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In this paper we deal with the survivable internet protocol (IP)/multi-protocol label switching (MPLS)-over-

wavelength switched optical network (WSON) multi-layer network optimization problem (SIMNO). This

problem entails planning an IP/MPLS network layer over a photonic mesh infrastructure whilst, at the same

time, ensuring the highest availability of services and minimizing the capital expenditures (CAPEX)

investments. Such a problem is currently identified as an open issue among network operators, and hence,

its solution is of great interest. To tackle SIMNO, we first provide an integer linear programming (ILP)

formulation which provides an insight into the complexity of its managing. Then, a greedy randomized

adaptive search procedure (GRASP) with path-relinking (PR) together with a biased random-key genetic

algorithm (BRKGA) are specifically developed to help solve the problem. The performance of both heuristics

is exhaustively tested and compared making use of various network and traffic instances. Numerical

experiments show the benefits of using GRASP instead of BRKGA when dealing with highly complex

network scenarios. Moreover, we verified that the use of GRASP with PR remarkably improves the basic

GRASP algorithm, particularly in real-sized, complex scenarios such as those proposed in this paper.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With the advance in optics and the commercialization of
enhanced devices like wavelength selective switches and tunable
lasers, nowadays it is possible to remotely configure optical cross-

connects (OXCs), and thus, to deploy wavelength switched optical

networks (WSON). Strictly speaking, WSON extends the concept
of automatically switched optical network (ASON) [1] by applying
an intelligent control plane based on generalized multi-protocol

label switching (GMPLS) [2]. In fact, WSONs standardization
activities are currently in progress in the internet engineering task

force (IETF) within the common control and measurement plane

(CCAMP) working group [3]. WSONs enable to dynamically
reconfigure networks, i.e., enable the automatization of the setup
and tear-down of end-to-end optical connections (known as
lightpaths) and the recovery of such lightpaths in case of failure.
Thus, WSONs allow for an efficient network operation which
implies significant savings in the core transport network. Today,
the optical layer (managed by a network operator) is an already
deployed photonic infrastructure that provides, at the same
ll rights reserved.
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time, different client networks with transport services such as
leased lines, packet-switched networks (e.g., Internet), virtual

private networks (VPNs), synchronous digital hierarchy (SDH)
networks, etc. Our goal in this paper is to further improve its
benefits by applying an intelligent interworking strategy between
the packet and WSON layers based on a multi-layer optimization
process. Indeed, a multi-layer network can perform an optimal
load balancing between these two layers optimizing both the
cost of the packet layer and the utilization of the WSON layer.
Without loss of generality, we assume in this work a multi-
layer network which consists of an internet protocol (IP)/
multi-protocol label switching(MPLS) packet layer over a photonic
WSON transport layer, but the study herein presented is applic-
able to other packet technologies such as the emerging
multi-protocol label switching transport profile (MPLS-TP) and
provider backbone bridges traffic engineering (PBB-TE) transport
alternatives.

Hence, in this paper we tackle, for the first time to the best of
our knowledge, the problem of a joint optimization of survivable
non-symmetrical network layers so as to provide network opera-
tors with a competitive multi-layer network planning tool which
aims at minimizing the capital expenditures (CAPEX) (i.e., those
costs related with purchasing and installing fixed infrastructures,
such as equipments).
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
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This multi-layer network is specifically designed to provide
companies with premium layer 1(L1) and L2 VPN services. These
services have stringent availability requirements, and therefore,
ensuring network recovery in front of any kind of network compo-
nent failure becomes crucial to the services’ success. Indeed, in such
high-capacity multi-layer network scenario, any single link or node
failure would lead to tremendous losses for both network operators
and clients. Thus, the concept of survivability, which allows a
network to quickly recover from any kind of outage and restore
the affected traffic, becomes a critical objective in the design and
planning of next-generation high-speed multi-layer networks.
Another advantage of the multi-layer approach is the fact that it
allows the application of specifically designed multi-layer recovery
mechanisms. These procedures are able to trigger coordinated
actions across both layers, thereby substantially reducing the over-
dimensioning of IP/MPLS nodes when compared to the single-layer
approach (i.e., separate optimization of layers) [4].

Therefore, and strictly speaking, in this work we deal with the
so-called survivable IP/MPLS-over-WSON multi-layer network

optimization (SIMNO) problem. To this end, and given the opera-
tor-dependent input parameters, that is, the WSON network
deployed and the traffic demands to be satisfied, we design the
IP/MPLS layer. It consists in the dimensioning of its nodes with
the required opto-electronic (OE) interfaces and in the establish-
ment of the virtual link connectivity at the IP/MPLS level through
the given WSON layer so that every traffic demand can be
successfully accommodated. Note that in the SIMNO problem,
the over-dimensioning of IP/MPLS nodes required to guarantee
recovery in front of any kind of network component outage is
minimized thanks to the application of multi-layer optimization
techniques. Therefore, we provide a solution to a real problem
which is of great interest to network operators. Indeed, following
the SIMNO approach, operators will be able to deploy a survivable
IP/MPLS layer on top of an already deployed WSON infrastructure
while minimizing their CAPEX investments. In this work, CAPEX
involve the costs of both IP/MPLS nodes and OE ports installed on
them, as well as the cost of using both optical ports and kilo-
meters of optical fiber from an existing WSON network.

In order to deal with SIMNO, we present and evaluate a formal
model of the problem by means of an integer linear programming

(ILP) formulation. Since the resultant model is computationally
impractical, we make use of two well-known and powerful meta-
heuristic models to help solve the problem, these are, a greedy

randomized adaptive search procedure (GRASP) together with a
path-relinking (PR) intensification method, and a biased random-

key genetic algorithm (BRKGA). To evaluate both heuristics, we
carry out a set of experiments using both methodologies and
assess their respective performances. Furthermore, we evaluate
the impact of introducing the PR intensification strategy into
GRASP in the so-called GRASP with path-relinking (GRASPþPR)
meta-heuristic. To conduct such experiments, we consider a set of
network traffic models which are consistent with the traffic
profiles foreseen in the years to come and evaluate them in three
different IP/MPLS network configurations of a realistic Spanish
telecommunications network.

The remainder of this paper is organized as follows. In Section
2, we briefly survey previous works on the design and evaluation
of survivable multi-layer networks. Section 3 describes the
SIMNO problem in detail. First, the multi-layer network architec-
ture characteristics and survivability restoration schemes are
presented. Then, a mathematical formulation of the SIMNO
problem is provided. Afterwards, in Section 4, both the
GRASPþPR and BRKGA meta-heuristics considered to solve the
SIMNO problem are described. Illustrative computational experi-
ments are provided in Section 5 and finally concluding remarks
are made in Section 6.
Please cite this article as: Pedrola O, et al. A GRASP with path-relink
network optimization problem. Computers and Operations Research
2. Related work and contributions

Survivable multi-layer networks have traditionally been
designed following the classical overlay approach where two
redundant IP/MPLS networks are deployed over the photonic
infrastructure. However, operators are now facing the challenge
of dimensioning networks able to cope with the expected huge IP
traffic volumes, and at the same time, keeping constant or even
reducing connectivity prices. Hence, operators look for technolo-
gies providing the lowest possible network costs.

In protection and restoration schemes developed for legacy
technologies, only optical links and electronic ports/interfaces
have been considered as points of failure. For this reason,
networks implement protection or restoration mechanisms to
survive to such kind of failures. IP/MPLS nodes are not, never-
theless, as trusty as legacy telecommunication equipments. This is
mainly due to the constant software and hardware upgrades they
undergo [4,5]. To tackle this issue, backbone nodes redundancy-
based schemes have been proposed for operators willing to protect
their networks against IP/MPLS nodes failures [4]. However, this
approach entails a substantial increase in network CAPEX, thereby
clearly demonstrating that the duplicate network scheme is far
away from being the optimal solution, and that the design and
evaluation of novel survivable multi-layer network optimization
methods such as SIMNO has gained great momentum.

In the literature, multiple recovery schemes have been speci-
fically designed and tailored for multi-layer networks. For exam-
ple, a comprehensive survey of them can be found in [5]. Another
interesting study involving the evaluation of a coordinated link
restoration scheme to be used in packet-over-optical networks
can be found in [6]. In that work, authors illustrate a novel
scheme which is cost effective compared to duplicating nodes,
though it has the disadvantage of requiring the IP/MPLS and
optical topologies to be symmetrical (i.e., every node has both
packet and optical switching capabilities). It is worth noticing that
the underlying WSON, which supports a number of heterogenous
client networks and provides a range of services to residential and
business customers, needs to provide different availability
degrees. Hence, if symmetrical topologies are considered, the IP/
MPLS layer should be designed to cope with the requirements of
the most constraining service, thereby highly and unnecessarily
increasing network CAPEX.

