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Abstract—Network traffic exhibits strong correlations which
make it suitable for prediction. Real-time forecasting of network
traffic load accurately and in a computationally efficient man-
ner is the key element of proactive network management and
congestion control. This paper compares predictions produced
by different types of neural networks (NN) with forecasts from
statistical time series models (ARMA, ARAR, HW). The novelty
of our approach is to predict aggregated Ethernet traffic with
NNs employing multiresolution learning (MRL) which is based
on wavelet decomposition. In addition, we introduce a new
NN training paradigm, namely the combination of multi-task
learning with MRL. The experimental results show that nonlinear
prediction based on NNs is better suited for traffic prediction
purposes than linear forecasting models. Moreover, MRL helps
to exploit the correlation structures at lower resolutions of the
traffic trace and improves the generalization capability of NNs.

Keywords—multiresolution learning, multi-task learning, neu-
ral networks, prediction

I. INTRODUCTION

The main purpose of forecasting is to use historical data in

order to predict the behavior of a system, by modeling it as

a black-box [1]. Traffic prediction plays an important role in

guaranteeing Quality of Service (QoS) in IP networks due to

the diversity of services and because of the increased volume

of real-time network applications. Forecasting algorithms can

be embedded into network management systems to improve

the global performance of the network and to achieve a

balanced utilization of the resources. Traffic prediction can be

useful for dynamic routing, congestion control and prevention,

autonomous traffic engineering, proactive management of the

network, etc.

Upon the occurrence of congestion in the network, a tra-

ditional routing protocol cannot react immediately, resulting

in packet loss, additional delay and jitter, as well as services

with severely degraded quality [2]. Prediction can be used by a

network device in the self-adaptation process for optimizing its

own performance. Thus, proactive decision-making is possible

based on the predicted evolution of traffic on certain links,

as opposed to reacting to past events. Thanks to the early

warning, a prediction-based approach will be faster, in terms

of congestion identification and elimination, than reactive

methods which detect congestion through measurements, only

after it has significantly influenced the network operation.

The prediction of network traffic parameters is possible

because they present a strong correlation between chronologi-

cally ordered values. Their predictability is mainly determined

by their statistical characteristics. According to [3], network

traffic is characterized by: self-similarity, multiscalarity, long-

range dependence (LRD) and a highly nonlinear nature.

Several methods have been proposed in the literature for

network traffic forecasting. These can be classified into two

categories: linear prediction and nonlinear prediction. Choos-

ing a specific forecasting technique is based on a compro-

mise between the complexity of the solution, characteristics

of the data and the desired prediction accuracy. The most

widely used traditional linear prediction methods are: a)

the ARMA/ARIMA model [1], [4], [5], [6], [7] and b) the

Holt–Winters algorithm [1], etc. The most common nonlinear

forecasting methods involve neural networks (NN) [1], [3],

[4], [8]. NNs can be combined with: a) multi-task learning

[9], [10] or b) multiresolution learning [2], [11], [12], [13],

etc. Although some articles state that linear prediction models

are unable to describe the characteristics of network traffic [4],

other studies confirm the practical usability of linear predictors

for real-time traffic prediction [7]. Thus, it remains unclear

which predictors provide the best performance, being in the

same time simple, adaptable and accurate.

In this paper we consider the problem of forecasting the

transfer rate, i.e. given a set of transfer rates observed on a

specific link, we try to predict its future values. We chose

the prediction of this parameter because this is the basic QoS

parameter, i.e. if the demands regarding the transfer rate are

not met, the other QoS parameters (delay, jitter, packet drops)

will be affected seriously. In the following, we demonstrated

that the prediction of future network traffic load based on

recent observations is possible, with a certain accuracy, in a

computationally efficient manner.

The rest of this paper is organized as follows. Section II

gives a brief introduction to traditional forecasting techniques.

In Section III neural network traffic predictors with multi-task

training and multiresolution learning approaches are described.



Section IV lists the performance metrics used for prediction

accuracy evaluation. The experimental results are presented

in Section V as a comparative study with various types of

predictors applied to real-world network traffic traces. Finally,

Section VI concludes the paper and discusses future work.

