
A NETWORK ARCHITECTURE
FOR SUPPORTING
PARALLEL COMPUTING
OVER ATM

A DOCTORAL THESIS

Author: Joan Vila i Sallent
Advisor: Josep Solé i Pareta

UNIVERSITAT POLITÈCNICA DE CATALUNYA
Departament d’Arquitectura de Computadors

Barcelona,
September 1997

Contents

List of Figures vii

List of Tables xi

Preface xiii

Acknowledgments xvii

1 Introduction 1

1.1 Motivation and contributions : 1

1.2 The scenario : 2

1.2.1 Parallel computing and Networks of Workstations (NoWs) : : : : : : : : : : : : 2

1.2.2 A public platform based on the NoW concept : : : : : : : : : : : : : : : : : : : 5

1.3 Concepts of ATM technology : 7

1.3.1 Architecture of ATM networks : 7

1.3.2 Services provided in the ATM layer : 8

1.3.3 Services provided in the ATM Adaptation Layer : : : : : : : : : : : : : : : : : : 11

1.3.4 Possibility of virtual subnetworks : 13

1.4 Measuring communications performance : 15

1.4.1 Performance parameters : 15

1.4.2 Performance of parallel computing applications : : : : : : : : : : : : : : : : : : 16

2 Potential performance of ATM in Networks of Workstations 17

2.1 Performance under ideal conditions : 17

2.2 Bottleneck analysis in ATM-based environments : 20

2.2.1 Experiment 1: Impact of network load and network size : : : : : : : : : : : : : : 20

2.2.2 Experiment 2: Estimation of cell loss : 22

2.2.3 Experiment 3: Impact of host delay and network load : : : : : : : : : : : : : : : 24

2.3 Discussion : 24

iii

iv CONTENTS

3 Strategies for introducing ATM in parallel environments 27

3.1 Traditional protocols over ATM : 27

3.1.1 Interfaces between existing protocols and ATM : : : : : : : : : : : : : : : : : : 27

3.1.2 Performance studies : 29

3.2 Introducing an ATM-specific API : 31

3.2.1 The ATM API : 31

3.2.2 Performance without an adapted message-passing library : : : : : : : : : : : : : 32

3.2.3 Performance with adapted message-passing libraries : : : : : : : : : : : : : : : 34

3.2.4 Discussion : 35

3.3 Specific mechanisms for parallel computing : 35

3.3.1 API-level enhancement mechanisms : 36

3.3.2 Transport-level mechanisms : 37

3.3.3 Application-level mechanisms : 38

3.3.4 Discussion : 40

4 The network architecture model 41

4.1 Integration of specific mechanisms over ATM : 41

4.2 Specific architecture for parallel computing : 42

4.2.1 Overlay network for signaling in parallel computing : : : : : : : : : : : : : : : : 42

4.2.2 Protocol architecture : 46

4.2.3 Requirements for the Application Level : 47

4.2.4 Architecture of the Convergence Level : 48

4.3 Summary : 50

5 Coupling SSCOP with ATM-based parallel computing 53

5.1 Description of SSCOP basic functionality : 53

5.1.1 Interest of SSCOP in ATM networks : 53

5.1.2 Operation of the loss recovery mechanism : 54

5.2 Modifications to SSCOP : 59

5.2.1 The “frame corruption by cell loss” problem : 60

5.2.2 Cell-based PDU mapping : 61

5.2.3 Encapsulation schemes : 62

5.3 Experiments : 64

5.3.1 Measurement scenario : 65

5.3.2 Behavior of PDE1 : 68

5.3.3 Behavior of PDE2 and SOLVER : 72

5.3.4 Confidence of results : 74

CONTENTS v

5.4 Discussion : 76

6 Exploitation of ATM services 79

6.1 Enhancing the Parallel Computing AAL : 79

6.1.1 Introducing ATM service categories : 79

6.1.2 The Latency Monitoring Engine (LME) : 80

6.1.3 The Effective Communication Engine (ECE) : : : : : : : : : : : : : : : : : : : 82

6.2 Performance measurements : 89

6.2.1 Experiment configuration : 91

6.2.2 Task-to-task latency : 93

6.2.3 ABR service utilization : 96

6.2.4 Bandwidth consumption : 97

6.2.5 Influence of the ABR peak rate : 98

6.2.6 ABR with a minimum guaranteed cell rate : 99

6.2.7 Confidence of results : 100

6.3 Discussion : 101

7 Conclusions and future work 103

7.1 Summary of contributions : 103

7.1.1 Potential performance of ATM-based platforms : : : : : : : : : : : : : : : : : : 103

7.1.2 The network architecture : 104

7.1.3 The mechanisms for implementing the network architecture : : : : : : : : : : : : 105

7.2 Future work : 106

A Benchmarks 109

A.1 Description : 109

A.2 Characteristics of communications : 110

B Emulation of an ATM network 113

B.1 Objectives and description : 113

B.1.1 ATM network simulation : 114

B.1.2 Interface with real applications : 115

B.2 Validation and verification : 117

B.2.1 Verification of message sequence & data integrity : : : : : : : : : : : : : : : : : 117

B.2.2 Validation of measurements : 118

Bibliography 121

vi CONTENTS

List of Figures

Chapter 1

1.1 Architecture of a shared-memory system. : 3

1.2 Distributed memory architecture. : 4

1.3 Network of Workstations (NoW). : 5

1.4 Architecture of ATM networks. : 7

1.5 The VP concept: Virtual Channels multiplexed within Virtual Paths. : : : : : : : : : : : 14

1.6 Example of virtual subnetwork by concatenating VPs. : : : : : : : : : : : : : : : : : : : 14

Chapter 2

2.1 24-hour Ethernet traffic in the department, measured in the internal subnetwork attachment. 18