Accordingly, the SIMNO approach is aimed at defining orche-
strated interworking recovery actions to avoid the duplication of
IP/MPLS backbone nodes. However, in this case, no symmetrical
topologies are required, and hence, a number of client networks
with different availability degrees can be allocated on top of the
WSON. In addition, we rely on lightpath restoration, a technique
which provides a finer granularity to recover selected lightpaths
in very short times (e.g., on the order of hundreds of ms [7]), and
on a novel connectivity restoration scheme to deal, not only with
IP/MPLS node failures, but also with the rest of failures.

In the literature, we find a few interesting works addressing
the IP/MPLS-over-WSON multi-layer network planning problem.
In [8], the authors present an ILP formulation aimed at maximiz-
ing a utility function for the network operator, that is, the
difference between revenues and costs, considering a scenario
without failures. To this end, authors propose a Lagrangian
relaxation-based method. A similar approach is not, nonetheless,
applicable to the SIMNO problem owing to both its size and
structure. Indeed, SIMNO includes a huge set of single failure
scenarios (i.e., every IP/MPLS node, OE port and optical link in the
network). For this very reason, in this work we develop and
evaluate two different meta-heuristic methods to solve the
SIMNO problem. Strictly speaking, an heuristic based on GRASP
and PR [9,10] and another on BRKGA [11] are proposed to find
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
(2011), doi:10.1016/j.cor.2011.10.026
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cost-effective solutions for the SIMNO problem within practical
running times. As a matter of fact, previous works have already
considered evolutionary genetic algorithms (GA) for the planning
of optical networks. For instance, in [12] a GA-based heuristic for
the single layer survivable optical network planning is presented,
and in [13], a GA is applied to dimension single layer dynamic
optical networks. In this paper, by contrast, we consider the
GRASP methodology to solve the SIMNO problem and compare its
performance to that of the novel BRKGA meta-heuristic.
Moreover, we evaluate the impact of the PR intensification strategy
on the results obtained by GRASP, thereby illustrating one more
time a successful application of this combined meta-heuristic.
3. SIMNO problem formulation

3.1. Multi-layer network architecture

The multi-layer network architecture considered in this work
is depicted in Fig. 1. In this reference scenario, three types of
IP/MPLS nodes can be distinguished at the packet layer (IP/MPLS),
these are, metro nodes performing client flow aggregation, transit

nodes providing routing flexibility, and interconnection nodes
Fig. 1. Metro and multi-laye

Fig. 2. (a) Design of a multi-layer planned network portion; (b) recovery f

Please cite this article as: Pedrola O, et al. A GRASP with path-relink
network optimization problem. Computers and Operations Research
supporting inter-operator connection. Additionally, transport
nodes (OXCs) connected by fiber links create an WSON layer. In
order to minimize the overall number of OE ports in the network,
metro-to-metro connections are avoided being every metro node
connected to one or more transit nodes. Moreover, while it is
typical that a transit node is collocated with a transport node,
metro nodes are usually closer to clients, and thus, some ad hoc
connectivity is used to connect metro to transport nodes. Fig. 1
illustrates an exemplary end-to-end MPLS label switched path

(LSP) established between two metro nodes (orange line). Note
that in this example, the LSP makes use of interconnection nodes
to pass from a network operated by one particular carrier to
another network operated by another different carrier.

Fig. 2 depicts an example illustrating how a multi-layer
network can be designed. To be precise, Fig. 2a, shows a portion
of the multi-layer network where each IP/MPLS metro node is
connected to a transit node through virtual links, and hence, a
virtual topology is created. Each virtual link is supported by a
lightpath in the WSON layer. This lightpath is routed through the
minimum cost path over the WSON layer. In the example, metro
router M1 is connected to transit router T1 by means of only one
lightpath. However, and in order to guarantee the survivability of
the network, extra-capacity has already been added to every node.
r network architecture.

rom a link failure; (c) from a port failure; and (d) from a node failure.

ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
(2011), doi:10.1016/j.cor.2011.10.026
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In multi-layer problems, the components that may fail are
optical links, OE ports and both optical and IP/MPLS nodes. We
consider every component in the network as being mutually
failure-independent, and thus, multiple failure scenarios are not
considered in this work since their probability to happen is
extremely low. Moreover, complete optical node failures are also
highly unlikely and thus are also neglected in this work. This is
not, however, the case with IP/MPLS nodes whose failures, mainly
caused by software crashes, are a great deal more frequent.

On the one hand, in the event of an optical link failure, the
multi-layer network can apply joint recovery schemes to restore
the affected traffic demands. For example, when the optical link
O1–O2 fails (Fig. 2b) recovery actions are triggered to restore the
metro-to-transit (M1–T1) connectivity. Note that if a lightpath is
restored at the optical layer, the connectivity at the IP/MPLS layer
remains unaltered (with the corresponding CAPEX savings impli-
cations). In contrast, if no restoration is possible, a new lightpath
has to be established to connect the IP/MPLS metro node to a
different transit node (e.g., M1–T2), thus restoring the metro-
to-transit connectivity. Note, however, that in this case transit
node T2 must be over-dimensioned with additional OE ports to be
able to cope with the requirements of this newly created light-
path. Once the connectivity is restored, the MPLS LSP can be
eventually rerouted over the reconfigured virtual topology. The
same actions are taken in the event of a port failure (Fig. 2c).

On the other hand, in the event of an IP/MPLS node failure
(Fig. 2d), new lightpaths are established between every metro node
connected to the failed node and a different transit node in order to
properly restore the metro-to-transit connectivity. Therefore, in
this failure scenario, setting up new virtual links is required. In the
example, virtual link M1–T2 is created. After reconfiguring the
virtual topology, the affected MPLS LSPs are rerouted.

3.2. Problem statement

For the sake of clarity, the following information defines the
problem input data:
�

P
n

The WSON network topology consisting of both OXC nodes and
fiber links.

�
 The correspondences between IP/MPLS nodes and OXC nodes

are established beforehand.

�
 Each IP/MPLS node can establish a connection to each other so

that all possible virtual links needed to establish a mesh virtual
connectivity are predefined.

�
 The origin/destination (O/D) matrix and the bandwidth of each

demand.

A solution to the problem must specify the configuration of
each IP/MPLS node in terms of switching capability and number
and bitrate of OE ports. For each virtual link used in the optimal
solution, a supporting lightpath must be established in the WSON
network. Moreover, the route of the MPLS LSP over the virtual
topology must be determined for every demand.

Additionally to the aforementioned, the following assumptions
are considered:
1.
 Given a bandwidth threshold, the set of demands is divided
into two subsets: one with the demands whose bandwidth is
lower than the threshold (subset 1), and another one with
those demands whose bandwidth is higher or equal than the
threshold (subset 2).
2.
 The route of an MPLS LSP consists of two metro nodes (source
and destination) and a number of intermediate transit nodes.
While the demands in subset 1 are routed by, at least, one
transit node, those in subset 2 can use an optical bypass which
lease cite this article as: Pedrola O, et al. A GRASP with path-relinking
etwork optimization problem. Computers and Operations Research (2
connects both end nodes directly (i.e., no intermediate
IP/MPLS node is traversed). Note that although optical by-
passing can generally reduce network costs since it leads to a
reduction in the number of ports and switching capability of
transit nodes, its use has been restricted to just highly loaded
virtual links to avoid MAC address table explosion [6].
3.
 For the sake of simplicity, we define a virtual metro node for
those demands whose source or destination is a node outside the
network. Such a node represents any external network and is
connected to every interconnection node of the IP/MPLS network
being planned. Hence, neither its requirements (i.e., number of
ports and switching capability) nor its cost are taken into
consideration to evaluate the feasibility of network solutions.
4.
 When a failure occurs, all affected MPLS LSPs must be
re-routed. Complementary, the non-affected LSPs must remain
in their current routes. However, WSON route and/or OE port
assignment may change.

For the forthcoming ILP, we have considered a node-link

formulation for the IP/MPLS routing and network planning con-
straints and an arc-path approach for the assignment of virtual
links to lightpaths. A set of WSON routes is pre-computed and
available for each virtual link.