II. TRADITIONAL TIME SERIES FORECASTING MODELS

In this section we give a brief introduction to various

predictors based on traditional statistical techniques, such as

ARMA(Autoregressive Moving Average), ARAR (Autoregres-

sive Autoregressive) and HW (Holt–Winters) algorithm.

A. ARMA model

The family of ARMA processes is one of the most popular

statistical methods used for modeling and forecasting linear

time series. ARMA models rely on a linear combination of

autoregressive (AR) and moving average (MA) components.

The time series {Xt} is called an ARMA(p, q) process if

{Xt} is stationary (i.e. its statistical properties do not change

over time) and :

Xt−φ1Xt−1−. . .−φpXt−p = Zt+θ1Zt−1+. . .+θqZt−q (1)

where {Zt} ≈ WN(0, σ2) is white noise with zero mean and

variance σ2 and the polynomials φ(z) = 1−φ1z− . . .−φpz
p

and θ(z) = 1+θ1z+ . . .+θqz
q have no common factors [14].

The identification of a zero-mean ARMA model which

describes a specific dataset involves the following steps [14]:

a) order selection (p, q); b) estimation of the mean value of the

series in order to subtract it from the data; c) determination of

the coefficients {φi, i = 1, p} and {θi, i = 1, q}; d) estimation

of the noise variance σ2. After the validation of the model,

predictions can be made recursively using:

X̂n+1 =







∑

n

j=1
θnj(Xn+1−j−X̂n+1−j),if 1 ≤ n ≤ m

∑

q

j=1
θnj(Xn+1−j−X̂n+1−j)+φ1Xn+...+

+φpXn+1−p,if n ≥ m

(2)

where m = max(p, q) and θnj is determined using the

innovations algorithm.

To fit a model to a nonstationary time series we use

ARIMA (Autoregressive Integrated Moving Average). Fitting

an ARIMA model to the original nonstationary dataset is

equivalent with determining the ARMA model for the dif-

ferentiated dataset. The ARIMA(p, q, d) process is described

by:

φ(B)(1−B)dXt = θ(B)Zt , (3)

where φ and θ are polynomials of degree p and q respectively,

∇ = 1 − B represents the differencing operator, d indicates

the level of differencing and B is the backward-shift operator,

i.e. BjXt = Xt−j [4].

B. ARAR algorithm

The ARAR algorithm applies memory-shortening trans-

formations, followed by modeling the dataset as an AR(p)
process: Xt = φ1Xt−1 + . . .+ φpXt−p + Zt.

The time series {Yt} of long-memory or moderately long-

memory is processed until the transformed series can be

declared to be short-memory and stationary:

St = ψ(B)Yt = Yt + ψ1Yt−1 + . . .+ ψkYt−k . (4)

The autoregressive model fitted to the mean-corrected series

Xt = St − S̄, t = k + 1, n, where S̄ represents the sample

mean for Sk+1, . . . , Sn, is given by:

φ(B)Xt = Zt , (5)

where φ(B) = 1−φ1B−φl1B
l1 −φl2B

l2 −φl3B
l3 , {Zt} ≈

WN(0, σ2), while the coefficients φj and the variance σ2 are

calculated using the Yule–Walker equations described in [14].

From (4) and (5) we obtain the relationship:

ξ(B)Yt = φ(1)S̄ + Zt , (6)

where ξ(B)Yt = ψ(B)φ(B) = 1 + ξ1B + . . .+ ξk+l3B
k+l3 .

From the following recursion relation we can determine the

linear predictors Ŷn+h for n > k + l3:

PnYn+h = −

k+l3
∑

j=1

ξjPnYn+h−j + φ(1)S̄ h ≥ 1 , (7)

with the initial condition PnYn+h = Yn+h for h ≤ 0.

C. Holt–Winters algorithm

The Holt–Winters forecasting algorithm is an exponential

smoothing method which uses a set of recursions to predict the

future value of series containing a trend. The main advantage

of this algorithm is its simplicity, the reduced computational

demand and the accuracy of the forecasts [1].