2.2 Performance for different network sizes. : 21

2.3 Impact of network load and burst size on communications latency. : : : : : : : : : : : : 22

2.4 Cell loss for different configurations. : 23

2.5 Performance for different host delays. : 25

Chapter 3

3.1 LAN Emulation architecture. : 28

3.2 IP routing across an ATM network. : 29

3.3 Native ATM API-based architecture. : 32

3.4 Protocol stacks for ATM-API-based architectures. : 33

3.5 Performance of several software structures obtained by Dowd et al [DSBC95]. : : : : : : 34

3.6 Dedicated protocol environment for parallel computing. : : : : : : : : : : : : : : : : : : 37

3.7 Architecture of a multithreading environment for supporting parallel computing. : : : : : 38

3.8 Multithreading support for distributed parallel computing. : : : : : : : : : : : : : : : : : 39

Chapter 4

4.1 Specific architecture for supporting multimedia applications suggested in [GVH96]. : : : 43

vii

viii LIST OF FIGURES

4.2 Specific architecture for supporting the Video on Demand Service as suggested in [CF96]. 43

4.3 Integration of services over ATM. : 44

4.4 A virtual ring overlay network. : 45

4.5 A virtual tree overlay network. : 46

Chapter 5

5.1 SSCOP SD frame format. : 55

5.2 SSCOP POLL frame format. : 56

5.3 SSCOP STAT frame format. : 56

5.4 SSCOP USTAT frame format. : 56

5.5 SSCOP sender behavior flowchart. : 58

5.6 SSCOP receiver behavior flowchart. : 59

5.7 Example of SSCOP operation. : 60

5.8 Fragmentation strategies. : 62

5.9 Encapsulation schemes for SD frames (sizes in bytes). : : : : : : : : : : : : : : : : : : : 63

5.10 Structure of a PVM message. : 64

5.11 Example of issuing a STAT sequence. : 65

5.12 Simulated environment. : 65

5.13 Performance of PDE1 for a buffer capacity of 200 cells and a POLL interval of 0.5 seconds. 69

5.14 Why cell-based fragmentation leads to stability. : 70

5.15 Performance of PDE1 for a buffer capacity of 1000 cells and a POLL interval of 0.5 seconds. 71

5.16 Performance of PDE1 for a buffer capacity of 200 cells and a POLL interval of 1.5 second. 73

5.17 Latency and cell loss of PDE1, PDE2, and SOLVER for a buffer capacity of 200 cells and
a POLL interval of 0.5 seconds. Encapsulation scheme: several PC-PDUs per cell. : : : : 74

5.18 Execution time of PDE1, PDE2, and SOLVER for a buffer capacity of 200 cells and a
POLL interval of 0.5 seconds. Encapsulation scheme: several PC-PDUs per cell. : : : : : 75

Chapter 6

6.1 Mechanisms for extending the Parallel Computing AAL. : : : : : : : : : : : : : : : : : 80

6.2 Operation example for the time-stamped LME. : 81

6.3 Tasks and connections used in the LME. : 82

6.4 Operation of ECE’s latency modes. : 83

6.5 Modified encapsulation scheme for the ECE. : 83

6.6 Sender ECE behavior in low-latency mode (switching ECE). : : : : : : : : : : : : : : : 84

6.7 Receiver ECE behavior in low-latency mode (switching ECE). : : : : : : : : : : : : : : 85

6.8 Sender ECE behavior in low-latency mode (duplicating ECE). : : : : : : : : : : : : : : 87

LIST OF FIGURES ix

6.9 Sender ECE behavior in high-latency mode (switching ECE). : : : : : : : : : : : : : : : 88

6.10 Receiver ECE behavior in high-latency mode (switching ECE). : : : : : : : : : : : : : : 89

6.11 Sender ECE behavior in high-latency mode (duplicating ECE). : : : : : : : : : : : : : : 90

6.12 Receiver ECE behavior in high-latency mode (duplicating ECE). : : : : : : : : : : : : : 91

6.13 Simulated environment. : 92

6.14 Validation of the ABR service category model. Peak rate: 80 Mb/s. : : : : : : : : : : : : 94

6.15 Latency measurements. : 94

6.16 Cell loss ratio experienced by applications. : 95

6.17 ABR service utilization measurements. : 96

6.18 Measurements for different ABR peak cell rates (PDE1). : : : : : : : : : : : : : : : : : 98

6.19 Measurements for different ABR peak cell rates (PDE2). : : : : : : : : : : : : : : : : : 99

6.20 Performance of PDE1 when using ABR with a minimum bit rate of 35 Mb/s. : : : : : : : 99

6.21 Performance of PDE2 when using ABR with a minimum bit rate of 35 Mb/s. : : : : : : : 100

6.22 Task-to-task latency experienced under different ABR minimum bit rates. : : : : : : : : : 100

Chapter 7

Appendix A

Appendix B

B.1 ATM network emulation architecture. : 113

B.2 ATM network simulator structure. : 114

B.3 Scheme for generating background traffic. : 115

B.4 Implementation of the interface between the simulated network and the real applications. : 115

B.5 Example of the real application-emulated ATM network interface operation. : : : : : : : 116

B.6 Dynamic spawning of tasks. : 117

B.7 Comparison of the output yielded by the master-slave programs. : : : : : : : : : : : : : 118

x LIST OF FIGURES

List of Tables

Chapter 1

1.1 Round-trip delay and peak delivered throughput for a variety of commercial local area
network environments. Platform: Solaris 2.4 on SS-20. : : : : : : : : : : : : : : : : : : 15

1.2 Average throughput achieved by real parallel programs (Mb/s). : : : : : : : : : : : : : : 16

Chapter 2

2.1 Processor performance (5 CPUs). : 18

2.2 Performance achieved by real algorithms over different environments (ATM under ideal
conditions). : 20

2.3 Performance of different situations for the ATM-based environment, with respect to mul-
tiprocessors. : 22

2.4 Performance of different situations for the ATM-based environment, with respect to mul-
tiprocessors (1 switch only). : 25