Note that as a result of the proposed routing strategy, one virtual
link can be supported by a number of parallel lightpaths, thus each
virtual link has been divided into several entities called channels. In
such a way, the aggregation of demands is facilitated, and hence, an
optimal exploitation of the network capacity is guaranteed. Each
channel of a virtual link carrying an MPLS LSP is associated with one
lightpath in the WSON network. Then, four ports with the same
bitrate must be installed in order to establish the required MPLS-
to-MPLS virtual connection (i.e., two ports are installed in the IP/
MPLS nodes and two more in the associated OXCs).

It is worth noting that failures affecting fiber links and IP/MPLS
nodes can be identified before the optimization begins owing to the
fact that the WSON network topology and the location of IP/MPLS
nodes are known. In contrast, the number and location of OE ports is
unknown until the optimization ends. Hence, the consideration of
port failures drastically increases the complexity of the problem (note
that even non-linear constraints would appear). Aiming at including
port failures while keeping the linearity of the problem, we have
attached a number of slots (i.e., a virtual port location which might or
might not have a port installed on it) to each IP/MPLS node. This data
structure allows us to define beforehand the number of failures since
failures are associated to the pre-defined slots. Thus, considering
failures in slots is equivalent to consider failures in OE ports.

Every single failure represents a specific failure scenario,
which is characterized by the IP/MPLS nodes, slots, virtual links,
and WSON routes that can be used when the failure occurs. The
network dimensioning is unique and must ensure that every
demand is transported under any failure scenario guaranteeing
network survivability. For this very reason, the model obtains one
channel-to-slot assignment and another channel-to-lightpath
assignment for each failure scenario. This fact complicates the
formulation but provides flexibility to perform the network
planning, and hence, to reduce network CAPEX.

3.3. Notation

The following notation has been defined for sets and para-
meters:

Optical topology

L set of fiber links, index l

KðeÞ set of WSON routes for virtual link e, index k
heuristic for the survivable IP/MPLS-over-WSON multi-layer
011), doi:10.1016/j.cor.2011.10.026
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pk
l binary, equal to 1 if route k contains fiber link l

Lenl integer, with the length of fiber link l in km
wl integer, with the number of wavelengths of fiber link l

Virtual topology

N set of IP/MPLS nodes, index n

Nm subset of N containing the metro nodes
N t subset of N containing the transit nodes
N v subset of N containing the interconnection nodes
SðnÞ set of slots of node n, index s

E set of virtual links, index e

EðnÞ set of virtual links incident to node n, index e

EhðnÞ subset of EðnÞ containing the links reserved to demands
belonging to subset 2

EtðnÞ subset of EðnÞ defined by: EðnÞ�EhðnÞ

I ðeÞ end nodes of virtual link e, index n

CðeÞ set of channels of virtual link e, index c

Demands

D set of demands, index d

SDðdÞ source and destination nodes of demand d

bd integer, with the bandwidth of demand d in Gbps
hd binary, equal to 1 if demand d belongs to subset 2

Failures

F set of failure scenarios, index f. Note: Scenario 0 repre-
sents the non-failure scenario

afk binary, equal to 1 if WSON route k is available under
failure scenario f

afns binary, equal to 1 if slot s of node n is available under
failure scenario f

Equipment costs and others

cfo real, with the cost per kilometer of restorable lightpath
PT set of OE port bitrates
pci real, with the cost of one port with bitrate i. Note: this

value includes the cost of the associated OXC port
pki integer, with the capacity of one OE port with bitrate i

in Gbps
RT set of router classes
rcj real, with the cost of one router of class j

rkj integer, with the switching capability of one router of
class j in Gbps

rpkj integer, with the number of slots available in a router of
class j

M a large positive constant

The decision variables are

xf
dec binary, equal to 1 if demand d is routed through channel

c of virtual link e, under failure scenario f. 0 otherwise
xf

d binary, equal to 1 if the route of demand d under failure
scenario f must be the same than that in the basic
scenario. 0 otherwise

yfk
ec binary, equal to 1 if channel c of virtual link e is assigned

to WSON route k, under failure scenario f. 0 otherwise
yfns

ec binary, equal to 1 if channel c of virtual link e is assigned
to slot s of node n, under failure scenario f. 0 otherwise

zns
i binary, equal to 1 if slot s of node n is equipped with a

port with bitrate i. 0 otherwise
Please cite this article as: Pedrola O, et al. A GRASP with path-relink
network optimization problem. Computers and Operations Research
zn
j binary, equal to 1 if node n is equipped with a router of

class j. 0 otherwise
tfns positive integer, with the total amount of traffic (in

Gbps) in slot s of node n under failure scenario f

3.4. Mathematical formulation

The cost of the network can be computed as the sum of two
parts: the cost of equipping nodes and installing ports (costEquip)
and the cost of the lightpaths established to support the virtual
links (costLightpath). Both costs can be computed as follows:

costEquip ¼
X

nANm[N t

X
sASðnÞ

X
iAPT

pci � z
ns
i þ

X
jART

rcj � z
n
j

0
@

1
A, ð1Þ

costLightpath ¼ cfo �
X
eAE

X
cACðeÞ

X
kAKðeÞ

y0k
ec �
X
lAL

lenl � p
k
l : ð2Þ

Finally, the formulation of the problem is as follows:

min CAPEX ¼ costEquipþcostLightpath ð3Þ

s:t:
X

eAEt ðnÞ

X
cACðeÞ

xf
decþhd �

X
eAEkðnÞ

X
cACðeÞ

xf
dec ¼ 1,

8dAD, f AF , nASDðdÞ, ð4Þ

X
eAEðnÞ

X
cACðeÞ

xf
dec r2, 8dAD, f AF , nASDðdÞ \N t , ð5Þ

X
eAEðnÞ

X
cACðeÞ

xf
dec r0, 8dAD, f AF , nASDðdÞ \ ðNm [N vÞ, ð6Þ

X
e0AEðnÞ

X
c0ACðe0 Þ

xf
de0c0

Z

X
cACðeÞ

xf
dec , 8dAD, f AF ,

nASDðdÞ \N t , eAEðnÞ, ð7Þ

X
dAD

xf
dec rM �

X
kAKðeÞ

afk � yfk
ec , 8f AF , eAE, cACðeÞ, ð8Þ

X
kAKðeÞ

yfk
ec r1, 8f AF , eAE, cACðeÞ, ð9Þ

X
eAE

X
cACðeÞ

X
kAKðeÞ

pk
l � y

fk
ec rwl, 8f AF , lAL, ð10Þ

X
dAD

xf
dec rM �

X
sASðnÞ

afns � yfns
ec , 8f AF , eAE, cACðeÞ, nAI ðeÞ, ð11Þ

X
sASðnÞ

yfns
ec r1, 8f AF , eAE, cACðeÞ, nAI ðeÞ, ð12Þ

X
dAD

bd � x
f
dec�M � ð1�yfns

ec Þrtfns,

8nANm [N t , sASðnÞ, eAEðnÞ, cACðeÞ, f AF , ð13Þ

tfnsr
X

iAPT
pki � z

ns
i , 8nANm [N t , sASðnÞ, f AF , ð14Þ

X
iAPT

zns
i r1, 8nANm [N t , sASðnÞ, ð15Þ

X
sASðnÞ

tfnsr
X

jART
rkj � z

n
j , 8nANm [N t , f AF , ð16Þ

X
sASðnÞ

X
iAPT

zns
i r

X
jART

rpkj � z
n
j , 8nANm [N t , f AF , ð17Þ
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X
iART

zn
i r1, 8nANm [N t , ð18Þ

X
nAI ðeÞ

X
sASðnÞ

ð1�afnsÞ � y0ns
ec þM � ð1�xf

decÞZxf
d,

8dAD, f AF�f0g, eAE, cACðeÞ, ð19Þ

X
cACðeÞ

x0
dec�

X
cACðeÞ

xf
dec rxf

d, 8dAD, f AF , eAE, ð20Þ

X
cACðeÞ

x0
dec�

X
cACðeÞ

xf
dec Z�xf

d, 8dAD, f AF , eAE, ð21Þ

xf
d,xf

dec ,yfk
ec ,yfns

ec ,zns
i ,zn

j Af0;1g, f AF , dAD, nAN , eAE,

sASðnÞ, cACðeÞ, kAKðeÞ, iAPT , jART , ð22Þ

tfnsAZþ , f AF , nAN , sASðnÞ: ð23Þ

The objective function (3) minimizes the total cost of the
network.

Constraints (4)–(7) are responsible for routing and aggregating
the demands through the virtual topology. Constraint (4) ensures
that every demand is routed under any failure scenario.
Constraints (5)–(7) make sure the continuity of each MPLS route
through the virtual topology.