If the time series has a trend, then the forecast function is:

Ŷn+h = PnYn+h = ân + b̂nh , (8)

where ân and b̂n are the estimates of the level of the trend

function and the slope respectively. These are calculated using

the following recursive equations:
{

ân+1 = αYn+1 + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)b̂n
, (9)

where Ŷn+1 = PnYn+1 = ân + b̂n represents the one-step

forecast. The initial conditions are set to â2 = Y2 and b̂2 =
Y2 − Y1. The smoothing parameters α and β can be chosen

either randomly (between 0 and 1), or by minimizing the sum

of squared one-step errors
∑n

i=3
(Yi − Pi−1Yi)

2 [14].

The Holt–Winters Seasonal (HWS) algorithm extends HW

to predict data which is characterized both by trend and

seasonal variation with period d. The forecast function can

be expressed as

PnYn+h = ân + b̂nh+ ĉn+h , (10)

where ân, b̂n and ĉn are the estimates of the trend level, trend

slope and seasonal component, being given by the following

recursions:






ân+1 = α(Yn+1 − ĉn+1−d) + (1− α)(ân + b̂n)

b̂n+1 = β(ân+1 − ân) + (1− β)b̂n
ĉn+1 = γ(Yn+1 − ân+1) + (1− γ)ĉn+1−d

, (11)



with the initial conditions âd+1 = Yd+1, b̂d+1 = (Yd+1 −
Y1)/d and ĉi = Yi − (Y1 + b̂d+1(i − 1)) for i = 1, d+ 1.

The parameters α, β and γ can take values in the range from

0 to 1 and are either chosen arbitrary or obtained after the

minimization of the sum of squared one-step errors.

III. NEURAL NETWORKS FOR TRAFFIC PREDICTION

Neural Networks (NN) are widely used in the process of

modeling and predicting network traffic because they can learn

complex patterns through their strong self-learning and self-

adaptive capabilities. NNs are able to estimate almost any

function in an efficient and stable manner, when the underlying

data relationships are unknown [10]. The NN model is a

nonlinear, nonparametric, adaptive modeling approach which,

unlike the techniques presented in Section II, relies on the

observed data rather than on an analytical model [4]. The

architecture and the parameters of the NN are determined

solely by the dataset. NNs are characterized by nonlinear

mapping and generalization ability, robustness, fault tolerance,

adaptability, parallel processing ability, etc.

A neural network consists of interconnected nodes, called

neurons, every connection being characterized by a weight.

NN comprises several layers of neurons: a) an input layer,

b) one or more hidden layers and c) an output layer. The

most popular NN architecture is feed-forward in which the

information travels through the network only in the forward

direction: from the input layer towards the output layer, as

illustrated in Fig. 1.
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Fig. 1. Neural Network

Using a NN as a predictor involves two phases: a) the train-

ing phase and b) the prediction phase. In the training phase, the

training set is presented at the input layer and the parameters

of the NN are dynamically adjusted to achieve the desired

output value for the input set. The most commonly used

learning algorithm is the backpropagation algorithm, based

on the backward propagation of the error, where the weights

are changed continuously until the output error falls below a

preset value. In this way, the NN can learn correlated patterns

between input sets and the corresponding target values. The

prediction phase represents the testing of the NN. A new input

(not included in the training set) is presented to the NN and

the output is calculated, thereby predicting the outcome of new

input data.

The number of hidden layers and the number of nodes in

each layer is usually chosen empirically. To be able to predict

nonlinear values, NN must have at least one hidden layer.

Too many hidden layers slow down the training process and

increase the complexity of the network. In order to improve

the nonlinearity of the solution, the activation functions of

neurons in the hidden layer are sigmoid functions, while the

output nodes have linear transfer functions.

A. Multi-task Learning

NN predictors applying the traditional single-task learn-

ing (STL) approach have only one output node and they

focus on a single main task, i.e. predicting xt+1 based

on {x1, x2, . . . , xt}. In this way, the information hidden in

other tasks is neglected, such as the relationship between

the historical data and xt+2, although both tasks belong

to the same dataset. In order to improve the generalization

performance of NNs, the multi-task learning (MTL) paradigm

is introduced. This means that we have a main task which

is trained simultaneously with extra tasks, sharing the hidden

layer of the NN, as shown in Fig. 2. By learning multiple tasks

simultaneously, the NN can achieve better prediction accuracy.
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Fig. 2. NN predictor with multi-task learning

We can have one or more extra tasks, depending on the

assumed complexity of the NN topology. For time series

forecasting through the MTL concept, usually two extra tasks

are chosen, namely the prediction of xt and xt+2, which are

closely related to the main task xt+1, as in [9] and [10].