Chapter 3

3.1 Performance under sockets and TCP/IP. : 30

3.2 ATM, Ethernet and FDDI under a simple RPC protocol. : : : : : : : : : : : : : : : : : : 30

3.3 Performance of five protocol combinations from a ping-pong test. : : : : : : : : : : : : : 33

3.4 Execution time of matrix multiplication over several APIs. : : : : : : : : : : : : : : : : 33

3.5 Performance of PVM over several architectures. : 34

3.6 Performance of Active Messages over ATM [vEBB94]. : : : : : : : : : : : : : : : : : : 36

3.7 Execution timer of Matrix Multiplication (seconds). : 39

Chapter 4

4.1 Suitable mechanisms to support convergence level functions. : : : : : : : : : : : : : : : 49

Chapter 5

5.1 Relevant protocol variables and PDU parameters. : 55

xi

xii LIST OF TABLES

5.2 Meaning of the fields common to several PDUs. : 55

5.3 Parameters of simulation. : 66

5.4 Values for the high state average rate and average link utilization. : : : : : : : : : : : : : 67

5.5 Values considered for the validation study, in �seconds. : : : : : : : : : : : : : : : : : : 67

5.6 Results of validation study, in �seconds. : 68

5.7 Confidence intervals for the measured mechanisms (confidence level: 90%). : : : : : : : 76

Chapter 6

6.1 Values for the relevant parameters of the ABR service. : : : : : : : : : : : : : : : : : : 92

6.2 Parameters for our low-latency mechanism. : 93

6.3 Values considered for the validation study, in �seconds. : : : : : : : : : : : : : : : : : : 93

6.4 Results of validation study (1-cell packet), in �seconds. : : : : : : : : : : : : : : : : : : 93

6.5 Bandwidth consumption experienced by PDE1 (Kb/s). : : : : : : : : : : : : : : : : : : 97

6.6 Bandwidth consumption experienced by PDE2 (Kb/s). : : : : : : : : : : : : : : : : : : 97

6.7 Confidence intervals for the measured mechanisms (confidence level: 90%). : : : : : : : 100

Chapter 7

Appendix A

A.1 Distribution of message lengths (in bytes). : 110

A.2 Message temporal density. : 111

Appendix B

B.1 PVM Primitives implemented in the application/network interface. : : : : : : : : : : : : 116

B.2 Round-trip components for ATM, according to [TL93] (in �seconds). : : : : : : : : : : : 118

B.3 Values considered for the validation study, in �seconds. : : : : : : : : : : : : : : : : : : 119

B.4 Results of validation study, in �seconds. : 119

Preface

This thesis presents a network architecture addressed to the execution of parallel computing applications on
top of a computer network based on the ATM (Asynchronous Transfer Mode) technology. Recent advances
in network performance and workstation technologies have encouraged the research in strategies to provide
support to the communication needs of network-based parallel computing environments. We understand
that the use of such platforms for supporting parallel computing makes sense when the environment takes
advantage of a previously existing network that supports a base of networking applications. In many cases,
it will be possible to achieve satisfactory performance for parallel computing applications without the
need of incurring in the cost motivated by the acquisition and maintenance of a dedicated multiprocessor,
which may be difficult to amortize unless a highly intensive use of parallel computing is performed. For
this reason, parallel computing will no longer be limited to critical applications but rather the availability
of less costly environments will allow for a wider range of applications to benefit from parallelism. Thus,
the existence of both options can lead to a popularization of parallel computing. All these issues make our
case of network-based distributed computing be conditioned by:� The need that parallel computing applications and traditional networking applications share a com-

mon ATM network, in order to avoid the unnecessary allocation of resources that would result from
the use of a dedicated network for parallel computing.� The utilization of ATM as the networking technology, since this technology is targeted at integrating
the various communication services in the near future and, as a consequence, it will be present in
both LAN (Local Area Network) and WAN (Wide Area Network) environments.� The requirement that any mechanism for supporting parallel computing applications has to rely on
standard definitions of ATM, since the addition of network-level specific mechanisms would lead
to increase the complexity in the network and difficult network sharing among diverse application
types.

As ATM-based networks of workstations are a particular instance of distributed memory parallel sys-
tems, the bottleneck is found in the communications through the interconnection network. Therefore, the
contribution from communications to performance degradation has to be minimized in order to allow for
the achievement of satisfactory performance to ATM-based parallel computing environments. Under all
these conditions, our proposed ATM-based network architecture will have to satisfy the major requirement
of communications in parallel computing applications, that is, the provision of a low-latency communica-
tion service while guaranteeing the delivery of all the data submitted to the network. For this purpose, we
will take advantage of the special characteristics of parallel computing applications, which include:� The short PDUs that parallel computing applications interpret —the elementary data types integer,

float, etc.— over which more complex structures such as vectors and matrices are built.� The moderate average bit rate due to a fairly low frequency of communications, but with large
bandwidth requirements when communications effectively take place.

xiii

xiv PREFACE� The long execution time —hours or days— that reality parallel computing applications usually
experience.� The fact that communications in parallel tasks consists of a sequence of requests and responses, be-
cause the importance of throughput as a measure of performance becomes relative and, consequently,
we can sacrifice some throughput if this allows for a gain in latency.

The work on the proposal of a network architecture for supporting parallel computing applications
included three phases: (1) the assessment of the potential possibilities of ATM-based environments;
(2) the proposal of an architectural model enabling the integration of specific mechanisms for parallel
computing on top of an ATM network that is shared with other networking applications; and (3) the
design and evaluation of concrete mechanisms which cover the transition between the communication
requirements of parallel computing applications and the ATM transport capabilities.

With regard to the potential performance achievable using ATM, we assess that ATM-based parallel
computing environments outperform environments based on other network technologies such as Ethernet
and, depending on the application, the performance can be comparable to that of multiprocessors. We also
assess that the achievement of the maximum performance over ATM networks requires the elimination of
the bottlenecks found in the endpoint hosts.

As an integrated network architecture, we propose a model in which several application types can
coexist, each one with its specific network architecture. In the case of parallel computing applications,
we consider an architecture including three levels: an application level where the specific requirements
of parallel computing applications are managed, a network level containing the functions provided by
the ATM technology, and a convergence level including those functions that are required for supporting
parallel computing applications and are not supported in the network level.

The concrete mechanisms that we suggest for the network architecture focus on minimizing the impact
of the protocol stack on latency. This is accomplished by tightly coupling communications from parallel
computing applications with ATM, so that heavyweight protocol stacks such as TCP/IP are avoided. Thus,
AAL-level lightweight mechanisms supply the robustness required by parallel computing applications that
ATM networks do not provide, including procedures to reduce the need of recovering from information
loss. The evaluation of the mechanisms has been performed by simulation, due to the need of a highly-
configurable environment, as well as the unavailability of suitable equipment in some cases. In particular,
our suggested mechanisms involve:� Coupling of a transport mechanism to parallel computing. The loss recovery mechanism of an

existing lightweight transport protocol, namely SSCOP (Service Specific Connection-oriented Pro-
tocol), has been modified in order to avoid the occurrence of useless retransmissions by considering
PDUs (Protocol Data Unit) not longer that 48 bytes (the payload of an ATM cell). This modified
SSCOP is viewed by the application as a novel, specific AAL.� Exploitation of ATM’s standard transport services. The ATM Forum defines several classes of
service, according to the quality of service, namely UBR (Unspecified Bit Rate), ABR (Available
Bit Rate), VBR (Variable Bit Rate), and CBR (Constant Bit Rate). The introduction of ABR can
improve the communications latency, but at a cost that may be excessive as compared to an UBR
service when the network is not congested. Thus, we propose that ABR be used only when the
latency experienced in the network is significantly high while in the rest of time UBR is used instead.
The purpose of this strategy is to reduce the cell loss probability experienced by modified SSCOP,
and therefore the need of retransmissions, in a cost-effective fashion.