Constraints (8)–(12) connect the virtual topology with the
WSON. Constraints (8)–(10) assign one WSON route to each used
channel in a virtual link. Additionally, constraint (10) ensures that
the reserved WSON capacity is not violated. Constraints (11) and
(12) connect both ends of each channel with two ports.

Constraints (13)–(18) dimension the IP/MPLS network. In
constraint (13), the maximum amount of traffic routed through
a slot is computed. This variable is used in constraints (14) and
(15) to dimension the port that must be placed in that slot. The
dimension of each node is determined in constraints (16)–(18).

Constraint (19) fixes those demands that must remain in their
routes under every failure scenario, and constraints (20) and (21)
prevent that the route of those demands changes. Finally,
constraints (22) and (23) define the variables either as binary or
integer.

With respect to the complexity of the problem, it is worth
mentioning that even simpler versions of the survivable network
planning model have been shown to be NP-hard [14]. Indeed,
considering the problem in hand, the total amount of variables
can be approximated by 9F 9 � 9E9 �maxC � ð9D9þ9K9þ9N 9 �maxSÞ,
where maxC and maxS are the maximum number of channels in a
virtual link and slots in a node, respectively. The size of the
constraint set can be approximated by 9F 9 � 9E9 � 9D9 �maxC. For
example, taking into account the instances presented in Section 5,
the problem size raises to 1010 variables and 109 constraints,
thereby making impractical its exact solution. Owing to this fact,
in the next section, heuristic methods are proposed to provide
near-optimal solutions with reasonable computational effort.
4. SIMNO meta-heuristic resolution methods

4.1. A GRASP with PR heuristic

The GRASP procedure is an iterative two phase meta-heuristic
method based on a multi-start randomized search technique with
a proven effectiveness in solving hard combinatorial optimization
problems. It was first presented in [15,16], by Feo and Resende,
and later formalized and given its acronym in [17], by Feo et al.
Since then, it has been used to solve a wide range of problems
(see e.g., [18–20]) with many and varied applications in the real
life such as the design of communication networks, collection and
Please cite this article as: Pedrola O, et al. A GRASP with path-relink
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delivery operations and computational biology. For recent and
comprehensive surveys of GRASP we refer the reader to [21–24].

In the first phase of the multi-start GRASP procedure, a greedy
randomized feasible solution of the problem is built by means of a
construction procedure. Then, in the second phase, a local search

technique to explore an appropriately defined neighborhood is
applied in an attempt to improve the current solution. These two
phases are repeated until a stopping criterion is met, and once the
procedure finishes the best solution found over all GRASP itera-
tions is returned. Note that with the basic GRASP methodology,
iterations are independent from each other as previous solutions
of the algorithm do not have any influence on the current
iteration. One approach to include memory in the GRASP proce-
dure is with PR, a method which was first introduced by Glover in
[25], as an strategy to integrate both intensification and diversi-
fication in the context of tabu search [26]. This approach
generates new solutions by exploring the trajectories connecting
high-quality solutions. The path evaluated starts at a so-called
initiating solution and moves towards a so-called guiding solution
which is usually taken from an stored set of good quality
solutions called the elite set.

PR was first applied in the context of GRASP by Laguna and
Martı́ in [9], and widely applied ever since. Resende and Ribeiro
present a wide variety of examples and applications of
GRASPþPR in [10]. After a solution is output from the multi-start
phase (i.e., construction plus local search), PR is applied between
the current solution and a selected solution from the elite set.
Then, the best solution found in this iteration is candidate for
inclusion in the elite set and it is only added if a certain quality
and diversity criteria is met. In this work, we make use of a
GRASPþPR heuristic to solve the SIMNO problem. In the next
subsections, the fundamental blocks and considerations of our
heuristic are presented.
4.1.1. Construction procedure

Given the fact that our problem primarily consists in routing,
one-by-one, a set of demands over a virtual topology, the value of
the cost function, gð�Þ, for any constructed solution, strictly depends
on the selected set of virtual MPLS routes, R¼ frd1 , . . . ,rdi

, . . . ,
rdj

, . . . ,rd
9D9
g, to be followed by each demand dAD. Note, however,

that the selection of these routes is, for its part, strongly dependent
on the ordering in which these demands are processed (i.e., ordering
Ox ¼ fd1, . . . ,di, . . . ,dj, . . . ,d9D9g). Indeed, such ordering does have
strong influence on resources utilization.

Let us first denote Cd as a set of pre-computed virtual routes
available for every demand dAD. Then, in order to build a
solution, we rely on a restricted candidate list (RCL) containing
the demands dAD with the best (i.e., smallest) incremental costs
(c(d)), that is, RCLd. To compute the incremental cost c(d) for each
demand dAD, we first evaluate the incremental cost of the virtual
routes available in Cd,dAD, and then, c(d) is given the cost of the
less expensive route (i.e., cðdÞ ¼minrACd

fcðrÞg). RCLd is associated
with a threshold parameter in the real interval [0,1]: a. Hence,
RCLd is dynamically formed by all elements (i.e., demands) which
can be inserted into the partial solution ensuring its feasibility
and whose incremental cost falls within the interval defined by
the threshold parameter (see Procedure 1). However, after carry-
ing out a number of tests, we realized that Procedure 1 becomes a
really time-consuming process if real-sized, complex problem
instances are considered (see Section 5.1). Note that to generate
RCLd, the cost c(r) for all routes in Cd,dADmust be recomputed at
each iteration of the while loop (see lines 5–16 in Procedure 1). In
order to minimize this problem, we include an additional para-
meter (t) which determines the maximum number of demands
that can be evaluated. Hence, at each iteration, a maximum of
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
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t � 9Q9 candidate demands are randomly selected from set Q. As
shown in Procedure 1, once the demand to be served is obtained
(and added to the ordering vector), we select the route rd with the
minimum incremental cost to fill the set of selected routes R.
Here it is worth noting that the selection of rd could also have
been made by means of a second RCL, in this case, however,
containing the routes with the smallest incremental costs, and
controlled by another threshold parameter b. In fact, in our
preliminary experimentations we found that values of b40
always led to worst performance results (see Section 5.2 for
further details), and hence, we do not consider this second RCL
in our construction algorithm. Eventually, once the while loop
ends, both the ordering Ox and the set of routes R for all demands
are obtained. Note that to calculate c(d) and build RCLd we take
into account the current state of the network (i.e., the resources
already reserved by previous demands). Moreover, if a route
rdACd results in an unfeasible solution, its cost c(r) is set to 1,
thereby avoiding its selection. Hence, at this point, a feasible
solution for the network dimensioning without considering
failures is obtained. The above-mentioned, is shown between
lines 1 and 17 in the pseudo-code of our greedy randomized
construction (GRC) algorithm in Procedure 1. The routing of
demands is mainly performed over a virtual topology which is
precomputed beforehand over the given optical network topol-
ogy. Virtual links are created between every pair of metro and
transit, transit and transit, and transit to interconnection IP/MPLS
nodes satisfying that its distance is lower than a given threshold.
For each virtual link, a set of routes over the optical network are
computed: the shortest one and a number of restoration routes. In
order to obtain Cd for each demand dAD, we consider a k-shortest
path algorithm. In fact, two subsets of routes are pre-computed,
one over the virtual topology and another one over the optical
topology, thus enabling optical by-passing. Route pre-computa-
tion is performed just once at the heuristic startup.

Procedure 1. Greedy randomized construction heuristic.

INPUT: D,Cd8dAD,a,t
OUTPUT: Ox,R,gðOx,RÞ
1: R’|,Ox’|
2: Initialize the candidate set: Q’D
3: Initialize the restricted candidate set: Y with t � 9Q9
demands randomly selected from Q
4: Evaluate the incremental cost cðdÞ for all dAY
5: While Qa| do

6: cmin’minfcðdÞ9dAYg
7: cmax’maxfcðdÞ9dAYg
8: RCLd’fdAY9cðdÞrcminþaðcmax�cminÞg

9: Select an element d from RCLd at random

10: Ox’Ox [ fdg

11: Take route rdACd such that cðrdÞ ¼ cðdÞ, and route d

through rd

12: R’R [ frdg

13: Update the candidate set Q
14: Y’ a maximum of t � 9Q9 demands randomly selected

from Q
15: Reevaluate the incremental cost c(d) for all dAY
16: end while
17: Dimension the network
18: Let Apf denote the set of affected paths under failure

scenario f

19: for all failure scenario f AF do
20: Apf’|

21: Apf’ GenerateFailure(f)

22: if Apf ¼ ¼ | then
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23: Recover from failure f

24: else
25: Reroute ðApf Þ

26: Increment IP/MPLS nodes capacity
27: Recover from failure f

28: end if
29: end for

Due to the fact that network components such as optical links,
OE ports, and IP/MPLS nodes are subject to failures, we build a set
of simple failure scenarios where one component fails in each
one. Then, for each failure scenario, we remove the element in
failure from the network and compute the list of affected MPLS
LSPs being each path subsequently rerouted. If additional OE
ports need to be installed in the IP/MPLS nodes (i.e., over-
dimensioning), checks are performed to ensure the feasibility of
the solution. This process is illustrated between lines 18 and 29 in
Procedure 1.