B. Multiresolution Learning

In case of traditional learning, only a single representation

of the training data is used in the learning process, namely

the finest resolution of the original dataset. The multiresolu-

tion learning (MRL) paradigm applied to NNs exploits the

correlation structures at lower resolutions of the training data.

Thereby, the NN will have a better generalization capacity and

the training process will be more efficient and robust, resulting

in improved prediction accuracy.

Multiresolution decomposition is performed with the help of

the wavelet transform. In this paper, the Haar wavelet is used.

The signal si can be decomposed into approximation si−1,

using a low-pass filter L, and detail di−1, using a high-pass

filter H:
{

si−1 = Lsi

di−1 = Hsi
. (12)



The approximation si−1 contains half as many samples as si.
Reconstructing si means that si = si−1 〈+〉 di−1 = L∗si−1 +
H∗di−1, where 〈+〉 is the reconstruction operator, while L∗

and H∗ are low-pass and high-pass synthesis filters.

Using the decomposition algorithm described above, the

original signal sm is decomposed into a low frequency approx-

imation sm−j and high frequency details dm−1, · · · , dm−j at

different levels, where j represents the decomposition level.

For example, Fig. 3 illustrates the decomposition of the

original signal sm at approximation level 3 which can be

expressed as sm = sm−3 〈+〉 dm−1 〈+〉 dm−2 〈+〉 dm−3.

dm-2sm-2

sm-1 dm-1

sm

dm-3sm-3

Fig. 3. Example of multiresolution decomposition

MRL means that the traditional training is decomposed in

several stages, each involving a dataset of a certain resolution.

The basic idea is to train the NN with the coarsest resolution

sm−j , followed by more finer ones and finally learning the

original resolution sm of the dataset. The first training stage

starts with learning the coarsest resolution, which represents

the simplest learning activity. In this stage, the NN parameters

are initialized randomly. Each following stage uses the weights

obtained in the previous stage and recalculates them.

Because si contains fewer samples than sm, it has to be

reconstructed so that both have the same length. Therefore,

the training data used in each stage i will be obtained by

setting the details to zero and reconstructing si as follows:

si 〈+〉 0i 〈+〉 0i+1 〈+〉 . . . 〈+〉 0m−1. Only this way can we

ensure a smooth transition between the different learning

stages which allows to use the same NN with the same

topology in every stage.

In this paper, a decomposition level of j = 2 is used.

The basic scheme of the corresponding NN predictor with

multiresolution learning is shown in Fig. 4. The neural network

can use either single-task or multi-task learning.
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weights
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Fig. 4. NN predictor employing multiresolution learning

In the literature, neural networks with multiresolution learn-

ing are used only for predicting network traffic associated with

a single variable-bit-rate (VBR) MPEG video stream, as in

[11], [12], [13]. These traffic traces are characterized by a

seasonal component due to the periodically sent intra-coded

video frames (I-frames).

The novelty of this article is to evaluate the performance

of this approach applied to aggregated Ethernet traffic traces

which lack of periodical components and are known to be

heavily nonlinear. In addition, we introduce a new NN train-

ing paradigm, namely the combination of the multiresolution

learning with multi-task training. We intend to investigate if

this combination improves the overall prediction accuracy of

the NN predictor.

IV. PERFORMANCE METRICS

To quantitatively assess the overall performance of the ana-

lyzed prediction methods, the following performance metrics

are used to estimate the prediction accuracy:

1) MSE (Mean Square Error) is a scale dependent metric

which quantifies the difference between the forecasted

values and the actual values of the quantity being pre-

dicted by computing the average sum of squared errors:

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2 , (13)

where yi is the observed value, ŷi is the predicted value

and N represents the total number of predictions.