PREFACE xv

The main results from the evaluation of these mechanisms are that (1) the mechanism restricting the
retransmitted information to the effectively lost cells succeeds in providing a robust operation and, in
addition, the short PDUs accelerate the delivery of data, thus reducing latency; and (2) the exploitation
of ATM service categories leads to achieve cost-effective performance, as it is possible to get values
for latency similar to those obtained when relying on ABR all the time, but with a significantly lower
utilization of the ABR service category. Thus, we have achieved an ATM-based network architecture
whose impact of the run-time performance of parallel computing applications is reasonable. Another issue
that is important for building real ATM-based parallel computing environments is the configuration of the
environment itself. Further research is needed on the signaling procedures for this purpose.

The internal organization of the thesis is as follows: Chapters 1, 2, and 3 are devoted to introduce
ATM-based parallel computing environments and the related literature on them. In particular, Chapter 1
contains a brief summary and introduces some background concepts on ATM technology and measurement
techniques that are relevant to the understanding of the architectures and mechanisms presented in the work.
In Chapter 2, the performance of an ATM-based parallel computing environment when running real parallel
algorithms under ideal conditions, that is, without overheads, is compared with the performance achieved
by other parallel computing environments, including multiprocessor and Ethernet-based platforms, and the
relative importance of bottlenecks is also studied. Chapter 3 summarizes the diverse strategies undertaken
by many authors in order to introduce ATM in parallel computing environments, focusing on their adaption
to the characteristics of parallel computing applications and their ability to be integrated in a network shared
with other applications.

Chapter 4 draws the framework on which our proposal of an ATM-based network architecture for
supporting parallel computing is situated. For this purpose, the characteristics of the model on which we
base our proposals are discussed, by taking into account the aforementioned requirements of specificity
and ability of integration.

Chapters 5 and 6 are focused on the particular mechanisms we suggest to be implemented within
the proposed network architecture. In Chapter 5 we discuss the specific AAL for parallel computing
that couples an existing protocol to the special characteristics of communications in parallel computing
environments. In Chapter 6, we present how we enhanced the specific AAL in order to take advantage of
ATM service categories. These two chapters include simulation-based performance studies.

Finally, Chapter 7 presents the conclusions of the work and displays the future work that will be carried
out to complete the present work and to widen its scope.

The appendices contain complementary aspects of the work. Appendix A contains a description of the
characteristics of the benchmarks used in the performance evaluation measurements carried out that have
been carried out throughout the work. Appendix B is a description of a particularly complex simulation
environment that we used for emulating an ATM network in the experiments discussed in Chapter 2.

xvi PREFACE

Acknowledgments

The work that has led to the present thesis would not have been possible without the help of many people.
First of all, I specially thank Josep Solé i Pareta, who has been the advisor all these years, for his dedication
on the supervision of the work in this thesis. I also thank Jordi Domingo i Pascual for having dedicated
some of his time on my doubts about measuring, as well as Jordi Torres and Teodor Jové for their help
in concepts concerning distributed systems and parallel computing, as well as their collaboration in the
part of assessing the potential performance of ATM-based environments. I acknowledge the technical
orientations from Prof. Ian F. Akyildiz, Ramón Beivide, and Vı́ctor Viñals.

I do not want to forget the research assistants in the department, without whom the fine atmosphere that
have enabled the realization of this thesis would not have been possible. Some of the informal discussions
have been taken into account throughout the thesis. The latter applies also for the rest of members in the
department.

An essential part of the work has been carried out with the support of the machines in the DAC’s
computing center (LCAC), the CEPBA (European Center for Parallelism in Barcelona), the CESCA (Su-
percomputing Center of Catalonia), and the CCABA (Center for Advanced Broadband Communications).
I acknowledge the invaluable support from the staff in these centers.

Finally, I want to thank my family, for their support along the work.

During the preparation of the present thesis, the author has been supported by a research training
fellowship from the Spanish Education Ministry (FPI program), reference code AP92 39346379. The
work was carried out under the following basic research contracts by the Spanish Government’s CICYT
(Interdepartmental Commission for Science and Technology): TIC 92-1298-PB and TIC 95-0982-CO2-01.

xvii

xviii ACKNOWLEDGMENTS

1
Introduction

This chapter is an introduction to the scenario on which all the work in this thesis is based.
After overviewing the objectives and contents of the work, we present the characteristics of the
ATM-based platform for supporting parallel computing on which we rely for our proposals.
The rest of the introduction is devoted to background technical aspects that will be used
throughout the work: the study of some concepts regarding the services provided by ATM
networks, and the discussion of the parameters on which the performance studies contained
in this work are based.

1.1 Motivation and contributions

The ultimate aim of this work is to contribute to the convergence between two major technological areas
such as communications and computing. This convergence is currently accelerating thanks to a number of
technical factors, namely (1) the progress in hardware technology, in particular microprocessor technology,
which is leading to an increasing popularization of parallel computing; (2) the increasing availability of
large amounts of bandwidth in the networks, which is allowing that communications no longer be the
hardest bottleneck in distributed computer applications; and (3) the current trend of integrating the various
communication services provided by networks with a single networking technology that is capable of
supporting all these services will reduce the costs of the networking infrastructure. These factors are leading
to a future panorama where large computing systems composed by distributed machines interconnected
via high speed links will be able to support a wide variety of applications.

