parameter sets the size of the zero-waiting queue of jobs that 
are immediately served as they arrive. If k > d, there will be k
– d jobs that will have to wait a time t before they can get 
served, where t is the start-up time of the servers (obviously, 
if the load reaches the site maximum capacity, all new jobs 
will have to wait for new resources to become available). 
The start-up time t may sensibly vary with the available 
technology. For agile servers equipped with enhanced sleep 
mode capabilities, t may be in the order of ms, whilst for 
legacy equipment a complete bootstrap procedure will be 
required and t may grow up to some minutes (see Table I). In 
general, the higher the t value, the higher the d, and thus the 
lower the energy saving margin, while with low values of t,
greater energy savings are possible. In Table I we reported 
the (software and hardware) turn off and wake-up times 
measured in the INFN1 Tier2 Grid Site of the CERN2 LHC3

experiments. Legacy servers, not equipped with the sleep 
mode, need several tens or even hundreds of seconds to 
switch state. Such high times indicate that the enhanced sleep 
mode feature is strongly advised and may bring great 
benefits in terms of energy savings, as the results in Section 
IV confirms. 

TABLE I. COMPLETE TURN ON/OFF TIMES (SECONDS) FOR 
DIFFERENT DEVICES.

Server type Power on 
(hardware) 

Power off 
(software) 

Power off 
(hardware) 

Computing Element (CE) 120 20 5 

Storage Element (SE) 180 10 5 

Home Location Register 
(HLR) 120 60 5 

Pizzabox form factor 
Servers 120 10 5 

Blade Servers 
(Dell® DRAC) 160 45 45 

Storage Server (IBM®

DS400 Storage System) 60 10 10 

B. Energy Savings Potential 
In order to evaluate the maximum potentialities of our 

energy saving approach, we consider instantaneous 
transitions among the sleep and the active states (t = 0) and 
theoretical sinusoidal traffic, like the one depicted in Fig. 3. 
The demand curve represents the traffic load during the day, 
while the service curve represents the servers that must be 

                                                          
1 Italian National Institute for Nuclear Physics, Naples, Italy. 
2 European Organization for Nuclear Research, Geneve, France-
Switzerland.
3 Large Hadron Collider.
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active to process the job requests. Without any energy saving 
management, the power consumption of the data center stays 
constant [15], and the energy is the integral of power over 
time:  

 
2

1

)(
t

t

dttp  (1) 

where p(t) is the power consumption function and  t1 and 
t2 are the considered time extremes. Ideally, the lower bound 
for the data center energy consumption is given by:  
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where the l(t) function describes the load curve. 
EnergyFarm approximates such curve with the service curve 
s(t), which is the step function that establishes the minimum 
set of resources that have to stay powered on to serve the 
current demand. Therefore, with our energy saving schema 
the theoretical energy consumption is given by:  
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Clearly, it holds that (2) < (3) << (1), and the bigger the 
difference between (1) and (3) the greater the energy saving. 
Theoretically, the energy saving is upper-bounded by:  
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while the actual energy saving is given by:  
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where n is the number of intervals in which the time 
interval [t1, t2] is divided and i is the duration of the i-th 
time interval; note that n sets the time-basis on which the 
EnergyFarm is executed. Therefore, eq. (5) represents the 
energy saving of our EnergyFarm approach which will be 
evaluated in detail in Section 6. 

C. The service-demand matching algorithm 
Given a demand curve, the EnergyFarm service-demand 

matching algorithm determines the service curve that 
satisfies the demand while limiting the number of active 
server and, thus, the power consumption. As an example, 
let’s consider the scenario depicted in Fig. 4 and Fig. 5. 

Figure 1. Capacity-demand mismatch leads to resource and energy 
wastes. 

Figure 2. Theoretical provisioning elasticity concept. 

Figure 3. Service-demand matching. 

In Fig. 4 the demand curve increases between ti and ti+1,
consequently the distance from the service curve decreases 
from di to di+1. Since di+1 < d, the algorithm detects the 
increase in the demand (totally absorbed by the guard band 
d, thus no delay is added in this case) and consequently 
increases the number of active servers by turning on si+1 – si
servers. 
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Figure 4. Incrementing the service curve in response to demand increase. 

The opposite situation is depicted in Fig. 5, where a 
decrement di+1 > d in the demand curve causes the algorithm 
to decrease the service curve from si+1 to si.

Figure 5. Decrementing the service curve in response to demand decrease. 