2) NMSE (Normalized Mean Square Error) can be ex-

pressed as MSE divided by the variance of the predicted

time series:

NMSE =
1

σ2

1

N

N
∑

i=1

(yi − ŷi)
2 , (14)

where σ2 denotes the variance of the observed values

during the prediction interval and is given by (15) where

ȳ = 1

N

∑N

i=1
yi represents the mean value.

σ2 =
1

N

N
∑

i=1

(yi − ȳ)
2

(15)

For a perfect prediction we obtain NMSE = 0.

If NMSE = 1, the predictor statistically forecasts

the average value of the observed data. In case of

NMSE > 1, the performance of the prediction is worse

than forecasting the mean [11].

3) MAPE (Mean Absolute Percentage Error) is a metric

widely used to evaluate prediction precision. MAPE

calculates the prediction error as a percentage of the ob-

served value. Expressed in percentage terms, it presents

the advantage of being easy to interpret.

MAPE =
1

N

N
∑

i=1

|yi − ŷi|

yi
× 100% (16)



4) Coefficient of correlation (r) indicates the degree of

association between two variables, being a measure of

linear dependence. The linear correlation coefficient is

sometimes referred to as the Pearson product–moment

correlation coefficient (PMCC) and is defined as:

r =
COV (Y, Ŷ )

σY σŶ
, (17)

where σY and σ
Ŷ

indicate the standard deviation of

the observed and the predicted values, given by (18);

COV (Y, Ŷ ) is the covariance between Y and Ŷ .

σY =

√

√

√

√

1

N

N
∑

i=1

(yi − ȳ)
2

(18)

The covariance is used to determine the relationship

between two datasets and is obtained as follows:

COV (X,Y ) =
1

N

N
∑

i=1

(xi − x̄)(yi − ȳ) . (19)

Values for the Pearson correlation coefficient range

between −1 and 1. If r = 1, there is a perfect positive

correlation between the actual and the predicted values,

whereas r = −1 indicates a perfect negative correlation.

If r = 0, we have a complete lack of correlation among

the datasets.

5) Coefficient of efficiency (E):

E = 1−

∑N

i=1
(yi − ŷi)

2

∑N

i=1
(yi − ȳ)2

(20)

The efficiency coefficient can take values in the domain

(−∞, 1]. If E = 1, we have a perfect fit between the

observed and the forecasted data. A value of E = 0
occurs when the prediction corresponds to estimating

the mean of the actual values. An efficiency less than

zero, i.e. −∞ < E < 0, indicates that the average of

the actual values is a better predictor than the analyzed

forecasting method. The closer E is to 1, the more

accurate the prediction is.

V. EXPERIMENTAL RESULTS

In this section the experimental results are presented and

discussed. For illustration purposes, only the most interesting

results will be described. The goal of the experiments is to

evaluate and to compare the performance of the prediction

approaches presented in Sections II and III. We intend to iden-

tify the best forecasting method for network traffic prediction,

taking into account the accuracy but also the complexity of the

solutions. To assess the prediction performance, the metrics

described in Section IV are used.

The ARMA model and the ARAR, HW and HWS algo-

rithms were simulated using ITSM 2000, version 7 (Student).

The NN predictors were implemented and tested in Matlab

using the Neural Networks Toolbox and Wavelet Toolbox.

A real-world time series of 200 consecutive traffic load

measurements was used for modeling/training the predictor,

and the subsequent 20 values (not included in the training set)

were used for evaluating the traffic prediction performance.

The quantity we are predicting is traffic load, given in bits per

second [bps]. The measurements represent the average transfer

rate on a 10GE (Gigabit Ethernet) link between Atlanta and

Washington, measured every 10 seconds. The used trace and

others are publicly available at [15]. Fig. 5 illustrates the

dataset used for training and testing, along with the lower

resolutions of the training set used for MRL. For testing, only

the finest resolutions is needed.

The experiments were repeated for several other traffic

traces, obtaining similar results. In the following, we only

discuss the results obtained for this particular dataset, due to

lack of space.

A. Traditional Predictors

The training data is modeled by the following ARMA(3, 5)
process: X(t) = 2.142X(t−1)−2.038X(t−2)+0.8036X(t−
3) + Z(t)− 1.258Z(t− 1) + 0.8077Z(t− 2) + 0.3543Z(t−
3)− 0.3987Z(t− 4)+ 0.1565Z(t− 5), where the variance of

the white noise with zero mean is σ2 = 0.050751.