One of the services to be included within this future platform is the support to communications in
parallel computing environments, where the processes are located in a number of computers connected to
the integrated network. The availability of such an environment with sufficiently adequate performance
is particularly interesting since many types of parallel applications can execute on top of such a platform
without incurring in the costs involved with dedicated parallel computing environments —multiprocessors
and multicomputers. Although some applications will always require the power provided by these
dedicated environments, it is also true that some other applications will suffice with a network-based
parallel computing platform, specially if the organization does not have a very intensive need of parallel
computing. We assume that the integrated network will be based on ATM (Asynchronous Transfer Mode),
as the international standardization bodies have adopted this technology for this purpose. Thus, ATM
networks are expected to be very common and, as any previously existing ATM-based network can be
used as an infrastructure for supporting parallel computing, it will be possible to run complex parallel

1

2 1. INTRODUCTION

applications with a very small cost.

The contributions in the present work are addressed to provide ATM-based parallel computing platforms
with a set of communication mechanisms that, by taking advantage of the features supplied by ATM
networks, lead to minimize the performance degradation that is inherent to communications between
parallel tasks in different nodes. In particular, our work includes:� The study of the potential performance to which ATM-based environments will tend in an asymp-

totic manner, in order to assess the usefulness of all the research involved in ATM-based parallel
computing platforms.� The definition of the network architecture model, in which parallel computing will be supported by
specific mechanisms that will share the ATM network with specific network architectures for other
networking applications.� The proposal of an ATM Adaptation Layer (AAL) that will specifically support communications
generated by parallel computing applications. This specific AAL takes advantage of the cell-relying
feature of ATM equipment in order to reduce the impact of congestion in ATM networks.� The enhancement of the specific AAL by exploiting the diverse service categories provided by
ATM. The objective is to improve performance in a cost-effective fashion with the introduction of
expensive mechanisms only when strictly required.

In the rest of the introduction, we deal with the characteristics of the parallel computing environment on
which the present work is based, and relate this platform with the concept of “Networks of Workstations”
that is found in the origin of our proposals. This discussion is completed with the summary of background
concepts that are important to understand the rest of the work. In particular, we include a study of all
aspects of ATM technology that can potentially be used by parallel computing environments. Another issue
that is covered in the introduction is the description of the particular characteristics of communications
in parallel computing environments, which are originated by the generation and reception by each tasks
of messages from all the other tasks in a discontinuous fashion, and the specific procedures to measure
performance in these environments that result form the specificities of parallel computing applications.

1.2 The scenario

Until recently, running parallel applications has been a matter reserved to supercomputers. The current
progress in both microprocessor and networking technologies in beginning to build cost-effective parallel
systems with on-the-shelf workstation and local area networks. In the following we introduce general
concepts of parallel computing before discussing the specific characteristics and concerns found in networks
of workstations, and then we present the characteristics of the ATM-based parallel computing environment
on which we have based.

1.2.1 Parallel computing and Networks of Workstations (NoWs)

The advent of multiprocessor systems has enabled the possibility of taking advantage of parallel execution
flows in order to reduce the execution time of applications. This enhanced performance can be exploited
either on an instruction basis, a thread basis, or a process basis. Many scientific and engineering applications
are designed to run on task-level parallel systems, thus achieving coarse-grain parallelism. Although in
theory it is possible to multiply the performance achieved by a uniprocessor by the number of processors

1.2. THE SCENARIO 3

Cache

CPU

Cache

CPU

Cache

CPU

Memory

Interconnection network

Figure 1.1: Architecture of a shared-memory system.

in the parallel computer, in practice this is not possible due to a number of reasons. The first reason is
related to the characteristics of the parallel algorithms where, as the Amdahl’s law illustrates [Amd67],
the performance delivered by the sequential parts of the code significantly condition the actual speedup
achieved by the system. The second reason is subsequent to the need of parallel processes to communicate
and synchronize among themselves. Thus, the communication mechanisms have a significant impact on
the actual performance achieved by parallel computers. In fact, communications are found to be one of
the most important bottlenecks.

Architectures of parallel computers are traditionally classified in two main classes: shared-memory
and distributed-memory. For each class, several implementations have been proposed which trade off
performance and cost. As far as distributed-memory architectures are considered, one particular case is
represented by the networks of workstations, which provide a cost-effective solution since they enable the
support of parallel computing by using components not specifically designed for this purpose [Fos95].
In the following, each of the three studied environments are discussed. In particular, their relevant
characteristics are reviewed, and the implementation corresponding to each environment is presented.
Emphasis is made on communication issues.

Shared-memory multiprocessors: In this architecture, displayed in Figure 1.1, part or the entire memory
space is shared by all the processors. Thus, communications between tasks running on different processors
can communicate through these common memory locations, usually with the help of mutual exclusion
procedures. Shared-memory multiprocessors make extensive use of caches, since the memory latencies
can be very high, specially when memory modules are distributed. For this reason, the characteristics
of the caches and the coherence algorithm, together with the locality of the data exchanged by the tasks,
determine in a significant fashion the performance of shared-memory communications. An example of
this architecture is the SGI PowerChallenge, whose architecture is similar to that of the Challenge system,
discussed in [HP96].

The SGI PowerChallenge is a shared memory multiprocessor. The interconnection between processors
and modules takes place through a wide bus (256 data bits and 40 address bits). The cache coherency is
maintained through an enhanced snooping protocol. Each bus cycle corresponds to 21 nanoseconds. As
22 bus cycles are required to satisfy a read miss, 462 nanoseconds is the latency for a processor module
to get 128 bits from main memory. The particular implementation used in the measurements in this work
uses R10000 processor modules.

Distributed-memory multiprocessors: In distributed memory systems, each processor has direct access to
local memory that cannot be directly accessed by the rest of processors, as shown in Figure 1.2. As far as
communications between tasks are concerned, the predominant cost comes from the characteristics of the
network interconnecting the processors.

Analogously to shared memory environments, locality is an important factor since it determines the
need to communicate to remote processors. Distributed memory systems are simpler than shared memory
systems in the sense that no mutual exclusions or cache coherence algorithms have to be implemented.
However, programming these environments is more difficult since the programmer has to be aware of the

4 1. INTRODUCTION

Interconnection network

CPU

Cache

Memory

CPU

Cache

Memory

CPU

Cache

Memory

Figure 1.2: Distributed memory architecture.

architecture. The IBM SP2 is an example of this type of machines. Networks of workstations, which are
discussed below, are another case of distributed memory systems. Its architecture is described in [A+95].
The computing nodes consist of RS/6000-based modules.