As it has been previously explained, in the event of an optical
link failure, lightpath restoration is tried as a first option by
means of the predefined set of restoration routes. If this restora-
tion succeeds, the associated virtual link (and thus every MPLS
LSP using it) is automatically restored. On the contrary, MPLS LSPs
are rerouted over the new virtual topology, thereby likely increas-
ing both IP/MPLS nodes switching capabilities and installed
OE ports.

Therefore, a feasible solution must provide us with the set of
virtual routes that are to be used to carry the amount of traffic
bd,8dAD as well as with the required over-dimensioning of
IP/MPLS nodes so that network survivability is guaranteed. Hence,
once a set of routes R is obtained, cost function gðOx,RÞ accounts
for the CAPEX investments required to serve all traffic demands
and to guarantee network recovery in front of any of the
considered failures. Finally, and for the sake of clarity, hereinafter
in this paper we skip the set of routes R from the parameters in
cost function gð�Þ. Note that once the order Ox for serving the
demands is specified, the selection of routes is a pure greedy
process.
4.1.2. Local search

Recalling that a solution to our problem can be defined by Ox

(i.e., the ordering in which the demands are to be served), and for
the purpose of neighborhood creation, we refer to a feasible
solution obtained by Procedure 1 as Ox. Due to the fact that a
feasible solution Ox has no guarantee of being locally optimal,
GRASP heuristics apply a local search procedure starting at Ox in
the hope of finding a better solution in its neighborhood. Then, let
us denote with NqðOxÞ, the set of solutions in the qth neighbor-
hood structure of Ox. Thus, assuming an ordering of 9D9 traffic
demands, Ox ¼ fd1, . . . ,di, . . . ,dj, . . . ,d9D9g, we define the neighbor
of this ordering as an ordering in which di is interchanged with dj.
Let us denote such interchange operation in Ox as Iðdi,djÞOx

. In
order to generate a random neighbor in the first neighborhood
(i.e., a 1-move neighbor) of Ox (i.e., N1ðOxÞ), we choose pivots di

and dj uniformly among the 9D9 demands. Hence, creating a
q-move neighbor implies that this random interchange of
demands is performed q times, though always ensuring that an
interchange of the randomly selected pivots will bring the
solution a neighborhood further.

Several approaches have been proposed in the literature to
perform local search. Among them, we find techniques such as
the variable neighborhood search (VNS) and variable neighborhood

descent (VND), and the approximate local search (ALS) procedures
(see [27,28]). In this work, we make use the ALS procedure to
implement the local search in the GRASP multi-start phase. ALS
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
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was first proposed in [28] as a trade-off between the first-fit and
best-fit approaches within the N1 and N2 neighborhoods of a
solution. As shown in the pseudo-code of Procedure 2, this
technique randomly samples the 1-move and 2-move neighbor-
hoods of Ox. This exploration is stopped when either the set of
improving solutions CS is full or a maximum of MaxSearch

neighbors have been explored. Then, the algorithm selects either
in a greedy or a probabilistic fashion one of the solutions in CS to
continue the exploration. In [28], the greedy selection outper-
formed the probabilistic one, and thus, in this paper we consider
the greedy choice to select a solution from CS as well as an equal
probability to generate a 1-move or a 2-move neighbor. The
algorithm finishes when set CS is empty and returns as output the
best solution found OB.

Procedure 2. Approximate local search (ALS) heuristic.
INPUT: Ox,MaxCS,MaxSearch

OUTPUT: OB

1: OB’Ox;
2: repeat
3: i’0,CS’|;
4: repeat
5: Ox0’ Generate-1-or-2-move-neighbor ðOBÞ;
6: if gðOx0 ÞogðOBÞ

7: CS’CS [ fOx0 g;
8: end if
9: i’iþ1;

10: until 9CS9ZMaxCS or iZMaxSearch

11: if CSa|
12: Select Ox ¼minOk ACSfgðOkÞg;

13: OB’Ox;
14: end if

15: until CS¼ |
Fig. 3. Path-relinking heuristic implementation.
4.1.3. Path-relinking

As mentioned before, PR is an intensification strategy which
generates new solutions by exploring the trajectories linking two
high-quality solutions (starting at an initiating solution towards
the guiding one). The path connecting both solutions is generated
by sequentially introducing attributes of the guiding solution into
the initiating one. To ensure that PR is only applied among
high-quality solutions, a set of elite solutions (ES) must be both
maintained and cleverly managed during all GRASP iterations.
Note that with the attribute high-quality we are not only referring
to their cost function value but also to the diversity they add to ES.

PR implementation: Several approaches on how to perform PR
have been proposed and evaluated (see e.g., [29]). These techni-
ques mainly deal with the process that is in charge of creating the
path towards the guiding solution. The most usual approach
consists in building the path in a greedy fashion (i.e., the most
profitable or least costly move is selected). However, in this work,
we have developed a specific strategy to perform PR. Two main
reasons support this modeling decision. First, evaluating the cost
of each possible move towards the guiding solution would entail
extremely long computation times, and second, and most com-
pelling, is the fact that in our problem instances, hundreds of
demands are to be served (see Section 5.1), and therefore, the
path connecting two high-quality solutions may easily have
hundreds of moves. Thus, the use of PR would be inadvisable
since it would require most of the time available, thereby
drastically reducing the number of iterations performed.

Let O1 ¼ fd1, . . . ,d9D9g,O2 ¼ fd
0
1, . . . ,d9D9

0
g be two feasible solu-

tions interpreted as vectors (i.e., O1ð1Þ ¼ d1, and O2ð1Þ ¼ d01). For
the sake of this example, let us define O1 as the initiating solution
ðOINIT Þ, and O2 as the guiding one ðOGUIDÞ. Then, let us also denote
Please cite this article as: Pedrola O, et al. A GRASP with path-relink
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a move from OINIT to OGUID as,

moveðiÞOINIT
¼ IðOINIT ðiÞ,OGUIDðiÞÞOINIT

,

that is, an interchange of demand positions applied to ordering
OINIT . Note that in the case that OINIT ðiÞ ¼OGUIDðiÞ no move is
performed. Thus, given OINIT and OGUID, we build the path by
progressively transforming OINIT into OGUID (i.e., by iteratively
applying moveðiÞ,i¼ 1, . . . 9D9). However, as aforementioned, the
size of our problem instances is really high, thus making imprac-
tical the evaluation of each solution found along the path created
by PR. Hence, we propose to sample the path every T moves in the
search for an improving solution, and if found, a thorough
evaluation of the nearby solutions is carried out. The value of T

is defined by an input parameter NSAMPLE that decides into how
many regions the path between both solutions must be divided.
Fig. 3 illustrates this method by showing the path being evaluated
between two high quality solutions OINIT and OGUID. We uniformly
sample the path built and when OGUID is reached the best solution
found during the sampling process ðOBSÞ is selected.

If gðOBSÞominðgðOINIT Þ,gðOGUIDÞÞ a move to the right and to the
left of OBS is assessed (see dotted arrows in Fig. 3). Then, we take
the improving direction and iteratively evaluate the subsequent
moves until no improvement is found. PR then returns the best
solution found during this intensification step ðOBEST Þ. In this way,
we have a relatively high probability of reaching the best solution
in the path connecting OINIT and OGUID. The pseudo-code for our
PR implementation is illustrated in Procedure 3.

Procedure 3. Path-relinking heuristic.