The ARAR algorithm determined the following AR(11)
model: X(t) = −0.0481X(t − 1) − 0.204X(t − 2) −
0.2266X(t− 6)− 0.1856X(t− 11).

The HW algorithm predicts the testing set using (8) and (9)

with the smoothing parameters: α = 1 and β = 0.04. The

HWS algorithm uses (10) and (11) for forecasting with the

smoothing values: α = 0.85, β = 0 and γ = 1.

Table I compares the performance metrics of the above

mentioned predictors. As can be observed from the table, the

HWS algorithm presents the overall best performance among

the linear predictors, having the lowest MSE and NMSE, and
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Fig. 5. Training and testing data [Gbps]
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Fig. 6. Prediction evaluation: Holt–Winters Seasonal algorithm

TABLE I
PERFORMANCE METRICS FOR TRADITIONAL FORECASTING MODELS

Method MSE NMSE MAPE r E

ARMA 0.3864 1.2281 19.09% -0.521 -0.293

ARAR 0.3068 0.975 20.08% 0.254 -0.0263

HW 0.269 0.855 20.73% 0.8935 0.2979

HWS 0.2112 0.671 19.69% 0.6933 0.3752

the highest E. Fig. 6(a) illustrates the values predicted with

the HWS algorithm, compared to the observed data. Although

this linear predictor has the best accuracy, the predicted data

does not follow the evolution of the target values. Fig. 6(b)

shows the histogram of prediction errors. The histogram lets

us investigate the distribution of errors (i.e. the difference

between the actual and the forecasted values): the more narrow

it is, the better the prediction accuracy is. The errors are in

the range [−0.7,−0.2] ∪ [0.1, 0.6]. The Q–Q plot (Quantile–

Quantile) in Fig. 6(c) compares two probability distributions

as parametric curves, the parameter being the interval for the

quantile. The figure displays the quantiles of the observed

values (on 0x) against the quantiles corresponding to the

predicted values (on 0y). If the samples would come from the

same distribution, the plot would be linear. But this is not the

case, thus we can affirm that the target values are not modeled

with sufficient precision.

In order to quantify the prediction performance improve-

ment from method a to method b in terms of MSE, the

following metric is used, as in [10]:

ωa,b =
MSEb −MSEa

MSEb

× 100% . (21)

We denote the prediction models with the following numbers:

1. 7→ ARMA; 2. 7→ ARAR; 3. 7→ HW; 4. 7→ HWS. Table

II compares the performance improvements of the traditional

predictors (in terms of MSE) using (21) for each combination

of pairs of predictors. The values in each line of the table

can be interpreted as follows: by how much that certain

predictor improved the prediction performance, compared to

the predictors in the columns. Although the HWS algorithm

presents a positive performance improvement, it still cannot be

considered an efficient forecasting method because MAPE and

NMSE are too high and the value of the efficiency coefficient

E is too low.

TABLE II
PERFORMANCE IMPROVEMENTS BETWEEN TRADITIONAL PREDICTORS

1. 2. 3. 4.

1. 0% −25.95% −43.64% −82.95%

2. 2.06% 0% −14.03% −45.27%

3. 30.38% 12.32% 0% −27.37%

4. 45.34% 31.16% 21.49% 0%

B. NN Predictors

Four types of NN predictors are compared: STL (Single-

Task Learning), STL with MRL (Multiresolution Learning),

MTL (Multi-Task Learning) and MTL with MRL. In addition,

in the case of STL we compare the performance of single-step

versus multi-step prediction.