Unlike centralized shared-memory systems, represented by the SGI PowerChallenge, in the SP2 memory
modules are local to each processors. Thus, a complex interconnection is needed which, in the particular
SP2 configuration tested in this work, consists of a multistage packet-switched network so-called high
performance switch [S+95]. Requests of remote memory require to access the I/O bus attached to each
processor, so remote memory accesses exhibit much higher latency than local ones. As mentioned in
[MABG96], latencies are lower than 1.2 �s.

Programming parallel systems involves a high amount of issues to take into account, namely inter-
process communication, synchronization, etc., as opposed to sequential programming. In order to ease the
development of parallel programs, there exist the so-called programming models, which consist of a set
of abstractions providing transparency to the programmer with respect to the particular architecture of the
parallel system. The most popular programming models include the Shared-Memory model, where details
of communications are hidden to the programmer, and the Message-Passing model, where communication
takes place through explicit messages. There are other popular programming models, for instance the
Data-Parallel model, but compilation can reduce them to shared-memory or message-passing.

Although the shared-memory model is well-suited for running on shared-memory architectures and the
message-passing model on distributed-memory systems, these models are independent of the underlying
architecture. Indeed, it is possible to build a shared-memory programming model over a distributed
memory architecture, with the help of the operating system [MYW94], thread libraries, or object-oriented
abstractions [Fos95], as well as to use a message-passing model over a shared memory architecture, as
possible in the SGI PowerChallenge machines [SGI96]. Thus, many parallel algorithms are designed to
be run on a message-passing model since it enables a higher degree of interoperativity. This model is
generally supported by a user-level message-passing library. The most popular libraries are PVM (Parallel
Virtual Machine) [G+94] and MPI (Message Passing Interface) [DOSW96].

The challenge of interprocessor communication is to minimize the delay introduced by the intercon-
nection networks. Thus, in the SP2 a message header can reach its destination in just 39 �seconds for
a 32-node system. Unless a failure in the network, the reliable delivery of data is assured by means of
a hardware-level protocol. Thus, in case of contention, data can be slightly delayed but not lost, thus
avoiding complex software-level protocols.

Networks of workstations, also known as Workstation Clusters, are in fact a special case of distributed
memory systems. Their particularity relies on the fact that, as displayed in Figure 1.3, typical workstations
are used as processor nodes and the interconnection network is implemented by standard local area
networking technologies including Ethernet, FDDI (Fiber Distributed Data Interface) and, recently, ATM
(Asynchronous Transfer Mode), described in the next section. The utilization of such technologies leads

1.2. THE SCENARIO 5

Interconnection
network

Figure 1.3: Network of Workstations (NoW).

to cost-effective solutions for a price in performance degradation that can be affordable for a wide range
of applications, as opposed to more expensive systems for which the higher performance is achieved at
the expense of specific components, as is the case of the IBM SP2 [A+95].

Using networks of workstations for parallel computing is raising increasing interest because there is
no need of dedicated equipment. The same networked workstations used as file servers or individual
desktop computers can be used as parallel nodes when these workstations are idle —usually at nighttime,
although in Berkeley it was found that as many as 60% of workstations were available for running parallel
jobs, even during daytime hours [ACP+95]. However, communications represent a hard bottleneck
for networks of workstations. In particular, using Ethernet as the interconnection technology seriously
limits the performance gain achieved by applications with respect to the sequential execution of an
equivalent algorithm —this gain is known as the speedup. The reasons are the low bandwidth offered
by Ethernet —10 Mb/s, and the fact that concurrent communication requests are serialized because all
hosts share the transmission medium, which specially impacts configurations with many processors since
concurrent communications are more likely. Using FDDI can partially improve the performance of
networks of workstations, thanks to its 100 Mb/s bandwidth. Nevertheless, FDDI is another shared-
medium technology where communications should be serialized. This fact, together with the high latency
involved in transmitting data due to the high overhead, precludes the achievement of the performance that
the increased bandwidth promised. These observations are supported by a number of studies, for example
[FW94].

A consequence from the statements above, the most popular LAN technologies like Ethernet and FDDI
are expected not to have adequate connectivity and/or bandwidth as well as low enough latency to carry
out some of the applications. But the networking technology is not the sole responsible of the bottleneck.
The evolution of networking technologies has achieved very important increases in bandwidth, but the
time invested in processing within the communicating peers has not improved similarly. Therefore,
the communications bottleneck is not eliminated but simply moved from the networking technology to
the host-level processing. This effect is illustrated in [C+94], where the effective bandwidth utilization
is measured along a 3-minute job transferring 32 MB of data. While an Ethernet achieved utilizations
between 20% and nearly 100%, a FDDI ring, offering ten-times-higher bandwidth, experienced utilizations
between 8% and 25% only.

1.2.2 A public platform based on the NoW concept

The most relevant feature of the NoW concept is the possibility of taking advantage of previously existing
equipment in order to support parallel computing. Thus, the typical configuration of workstations con-
nected to a local area network that is found in many organizations can be used as a parallel computing

6 1. INTRODUCTION

platform. Actually, the network need not be a local area network; MANs and WANs can be an adequate
infrastructure if parallel computing applications can afford the extra delays involved in such wide areas.
However, much of the work on Networks of Workstations rather assume a dedicated environment1. In-
stead, we explicitly focus on platforms using non-dedicated equipment, whose operation is consequently
conditioned by the need of parallel computing applications to interoperate with other applications. For
this purpose, we assume the following conditions for our model of networks of workstations as a logical
result:

1. Parallel computing applications will share the network with traditional networking applications.
Parallel computing could exploit dedicated networking technologies, such as Myrinet [B+95], and
also other technologies requiring a tight coupling with processors, as in Fiber Channel [SV96]
and Memory Channel [Gil96]. These technologies only become affordable when the network of
workstations is intensively devoted to parallel computing, due to the important amount of resources
that are required to be allocated for a single application type. In contrast, taking advantage of an
existing network that is already used by other networking applications (file transfers, multimedia,
etc.) introduces a more efficient exploitation of the resources available in the organization.

2. In the expected scenario, ATM technology will be commonplace. Current progress in networking
is addressed to achieving faster technologies so that the spectrum of applications taking advantage
of networking becomes broader. For this purpose, many networking technologies have been being
used in order to increase the available bandwidth in both the local and the wide areas, namely
802.x LANs (Ethernet and Token Ring), X.25, FDDI (Fiber Distributed Data Interface), DQDB
(Distributed Queue Dual Bus), Frame Relay, and ATM (Asynchronous Transfer Mode). ATM has
become a more serious candidate to become the future networking technology for both wide and
local area networks. The reason is that although ATM was originally proposed to support the
B-ISDN (Broadband Integrated Services Digital Network) infrastructure, today is a major option
to replace legacy LAN technologies. We foresee the existence of a large number of workstations
connected to ATM networks in the near future.