IV. PERFORMANCE ANALYSIS RESULTS

We evaluated the performances of EnergyFarm through 
simulations against several available data referring to two 
different-sized data centers. To model a large data center we 
used the Google farm [7][8] composed by more than 5,000 
blade servers monitored over a six-month period; for the 
small data center we used the Naples LHC Tier2 Grid site of 
the INFN section [9] composed by more than 100 servers in 
the pizzabox form factor.  First, we evaluated the impact of 
the safety margin d against the potential savings, in terms of 
energy (MWh), emissions (tons of CO2) and economical cost 
(k€). For a commercial/industrial facility like a data center, 
the average cost of energy is € 0.12 per kWh [17]. We 
considered fossil-fueled energy plants powering the data 
centers, which emits 890 grams of CO2 per kWh (ACV-DRD 
study [1]). Several simulations have been conducted for 
different values of the safety margin d. Results show that, for 
the small data center, the maximum cost savings is more than 
35 k€ per year, while for the large data center the cost saving 
may reach € 1.5 millions, with a reduction of more than 13 
GWh in the energy consumption and more than 11 kTons of 
CO2 in the emissions (see Table II). Such results should not 

surprise: servers are rarely utilized at their full capacity and 
most of the time operate at between 10% and 50% of their 
maximum utilization levels [7]. As expected, the d value 
affects the energy savings and the consequent CO2 emissions 
and bill costs. Best results have been achieved with low 
values of the safety margin. 

TABLE II. PER YEAR SAVINGS WITH ENERGYFARM (SINGLE-CORE
SERVERS) AND VARIABLE SAFETY MARGINS d.

Safety margin Energy 
(MWh) 

Emissions 
(Tons of CO2) 

Cost 
(k€) 

Small data center 

d = 1% 299.2 266.2 35.9 
d = 10% 259.9 231.3 31.2 
d = 50% 92.2 82.1 11.1 

Large data center

d = 1% 13184.9 11735.0 1582.2 
d = 10% 11455.3 10195.3 1374.6 
d = 50% 4065.3 3618.1 487.8 

Note that, since our goal is to provide a lower bound for the 
energy savings of the modern and future data center, the 
transition time t between the on and off states have been put 
to 0, thus there is no delay in the powering on/off the servers 
(i.e. all agile servers). As a consequence, the frequency of the 
load variations (i.e., how and how often the traffic load 
varies in time) only affects the number of transitions between 
on/off states, but it does not influence the energy savings at 
all, as each variation is immediately followed by the 
corresponding on/off action on the involved servers. In our 
tests, the efficiency in the resource utilization has reached 
similar values for the small and the large data centers, 
varying from 20% to 68%, meaning that a good percentage 
of the servers has been put into sleep mode for considerable 
time (see Table III). 

TABLE III. ENERGYFARM EFFICIENCY IN THE RESOURCE 
UTILIZATION.

Average resource utilization in EnergyFarm (%)
d = 1% d = 10% d = 50% 

68,0282 59,1045 20,975 

The EnergyFarm saving margins decrease almost linearly as 
the d values increases (Fig. 12). In fact, while the load is far 
from the actual data center capacity, savings and d vary 
linearly but, as load approaches higher values, the threshold 
d will exclude a higher number of devices from being turned 
off, leading to relatively lower savings. When considering 
multi-core devices, job aggregation is possible. Two 
aggregation strategies have been studied: first-fit and best-fit. 
In our tests first-fit has always performed worse than best-fit 
(up to 50%), so here we only focus on the best-fit strategy. 
Results, both for the small and large data centers, show a 
common behavior, even if with different rates: the more the 
cores in the data center, the more the energy consumption. 
This is due to the fact that the data centers work far from 
their actual maximum utilization capacity and causes multi-
core server to operate with only few jobs even with the best-
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fit strategy, i.e. multi-core servers present internal 
fragmentation (not all the cores are always busy). 

Figure 6. Energy, CO2 and costs with varying d values (large data center). 

Thus, at low loads, assigning one job to a single-core server 
costs less than executing it on a 8-core server (due to the 
greater energy consumption of the latter), whilst, at higher 
loads, the greater computing density of multi-core servers 
may be exploited by the best-fit strategy to lower the overall 
data center energy consumption. 

TABLE IV. ENERGYFARM PERFORMANCES WITH VARYING NUMBER
OF CORES PER SERVERS (d = 1%). 

Cores per server 1 2 4 8 

Aggregation No Best-fit 
Small Data Center 

Energy (MWh) see  
Table II 

138.36 142.79 152.05 
CO2 (Tons) 123.14 127.08 135.32 

Cost (k€) 16.60 17.13 18.25 
Large Data Center 

Energy (MWh) see  
Table II 

6003.57 6007.36 6015.16 
CO2 (Tons) 5343.18 5346.55 5353.49 

Cost (k€) 720.43 720.88 721.82 

V. CONCLUSIONS

In this work, we presented EnergyFarm, an energy manager 
which can be used on the modern and future grid/cloud data 
center infrastructures to save energy. Current farms are 
usually over-provisioned and fluctuations in the traffic load 
are observed at various time periods. To take advantage of 
such a situation, we developed EnergyFarm which, through 
the service-demand matching algorithm and the job 
aggregation capabilities, allows turning off idle servers, 
while respecting both the demand requirements and the 
logical and physical dependencies. Results showed that great 
efficiency in the resource allocation can be achieved 
(between 20% and 68%), allowing significant energy, cost 
and emissions savings. In the optic of the future ICT 
developments, EnergyFarm may become an indispensable 
instrument towards sustainable society growth and 
prosperity. 
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