In the experiments, we use NNs with a small topology in or-

der to reduce the overall complexity of the predictor. The order

of complexity for training a single epoch is O(nh ·no ·(ni+1))
[4], where nh, ni and no represent the number of hidden,

input and output nodes respectively. To find the appropriate

NN architecture, ni and nh were varied between 3 and 10. We

achieved the best results for a 4−5−no structured feedforward

NN with backpropagation algorithm. The notation indicates

a three-layer NN predictor having 4 input nodes, 5 hidden

neurons and no output neurons. In the case of single-task

learning we have no = 1, as can be seen in Fig. 7, whereas

for multi-task learning we use no = 3, as presented in Fig. 8

(∆ represents a delay element).

x(t-1)

x(t)

x(t-2)
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∆
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Fig. 7. Simulated NN with STL
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Fig. 8. Simulated NN with MTL

The learning algorithm is trainlm which is based on

the Levenberg–Marquardt algorithm. It was chosen because

it converges rapidly and offers a satisfying accuracy. The

learning rate was set to 0.01. The training phase was started in

each case with identical initial weights which were obtained

randomly. In case of multiresolution learning, the training was

conducted 100 iterations for each resolution. When no MRL

was involved, the training lasted 300 epochs. We used this

approach in order to ensure a comparable complexity of the

different NN predictors.

In Table III we can compare the performance metrics of the

NN with STL, in case of single-step and multi-step prediction.

TABLE III
PERFORMANCE METRICS FOR NN WITH STL

Method MSE NMSE MAPE r E

Single-step 0.14462 0.45965 11.08% 0.75583 0.51616

Multi-step 0.34069 1.0828 18.52% 0.10777 -0.13979

The multi-step prediction process presents a poor perfor-

mance, having NMSE ≈ 1 and E < 0. This can be explained

by the fact the this approach does not take into account updated

input values. It uses the predicted output for a given step as

an input for the next step and all other inputs are shifted back

one time unit. This means that after predicting the first value,

the output in Fig. 7 is connected to the x(t) input. Thereby,

the prediction error is propagated and the prediction accuracy

constantly deteriorates. Meanwhile, single-step prediction dy-

namically updates the input information and the prediction

accuracy is not reduced. In this case, the input node x(t) can

be connected to a software tool for measuring traffic load.

An optical comparison of the forecasted values of the

network traffic predictors is possible by investigating Fig.

9. We can observe that the output values predicted with

both predictors employing MRL are close to the observed

values, while the predictor with STL provides the worst match

between output and target values. In Fig. 10 the histograms of

the NN predictors’ errors are shown. The narrowest histograms

are obtained for STL with MRL and MTL with MRL, the

prediction error having values in the range [−0.3, 0.6]. As

desired, we find that most error values are around 0 (between

−0.2 and 0.2), as opposed to STL and MTL. Fig. 11 illustrates

the different Q–Q plots. Employing MRL results in a more

linear Q–Q plot, whereas the STL predictor presents a more

pronounced nonlinearity.

Table IV contains the performance metrics for the four NN

predictors analyzed in this paper, considering only single-step

prediction. The traditional NN predictor (with STL) has the

worst accuracy, but it is the simplest approach. The best results

are obtained for MRL (MAPE below 7%, NMSE close to 0

and E close to 1), although the MTL with MRL has similar

results, but its topology is more complex, thus it involves

more calculations. Repeating the simulations several times, the

results differ slightly but they are similar to this presented case.
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Fig. 9. NN – Prediction
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Fig. 10. NN – Histogram of prediction errors
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Fig. 11. NN – Q-Q plot

TABLE IV
PERFORMANCE METRICS FOR NN PREDICTORS

Method MSE NMSE MAPE r E

STL 0.14462 0.45965 11.08% 0.75583 0.51616

STL + MRL 0.049385 0.15696 6.92% 0.92009 0.83478

MTL 0.091859 0.29195 8.69% 0.86099 0.69269

MTL + MRL 0.050576 0.16074 7.53% 0.91699 0.8308

We make the following notations: 1. 7→ STL; 2. 7→ STL

with MRL; 3. 7→ MTL and 4. 7→ MTL with MRL. Table V

compares the performance improvement brought by different

NN predictors. Positive values are obtained for STL with

MRL. The additional computational complexity of MTL with

MRL is not justified in terms of performance improvement.

Compared to the best linear predictor, namely the HWS

algorithm, the NN predictor involving STL with MRL brings

a performance improvement of ω = 76.62%.

TABLE V
PERFORMANCE IMPROVEMENT BETWEEN NN PREDICTORS

1. 2. 3. 4.