3. The adaptation to parallel computing specificities will be done above ATM. Although doing the
adaptation inside the network level as done in [SBT96] could lead to better performance, we do not
find this approach appropriate in the context of this work. Instead, in order to fulfill the preceding
hypothesis, in particular the fact that many application types will share the ATM network, we
assume that the network is a standard ATM network. For this purpose, all the functions that are
specific to parallel computing applications will be implemented in the endpoint hosts, above ATM.
The mechanisms implementing the proposed network architecture will rely on the standard service
categories defined by the ITU-T (Telecommunications Standardization Sector of the International
Telecommunication Union) and the ATM Forum.

It becomes clear from these hypothesis that we prioritize the search of a cost-effective network of
workstations that balances performance and cost over the maximization of the performance of such
configurations. Networks of workstations as specified above convey a number of overheads in the
procedures for configuring them that prevent applications running very short from being advantageous.
Nevertheless, many scientific applications execute longer, during hours or even days, so in these cases a
non-dedicated platform can be advantageous. In any case, for achieving competitive performance it is
necessary to build communication mechanisms that benefit as much as possible from the features provided

1The boundary between a multicomputer and a network of workstations is not clear then. For example, the IBM SP2 could be
considered as a network of workstations.

1.3. CONCEPTS OF ATM TECHNOLOGY 7

ATM layer

Applications

Network
ATM Service Specific

Sublayer

Common Part
Sublayer

ATM Adaptation

layer (AAL)

Physical layer

Figure 1.4: Architecture of ATM networks.

by ATM networks in order to reduce the impact of communications on performance. For this purpose, it
is important to study the characteristics of ATM networks in order to find out which features of ATM can
be exploited by the proposed network architecture for supporting parallel computing.

1.3 Concepts of ATM technology

ATM (Asynchronous Transfer Mode) is a communications technology designed and recommended by
ITU-T (Telecommunications Standardization Sector of the International Telecommunication Union) for
supporting the B-ISDN (Broadband Integrated Services Digital Network) infrastructure. As the B-ISDN
has to provide satisfactory support to a wide range of applications, including both real-time services such
as voice and video, and data services like file transfers, data base querying, etc. However, ATM’s most
successful applications today include the replacement to existing, traditional LAN technologies, as well
as the interconnection of LANs through a backbone network. Thus, in the future, ATM is expected
to integrate both LAN and WAN environments. For this reason, ATM becomes a serious candidate
technology to support communications in parallel computing applications. This section summarizes the
characteristics of ATM which are more relevant to the present work. In particular, we describe the layer
structure of ATM networks, focusing on the description of the service categories provided by ATM and the
functions provided above this layer in order to interface with higher-level mechanisms. We also discuss
the possibility of virtual subnetworks enabled by the virtual circuit scheme defined for ATM.

1.3.1 Architecture of ATM networks

The ability of ATM to adapt to the different services comes from the compromise between the low delay
achieved by circuit-switching mechanisms and the flexibility inherent to packet-switching technologies.
This behavior has been made possible with the encapsulation of data into fixed-sized, very short packets
(a 5-byte header plus a 48-byte payload, as defined in [ITU93c]), known as cells, whose transmission is
carried out through a hierarchy of virtual connections described in [ITU93b]. The final objective is to
efficiently exploit the high bandwidth enabled by current transmission media (fiber optics). ATM-based
networks involve a fairly complex architecture in order to allow for a wide range of applications to take
advantage of ATM. As shown in Figure 1.4, ATM networks include two layers: the ATM layer and the
ATM Adaptation Layer (AAL).

The ATM layer is in charge of providing the cell transport service. As data are transferred by using
virtual connections, cells are delivered in order to the receiving peer. In fact, ATM is a packet-switching
technology dealing with small packets having all of them the same short length. As a consequence, like
in all packet-switching networks, the delay experienced in the virtual connection is not constant but varies

8 1. INTRODUCTION

according to the cell. In addition, for the same reason, congestion situations may occur in which some cell
may be lost.

As most of the candidate applications to be supported by ATM have further communication requirements,
the ATM Adaptation Layer adds some functionality to the ATM layer in order to facilitate the interface
application-ATM. For this purpose, two sublayers are considered in the AAL, as defined in [ITU93e] and
shown in Figure 1.4:� Common Part Sublayer, which contains some functions that are common to a number of services.� Service Specific Sublayer, which contains the functions required for supporting a higher-level service

that are not included in any defined common part sublayer.

In the following subsections, the facilities provided in both of the layers are described, emphasizing those
functions that are more likely to be used by communication procedures in parallel computing applications.

1.3.2 Services provided in the ATM layer

As mentioned above, the ATM layer provides a non-reliable cell transport service which does not disorder
cells. For some applications, this behavior is not a serious problem. For instance, in the real-time
transmission of video, the loss of a cell results in an alteration of the attributes of a few pixels which is
usually unnoticed by the human receiver. In contrast, other applications require the full delivery of all
submitted data. All services involving file transfer, for example, require that reliability in order to avoid
the corruption of files.

Generalizing this observation, each type of applications expects characteristic features in the service
provided by ATM, that is, a characteristic “Quality of Service (QoS)”. To specify the Quality of Service,
the following parameters are used, as defined in [ATM96c]:� Maximum Cell Transfer Delay. It determines the maximum delay a cell should experience in the

network.� Cell Delay Variation. Cells belonging to the same transfer may experience different delays, due to
the characteristics of cell relaying. If the variations are too large, some services might degrade their
quality, specially interactive and real-time services.� Cell Loss Ratio. The highest fraction of lost cells that a service can tolerate for guaranteeing a good
quality.

These parameters are subject to negotiation between the end-system and the network when establishing
an ATM-level connection. There are still other parameters that are not negotiated. The protocol for this
negotiation is defined in the UNI Signaling specification [ATM96a]. The combination of different values
for the QoS parameters determine a wide range of types of service. In the ATM Forum [ATM96c] and
the ITU-T [ITU95a], these types of service have been classified in a number of families, so-called Service
Categories by the ATM Forum or Transfer Capabilities by the ITU-T. In the following, these services are
discussed.