INPUT: OINIT ,OGUID,NSAMPLE

OUTPUT: OBEST

1: M’ number of moves from OINIT to OGUID

2: T’
M

NSAMPLE

� �

3: count’1,OBEST’|,S’|
4: Ox’OINIT

5: for i’1,M do
6: Ox’moveðiÞOx

7: if count¼ ¼ T then
8: if Ox is feasible then
9: S’S [ fOxg

10: end if
11: count’0
12: end if
13: count’countþ1
14: end for
15: Select ordering OBSAS which minimizes cost function gð�Þ

16: if gðOBSÞominðgðOINIT Þ,gðOGUIDÞÞ then
17: Evaluate a move to the right and to the left of OBS
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
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18: Take the improving direction and iteratively move until
no improvement is found

19: Return the best feasible solution found OBEST

20: end if

Elite set management and distance measure: Since the PR algo-

rithm operates on ES, its management and maintenance is, there-
fore, crucial to the success of the PR procedure. Previous studies
such as [30], have shown that a policy to include solutions in ES

only based on their individual quality does not lead to the best PR
performance. Hence, to include a new solution in ES, a trade-off
between quality and diversity is usually evaluated (see e.g., [31]).

Initially, ES is empty, then, each locally optimal solution
obtained and each solution resulting from a PR execution is
candidate to be inserted in ES. Let us considerOx as such candidate
solution. If ES is not yet full, then, Ox is simply added to ES.
Otherwise, if Ox improves the best solution in ES, it replaces an
element of the set. In addition, if Ox improves upon the worst in ES

and its distance to ES is larger than a pre-established threshold dth,
it also replaces an element in ES. To this end, let us define dx,y as
the distance between two solutions Ox and Oy (i.e., the number of
moves required to reach Oy from Ox). Then, the distance between
a solution Ox and the whole ES can be defined as,

dx,ES ¼ min
Oi AES
fdx,ig:

Hence, when ES is full, Ox is inserted in ES if its quality is
superior to the worst in ES and dx,ESZdth. This threshold is
empirically adjusted in Section 5. With the same diversity objective,
and in order to maintain the size of the pool constant, whenever we
add a solution to ES, another one must be removed. As usual, we
remove the closest solution to Ox, which we call Or , among those
with a worse quality. Thus, Or can be defined as follows:

Or ¼ min
Oi AES:gðOiÞ4gðOxÞ

fdx,ig:

Selection policy: Another important aspect regarding PR is that
once a solution Ox is output from the multi-start phase, another
solution Oi must be selected from ES to be path-relinked with Ox.
In the literature, a common approach is to select a solution
randomly from ES [21]. However, this may result in selections
that are very close to Ox, thereby reducing the probability of
finding better solutions. In an attempt to minimize this issue, we
adopt a biased [30] approach in which solutions are selected with
probabilities proportional to their distance to Ox. Therefore, the
probability pi of selecting a particular solution OiAES can be
computed as follows:

pi ¼
dx,iP9ES9

j ¼ 1 dx,j

:

In order to perform PR, we implement the back-and-forward (PRbf)
strategy, which explores the path in both directions (see e.g.,
[30]). Once the PR finishes, if no improving solution is found, the
best of both extremes is returned as output. Finally, the pseudo-
code of our GRASPþPR heuristic is shown in Procedure 4, which
first executes the GRASP multi-start phase to fill ES, and then runs
a pre-defined number of GRASPþPR iterations. Procedure 4
returns as output the best solution stored in ES. We point out
that all input parameters required to call the construction, local
search and PR methods will be adjusted in Section 5.

Procedure 4. GRASPþPR heuristic.

INPUT: GlobalMaxItr,D,Cd8dAD,a,t,MaxCS,MaxSearch,NSAMPLE

OUTPUT: OBEST

1: OBEST’|,ES’|

2: Apply GRASP (GRC followed by ALS) for b¼ 9ES9 iterations

to populate ES
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3: count’1
4: repeat
5: Ox’GRCðD,Cd8dAD,a,tÞ
6: Ox0’LocalSearchðOx,MaxCS,MaxSearchÞ

7: Select elite solution OEL from ES

8: OB’PRbf ðOEL,Ox0 ,NSAMPLEÞ

9: Try to insert OB in ES

10: count’countþ1

11: until count4GlobalMaxItr

12: OBEST’minOk AESfgðOkÞg

4.2. A BRKGA heuristic

Among meta-heuristics, BRKGAs have recently been proposed
to effectively solve optimization problems. For example, BRKGAs
have been applied to network related problems such as routing in
IP networks and RWA in optical networks [32,33]. Compared with
other meta-heuristics, BRKGA is characterized by being able to
provide high quality solutions in very short running times. In this
Section, we apply the BRKGA meta-heuristic to solve the SIMNO
problem.

BRKGA is a class of GA where each individual is represented as
an array of ng genes, called chromosome, and each gene can take a
value, called an allele, in the real interval [0,1]. Each chromosome
encodes a solution of the problem and a fitness level, that is, the
objective function value. Identical to GA, a set of p individuals,
called a population, evolves over a number of generations. At each
generation, individuals of the current generation are selected to
mate and produce offspring, making up the next generation. In
BRKGA, individuals of the population are classified into two sets:
the elite set pe, with those individuals with the best fitness values,
and the non-elite set. Elite individuals are copied unchanged from
one generation to the next, thus keeping track of good solutions.
The majority of new individuals are generated by crossover, that
is, by combining two elements, one elite and another non-elite,
selected at random. An inheritance probability ðreÞ is defined as
the probability that an offspring inherits the allele of its elite
parent. Finally, to escape from local optima a small number of
mutant individuals (pm, randomly generated) are introduced at
each generation to complete a population. A deterministic algo-
rithm, named decoder, transforms any input chromosome into a
feasible solution of the optimization problem and computes its
fitness value. In the BRKGA framework, the only problem-depen-
dent parts are the chromosome internal structure and the
decoder, and thus, one only needs to define them to completely
specify a BRKGA heuristic.

Similarly to Section 4.1, the problem primarily consists in
routing a set of demands over a virtual topology. In this case, we
make use of one gene per virtual link and per IP/MPLS node. These
genes are used to compute a metric for each element in order to
perform the routing of each demand dAD. Besides, and recalling
that the order in which the demands are served influences the
goodness of the solution, additional genes are required to specify
it. For this purpose, we use one additional gene per demand dAD.
Therefore, given a virtual network represented by graph GðN ,EÞ
and the set of demands D, each individual is represented by an
array of 9N 9þ9E9þ9D9 genes.

Here it is worth noticing that both BRKGA and GRASPþPR (see
Section 4.1) have the same goal (minimize network CAPEX) and
that this is achieved both by minimizing routing costs (i.e., using
the cheapest links and nodes), and by grooming the demands so
as to minimize the use of resources. On the one hand, BRKGA uses
the metrics and the ordering encoded in the chromosome. Metrics
are used as a means to stimulate or penalize the use of individual
links and nodes so that those resources minimizing the cost of the
ing heuristic for the survivable IP/MPLS-over-WSON multi-layer
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network are selected. Ordering, however, is used to improve the
grooming of demands, thus making the most of the network
resources. On the other hand, GRASPþPR relies on the ordering of
demands not only to improve grooming, as in BRKGA, but to
minimize the cost of the network too. Since the GRASP construc-
tion algorithm deals directly with CAPEX incremental costs, its
complexity is greater than that required to decode a chromosome
in BRKGA, however, this comes at the benefit of solution quality.
Finally, note that fast cost function evaluations are crucial to a
BRKGA algorithm, and so the differences among both heuristics
when it comes to solution encoding.

To decode chromosomes into feasible solutions, the metric of
IP/MPLS nodes and virtual links is initialized using the assigned
gene of the input chromosome, and the order in which each
demand will be routed is given by the rest of genes. After
initializing every element, the network is dimensioned through
the routing of the whole set of demands D. A solution to the
network dimensioning without considering failures is obtained at
this step. To include failures, we use the steps already illustrated
in the GRASP construction algorithm (i.e., between lines 18 and
29 in Procedure 1 in Section 4.1.1).

Additionally, in this work, a multi-population strategy where a
number of populations are evolved independently has been
implemented [34]. The algorithm was designed and implemented
as a multi-thread application, where each population runs in a
single thread. Populations exchange elite individuals after a
pre-determined number of generations. In an initial phase, a data
structure representing the network graph is created. At this step,
the network graph only contains IP/MPLS and optical nodes and
optical links. Afterwards, the virtual topology is generated; virtual
links between metro and transit and between transit and transit
IP/MPLS nodes are created. Demands pre-routing computation
is then performed. To be precise, a set of k¼100 routes is
Fig. 4. A realistic Spanish optical core transport network topology.

Table 1
Network topologies and traffic parameters considered.