1. 0% −192.84% −57.44% −185.95%

2. 65.85% 0% 46.24% 2.36%

3. 36.48% −86.01% 0% −81.63%

4. 65.03% −2.41% 44.94% 0%

VI. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated that traffic load prediction

is possible, with a certain accuracy. The experimental results

show that nonlinear traffic prediction based on NNs outper-

forms linear forecasting models (e.g. ARMA, ARAR, HW)

which cannot meet the accuracy requirements. If we take into

account both precision and complexity, the best results are

obtained by the NN predictor with multiresolution learning

approach, the predicted traffic generally coinciding with the

observed values. If a low computational complexity is more

important, then a NN predictor with multi-task learning offers

a better solutions because this approach is simpler and its

performance is satisfying.

As future work we envisage to integrate the chosen predictor

into a network management system and to evaluate it in

real-time. Foreseeing the immediate future by employing a

prediction based approach enables a proactive management.
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of the Universitat Politècnica de Catalunya for their support.

REFERENCES

[1] P. Cortez, M. Rio, M. Rocha, P. Sousa, Internet Traffic Forecasting using

Neural Networks, International Joint Conference on Neural Networks,
pp. 2635–2642. Vancouver, Canada, 2006.

[2] Z. Li, R. Wang, J. Bi, A Multipath Routing Algorithm Based on Traffic

Prediction in Wireless Mesh Networks, Fifth International Conference on
Natural Computation, Volume 6, pp. 115–119. Tianjin, China, August
2009.

[3] V. B. Dharmadhikari, J. D. Gavade, An NN Approach for MPEG Video

Traffic Prediction, 2nd International Conference on Software Technology
and Engineering, pp. V1-57–V1-61. San Juan, USA, 2010.

[4] H. Feng, Y. Shu, Study on Network Traffic Prediction Techniques,
International Conference on Wireless Communications, Networking and
Mobile Computing, pp. 1041–1044. Wuhan, China, 2005.

[5] G. Mao, Real-Time Network Traffic Prediction Based on a Multiscale

Decomposition, 4th International Conference on Networking, Reunion
Island, France. Lecture Notes in Computer Science, Volume 3420, pp.
492–499. 2005.

[6] J. Dai, J. Li, VBR MPEG Video Traffic Dynamic Prediction Based on

the Modeling and Forecast of Time Series, Fifth International Joint
Conference on INC, IMS and IDC, pp. 1752–1757. Seoul, Korea, 2009.

[7] L. Cai, J. Wang, C. Wang, L. Han, A Novel Forwarding Algorithm over

Multipath Network, International Conference on Computer Design and
Applications, pp. V5-353–V5-357. Qinhuangdao, China, 2010.

[8] A. Abdennour, Evaluation of neural network architectures for MPEG-4

video traffic prediction, IEEE Transactions on Broadcasting, Volume 52,
No. 2, pp. 184–192. ISSN 0018-9316, 2006.

[9] S. Sun, Traffic Flow Forecasting Based on Multitask Ensemble Learn-

ing, Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, pp. 961–964. Shanghai, China, 2009.

[10] J. Rodrigues, A. Nogueira, P. Salvador, Improving the Traffic Prediction

Capability of Neural Networks Using Sliding Window and Multi-task

Learning Mechanisms, Second International Conference on Evolving
Internet, pp. 1–8. Valencia, Spain, 2010.

[11] Y. Liang, Real-Time VBR Video Traffic Prediction for Dynamic Band-

width Allocation, IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, Volume 34, No. 1, pp. 32–47. ISSN
1094-6977, 2004.

[12] Y. Liang, X. Liang, Improving Signal Prediction Performance of Neural

Networks Through Multiresolution Learning Approach, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, Volume
36, No. 2, pp. 341–352. ISSN 1083-4419, 2006.

[13] D.-C. Park, Prediction of MPEG Traffic Data Using a Bilinear Recurrent

Neural Network with Adaptive Training, International Conference on
Computer Engineering and Technology, pp. 53–57. Singapore, 2009.

[14] P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecast-

ing, Second Edition. Springer-Verlag,ISBN 0-387-95351-5, 2002.
[15] Traffic measurements — http://dc-snmp.wcc.grnoc.iu.edu/i2net/#