Network Transit Intercon

A 3, 4, 9, 11, 14, 15, 19, 21 6, 8, 20

B 1, 9, 10, 12, 14, 16, 20 7, 13, 15

C 3, 4, 5, 8, 9, 14, 19, 21 6, 7, 10,
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pre-computed for each demand. During the decoder process,
route metric re-computation is performed ensuring that the
shortest route (in terms of that metric) is chosen at each step.
The parameters considered for the BRKGA algorithm are provided
in the next section.
5. Computational experiments

This section describes the computational experiments carried
out to both evaluate and compare the efficiency and performance
of the GRASPþPR and BRKGA heuristics proposed in this paper to
solve the SIMNO problem. All methodologies have been imple-
mented in Java SE 1.6.0_17 using a sequential approach (though
we consider parallel populations in BRKGA), and all experiments
have been conducted on Intel Core 2 Quad 2.67 GHz based
computers running Windows 7 Professional Edition (64 bits) with
8 GB of RAM.

5.1. Problem instances

The performance of the proposed meta-heuristic algorithms
has been compared over the realistic 21-node Spanish national
optical network topology shown in Fig. 4. In order to have a
representative range of multi-layer networks, we have considered
three different IP/MPLS topologies which consist of 40 metro
nodes and a different number of transit and interconnection
nodes. Table 1 specifies the location of transit and interconnection
nodes (identified by the associated OXC location) of each multi-
layer network. Moreover, for each multi-layer network, the
spatial position of metro nodes is characterized by a uniform
coverage degree (CD) based on the p-value of the uniformity
Kolmogorov–Smirnov test [35]. Note that whilst values close to
100% indicate that metro nodes are uniformly located on a 2D

map, low values denote the presence of areas with high density of
metro nodes. Table 1 also contains the CD of the three network
instances under study. For the traffic, we assume two types of
demands: national where both end metro nodes belong to the
network, and interconnection, where one of the end metro nodes is
outside of the network (i.e., either the source or the destination
node of the demand is the virtual metro node as defined in
Section 3). The mix of national and interconnection traffic is also
detailed in Table 1. Therefore, three different multi-layer network
scenarios can be identified, from the unbalanced network A,
where 70% of the total is interconnection traffic with only three
interconnection nodes and several high density metro areas, to
the well-balanced network C, with 50% of interconnection traffic,
five interconnection nodes and nearly uniform metro areas.
Network B is in between of networks A and C. In fact, a brief
analysis of the proposed instances identifies differences on the
complexity of the problems. For instance, note that the size of
virtual topology is 326, 361, and 408 virtual links for networks 1,
2, and 3, respectively. Thus, the mean number of feasible routes
for a given demand significantly increases from network A to
network C, and consequently differences in the results can be
anticipated for each network instance.
nection Metro
CD (%)

Traffic mix national/

Interconnection (%)

0.1 30/70

, 19 30 40/60

13, 20 90 50/50
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Each multi-layer network has been planned taking into
consideration several increasing traffic loads, starting from an
initial load of 4 Gbps per metro node and with increments of 45%
at each step (roughly representing a year-over-year traffic
increase). However, since the complexity of the problems strongly
depends on the number of demands to be served, this number
should not be increased sharply. Instead, the average requested
bandwidth in each demand is increased at each step. Aiming at
providing accuracy, each traffic load has been executed three
times with randomly generated demands following the above
characteristics. This has resulted in a set of 21 traffic instances for
each of the networks, that is, RA1...21, RB1...21, RC1...21, for networks
A, B and C, respectively. Each of these sets, in blocks of three,
represents the same traffic load but with three independent
randomly generated representations. Hence, traffic profiles are
represented in seven different blocks in increasing order (e.g.,
RA1 €3 and RA4 €6 belong to blocks 1 and 2, respectively). Note that
the higher the index of the block, the higher the complexity of the
problem. These traffic instances have a minimum number of 120
demands and a maximum of 360. The bandwidth requested per
demand can be either 1, 10, 40 or 100 (Gbps), this last being the
minimum amount required to perform optical by-passing. Hence,
100 Gbps demands belong to subset 2 and the rest to subset 1 as
defined in Section 3.2. We assume the availability of 80 wave-
lengths at every optical link in the WSON network, a maximum
allowed lightpath length of 1000 km, and that each metro node is
connected to every interconnection node and a maximum of
4 transit nodes (the nearest 4 transits). Moreover, we fill set Cd

with a maximum of 100 top shortest paths computed over the
virtual topology for each demand dAD. As mentioned in Section
4.1, a set of k routes at the optical level is also pre-computed. In
particular, the shortest-path route plus a restoration route per
optical hop (note that a number of hops may share the same
restoration route). To compute the k-shortest paths we make use
of Yen’s algorithm implemented as in [36]. Aiming at accurately
computing the network CAPEX, we consider an adaptation of the
equipment costs proposed in [37] to provide meaningful values
for the parameters in Eqs. (1) and (2). The costs of IP/MPLS nodes
and OE ports are provided in Tables 2 and 3, respectively. In
addition, we consider a cost per kilometer of restorable lightpath
equal to 1 cost unit (c.u.).

5.2. Tuning of GRASPþPR and BRKGA parameters

Recently, in [38], an interesting way to solve the problem of
parameter tuning for GRASPþPR heuristics has been proposed.
This technique makes use of a BRKGA algorithm to explore the
GRASPþPR parameter space. In this case, and for each chromo-
some, a random-key solution vector encodes the set of
Table 2
IP/MPLS nodes features and costs.

Nodes Class 1 Class 2 Class 3 Class 4 Class 5

Aggregated switching

capacity (Gbps)

160 320 640 1280 2560

Max. number of ports 4 8 16 32 64

Cost (c.u.) 3 4.5 6.5 22.5 50.19

Table 3
OE ports features and costs.

OE ports 1 Gb 10 Gb 40 Gb 100 Gb

Cost (c.u.) 0.45 1.5 8.125 24.625
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GRASPþPR parameters that we aim to tune. Then, to obtain the
fitness for each chromosome, a set of V independent runs of
the GRASPþPR must be executed, each lasting for U iterations.
The fitness is calculated as the average objective function gð�Þ

value found in these V executions.
In our problem, however, given the complexity of the real-sized

problems studied (i.e., multi-layer network size and traffic
instances), we make use of the automatic tuning only for the
parameters used in the multi-start phase of GRASP, that is, those
parameters required in Procedures 1 and 2 (GRC and ALS). To
perform this study, we consider a different set of 10 traffic instances
per network. These instances are generated as described in Section
5.1, with increasing load intensities and with the number of
demands limited to 40 so as to reduce complexity. The GRASP
parameters that are to be tuned and their respective allowed values
are: (i) Construction procedure: a¼ f0:0,0:1,0:2,0:3,0:4,0:5g,
t¼ f0:1,0:2,0:3,0:4,0:5g, b¼ f0:0,0:1,0:2g (recall from Section 4.1.1
that although b is not shown in Procedure 1, it represents the
threshold parameter for a hypothetical second RCL used to select the
route for each demand). (ii) Local search: MaxCLS¼ f5;10,20g,
MaxSearch¼ f10;20,40g. Our chromosome is therefore defined by
these five parameters of the GRASP multi-start phase. In contrast to
the BRKGA defined in Section 4.2, here BRKGA does not make use of
parallel populations. In Table 4, we provide the set of fixed BRKGA
parameters that will be used by both BRKGAs (i.e., automatic tuning
of GRASP parameters and the resolution of SIMNO). In addition, to
define the BRKGA for the automatic tuning of GRASP parameters, we
consider a population size equal to p¼20. The process is run for 10
generations. To obtain the fitness of each chromosome we perform
V¼10 independent GRASP (GRCþALS) executions with the time
limit set to 2 h. BRKGA tuning is applied to each of the networks
(using the 10 different traffic instances), thus resulting in a specific
combination of parameters for each network. Table 5 reports, for
each parameter and network, the values with higher frequencies of
occurrence among the 10 traffic instances. It is worth highlighting
that the automatic tuning always reports a value of b equal to 0,
thereby eliminating the need for using an additional RCL to manage
the selection of routes.

Next, we focus on the tuning of the parameters required to
specify the PR method, namely the minimum distance to enter ES

ðdthÞ and the sampling parameter NSAMPLE. In this work, we
consider an elite set size ð9ES9Þ equal to 6. Hereinafter in this
paper, and in order to quantitatively evaluate and compare the
results of each experiment, we provide the performance metrics
proposed in [29]. Specifically, we provide the number of times
ð#BestÞ that each method is able to obtain the overall best solution
value (BestVal) found among all methods being tested. Moreover,
for each method, we compute the relative percentage deviation
ðDevð%ÞÞ between the best solution value obtained by that
Table 4
Fixed BRKGA parameter values.

pe pm re

0.2 0.2 0.7

Table 5
GRASP automatically tuned parameters.

Network a t b MaxCS MaxSearch

A 0.4 0.1 0.0 5 20

B 0.2 0.5 0.0 5 20

C 0.2 0.2 0.0 5 20
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Table 7
Results for traffic instances RA1...21.

Method BRKGA GRASP GRASPþPR

Dev (%) 7.79 6.35 2.04

Score 28 25 10

#Best 10 4 15

Table 8
Results for traffic instances RB1...21.

Method BRKGA GRASP GRASPþPR

Dev (%) 10.91 4.22 0.88

Score 33 22 8

#Best 6 5 18

Table 9
Results for traffic instances RC1...21.

Method BRKGA GRASP GRASPþPR

Dev (%) 22.14 3.12 0.55

Score 42 16 5

#Best 0 9 21

O. Pedrola et al. / Computers & Operations Research ] (]]]]) ]]]–]]]12
particular method and BestVal for that instance. Finally, we report
the statistic called Score [29,39]. In short, the Score parameter
counts, for a particular method Mx and for each problem instance,
the number of methods that are able to find better solutions than
Mx. Hence, the lower the Score, the better the method.

In this experiment, we consider four different traffic instances
per network, though this time with the number of demands
limited to 80. We increase the number of demands so as to obtain
more accurate values to execute GRASPþPR with the real-sized
traffic instances described in Section 5.1. Since the maximum
distance between two solutions depends on the size of the
demands set D, we evaluate percentages of this figure as possible
dth values. Moreover, we also test the impact of four different
values for NSAMPLE, thus resulting in 16 different parameter
combinations for PR. For each traffic instance, we run 10 inde-
pendent executions with the time limit set to 4 h. The results
provided in Table 6 clearly report that the best values for dth and
NSAMPLE are 0:1 � 9D9 and 10, respectively. Indeed, these values lead
to results for the three statistics considered which compare
favorably with the other values tested.

Finally, to specify the parameters of the BRKGA developed to
solve SIMNO, we decided to perform a manual tuning. To this end,
we conducted a set of preliminary experiments using several traffic
instances for each of the networks evaluated, and took (after testing
several combinations) the combination of parameters, that is, (p, pe,
pm, re, np, ie), that in average led to the best solutions in all
scenarios. The manually tuned parameter values found are those
shown in Table 4 as well as a number np ¼ 3 of parallel populations,
an inter-population elite exchange ie ¼ 2 and a chromosome length
as described in Section 4.2. Here, it is worth highlighting that we
use a reduced population size (p¼20). As a consequence of the size
of the problems, the length of the chromosome was higher than 300
genes and the decoder algorithm took more than 50 ms to build a
single solution from a chromosome, that is, more than 15 s to build
one generation when p¼ ng was used. Then, the BRKGA heuristic
required extremely long times to reach convergence. Reducing the
size of the population, the convergence time was reduced to
acceptable values. As it has been mentioned, three populations
were evolved in parallel and local elite individuals exchange was
allowed every 15 generations.

5.3. BRKGA vs. GRASP vs. GRASPþPR performance comparison

Having tuned the parameters, we now carry out a performance
analysis of the two meta-heuristic models proposed to solve the
SIMNO problem, that is, BRKGA and GRASPþPR. Moreover, in
order to highlight the benefits of PR, we include in the tests the
results obtained by the basic GRASP heuristic (i.e., construction
followed by local search). Here it is worth mentioning that the
performance of both GRASPþPR and BRKGA was compared
against the optimal solution obtained by solving the ILP described
in Section 3 over a small multi-layer topology (not shown in this
paper). In all the tests conducted, the optimal solution was found
within running times of some seconds, in contrast to several
hours needed to find the optimal solution using the ILP model.
Table 6
PR parameters evaluation.

dth 5

100
9D9 10

100
9D9

NSAMPLE 1 10 15 20 1 10 15 20

Dev (%) 2.6 2.7 2.4 2.7 2.7 1.8 2.5 2.

#Best 0 0 0 0 2 3 0 0

Score 102 86 86 94 77 55 96 97
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To evaluate the three different variants, we make use of the 21
traffic instances per network as defined in Section 5.1. For each
instance, we run five independent executions with the time limit
set to 10 h. The results are reported in Tables 7, 8 and 9,
respectively, for networks A, B and C. As it can be observed, basic
GRASP outperforms BRKGA in all networks, though more notably
in the most complex instances (i.e., networks B, C). Note that the
performance of BRKGA gradually decreases from network A to C,
with higher complexity resulting in BRKGA finding convergence
at very high CAPEX values when compared to both GRASP and
GRASPþPR. In fact, in preliminary experiments with smaller
problem instances (not shown in this paper), we noticed that
BKRGA obtains very good results in very short running times,
outperforming GRASP in the trade-off between optimality and
complexity. However, in the complex instances considered in this
paper, it is very difficult for BRKGA to converge to good quality
solutions in short times. To illustrate this behavior, in Fig. 5, we
plot the search profile of both BRKGA and GRASPþPR in a 10 h
execution using traffic instance RC10. It is easy to observe that due
to the complexity of the problem, BRKGA finds it very difficult to
converge at good quality CAPEX values, whereas in GRASPþPR
early results are already of good quality, thereby showing that the
use of GRASPþPR does really pay off when real-sized, complex
instances are considered.

Finally, GRASPþPR stands out as the best method providing in
all networks the best results for all three metrics considered,
a fact which clearly highlights the impact that introducing PR has
in the meta-heuristic performance results. In order to graphically
15

100
9D9 20

100
9D9

1 10 15 20 1 10 15 20

7 2.1 2.6 2.8 3 3.4 3.1 2.6 3.1

3 2 1 1 1 1 0 0

69 91 85 100 105 93 88 101
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illustrate the performance difference between GRASP and
GRASPþPR, in Fig. 6, we plot the search profile of three indepen-
dent runs of both the GRASP and GRASPþPR algorithms
considering traffic instance RC5. Note that in the x-axis times
are given in multiples of the average time it takes to perform a
basic GRASP iteration (i.e., construction followed by local search),
and hence, are shown as relative time units. The results provided
claim to show the effectiveness and ability of PR to find regions of
the space of solutions that, with the basic GRASP methodology,
are highly unlikely to be found. Indeed, in Fig. 6, remarkable
differences among the curves displayed by GRASP and GRASPþPR
can be observed. Whilst the basic GRASP, after a few initial
improvements, presents a rather flat profile, GRASPþPR clearly
shows a more successful and thorough exploration of the space of
solutions. Therefore, we consider that this study visibly shows to
what extent can PR improve the results obtained by a basic GRASP
heuristic, and more important, in which problems/scenarios the
application of PR is really advisable. In the matter in hand, the
application of GRASPþPR will definitely result in significant
savings for network operators.
6. Concluding remarks

The objective of this study has been the development of
heuristic algorithms aimed at minimizing the CAPEX investments
Please cite this article as: Pedrola O, et al. A GRASP with path-relink
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required to plan a survivable IP/MPLS-over-WSON multi-layer
network. For this purpose, we proposed a novel multi-layer
optimization scheme, and hence, eventually tackled the so-called
SIMNO problem. The resolution of this problem is indeed of great
interest to network operators. To deal with SIMNO, we have first
detailed the multi-layer network architecture under considera-
tion as well as the novel recovery schemes proposed. Then, we
have formalized the SIMNO problem by means of an ILP formula-
tion which provided an insight into the complexity of managing
the problem in hand. Finally, two powerful meta-heuristic models
have been developed to help solve the SIMNO problem within
practical running times. To be precise, a BRKGA and a GRASPþPR
heuristic have been considered. After performing a set of exhaus-
tive experiments, we have illustrated the difficulty that the
BRKGA heuristic has in finding good quality convergence values,
particularly when the problem instances are complex. At the
same time, we have also shown the efficiency of the GRASP meta-
heuristic specifically designed for solving SIMNO, even without
the use of PR. However, the main outcome of this study has been
the possibility to verify how powerful the PR intensification
strategy is. Indeed, GRASPþPR has achieved significant improve-
ments with respect to GRASP, particularly in the more complex
network scenarios. In this paper, GRASPþPR has helped to solve a
current issue for network operators considering real-sized, com-
plex network and traffic scenarios. Hence, we have illustrated one
more time, a successful application of the combined GRASPþPR
meta-heuristic.
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