Some service categories provide a guaranteed service, meaning that the ATM network is willing to
allocate the necessary resources in order to enable the desired service characteristics. The service will
perform as requested provided that the traffic generated by the end-system is really consistent with the
traffic description supplied when establishing the connection. In contrast, other services, mostly data

1.3. CONCEPTS OF ATM TECHNOLOGY 9

transfer services, cannot specify their resource needs when establishing the connection, since the usage
of bandwidth and buffers varies during the connection. Thus, these services share the resources that have
been not allocated for the guaranteed services. This operation is known as best-effort, meaning that the
network will provide the best service as possible according to the state of the network.

The ATM Forum and the ITU-T define the following guaranteed service categories: CBR, rt-VBR,
nrt-VBR and ABT. The former two are devoted to services requiring real-time operation. The latter two
categories are not so strict, as long as time requirements are concerned.

CBR (Constant Bit Rate).

Known as “Deterministic Bit Rate” (DBR) in the ITU-T literature. This service category is intended
for real-time applications where it is reasonably efficient to assign a fixed bandwidth to a single source.
This is usually the case of applications containing video or audio information. In this service category, the
end-system specifies a cell rate to be allocated, and the application is assumed to offer traffic constantly
at this rate. A real-time constraint applies, in the sense that excessively delayed cells are considered to
be lost. As noted in [Gar96], the CBR service category is simple to be defined but not so simple to be
implemented, specially when several administrative domains have to be traversed. The ITU-T and the
ATM Forum have adopted a Leaky Bucket algorithm to measure and “police” the cell rate entering a
network, either from the end-system or another network. The candidate applications for using the CBR
service category include telephone, video conferencing, and television (entertainment video) [Jai95].

rt-VBR (Real-Time Variable Bit Rate).

Not supported in the ITU-T service architecture. Many real-time applications use coding algorithms
generating variable rate traffic. In this case, sources may be statistically multiplexed —i.e. the sum of the
average rates may be higher than the output rate—, at the cost of a non-zero cell loss probability. The
strategy to allocate resources for a rt-VBR service quality is not an established issue, since it may depend
on the particular characteristics of the coders and the user perception of the service. The main difficulty in
building implementations of his service category is the tradeoff between rate variability and the real-time
constraint. If all the difficulties are solved, all types of video and audio applications can accommodate to
this service and therefore they may gain bandwidth efficiency. Some applications, however, will not be
able to move from CBR because they cannot afford any cell loss.

nrt-VBR (Non-Real-Time Variable Bit Rate).

Known as “Statistical Bit Rate” (SBR) in the ITU-T specification. It is similar to the rt-VBR service
category, except in the lack of a real-time constraint, so applications not generating a continuous flow of
bits but well-delimited amounts of data can be supported. Thus, sources may be statistically multiplexed
and a certain cell loss probability does exist, analogously as above. As a guaranteed service, nrt-VBR
requires explicit reservation of resources. Implementations of this service category are easier to build
than rt-VBR since there is no tradeoff with the real-time constraint. The applications expected to use this
service category include response time critical transaction processing (for instance, airline reservations,
banking transactions, process monitoring, etc.), and Frame Relay interworking.

ABT (ATM Block Transfer).

This service category is only defined in the ITU-T specification. It provides a service where the QoS
parameters are negotiated on an ATM block basis. Within an ATM block accepted by the network,
sufficient resources are allocated so that the QoS received by the ATM block is equivalent to the QoS that a
CBR connection would receive if the same peak cell rate was specified. An ATM block is a group of cells
delineated by two special cells devoted to resource management. Two types of ABT are defined: (1) ABT
with Delayed Transmission (ABT/DT), where renegotiation of the peak cell rate need an acknowledgment
from the network prior to be effective, and (2) ABT with Immediate Transmission (ABT/IT), where ATM

10 1. INTRODUCTION

blocks are transmitted without waiting for acknowledgment from the network so cells may be discarded if
sufficient resources are not actually available. ABT is designed to support applications generating data as
well-delimited bursts of cells.

All the service categories described above required some sort of explicit resource reservation,particularly
bandwidth. In the following, the rest of defined service —the best-effort ones— are discussed.

Unspecified Bit Rate (UBR).

Not supported in the ITU-T service architecture. This service category does not involve any negotiation
with the network. Sources submit and cells as fast as the applications generate the data. However, if
the guaranteed services do not leave sufficient bandwidth, the buffers in the switches may easily become
congested and therefore the probability of cell loss can be very high. Cells belonging to UBR connections
are the first ones to be discarded in case of congestion because there is no guarantee of maximum delay.
If some QoS has to be provided, the higher levels over ATM have to care about it. This service category
can be used for any data transfer applications not requiring time-critical response. It is also used by
applications relying on an Internet protocol stack (TCP/IP or UDP/IP), since the functionality achieved by
the UBR service category resembles that of IP.

Available Bit Rate (ABR).

Supported by both ITU-T and ATM Forum under the same name. The objective of this service category
is to reduce the cell loss that is experienced with UBR. For this purpose, a feedback mechanism is added so
that the source can adapt the generated traffic to the amount of bandwidth available in the network —hence
the name of this service category. The feedback covers either all the end-to-end path or the path between
two nodes only. Apart from the desired cell loss ratio, no other guarantees are specified2, although the
end-to-end delay is attempted to keep low. This service category is addressed for the same applications as
UBR in the cases where lower cell loss is desired, as well as critical data transfer applications.

Two major approaches have been proposed, namely credit-based and rate-based [New94b]. The credit-
based approach is a link-by-link window flow control scheme. At the receiving end of each link, a certain
number of cell buffers is reserved depending on the propagation delay and the maximum transmission rate.
The sending end of the link keeps track of the empty cell buffers at the receiving end in order to set a limit
upon the maximum allowed amount of cells to be sent. Periodically, the account of empty cell buffers is
updated by the receiving end of the link. This approach was rejected by the ATM Forum in favor of the
rate-based approach, because it was considered too expensive and inflexible.

Rate-based schemes use feedback information from the network to control the rate at which each source
emits cells into the network on every virtual connection. Three types of rate-based schemes have been
proposed: forward explicit congestion notification (FECN), backward (BECN), and explicit rate control.
In FECN, when a path through a switch becomes congested, all the cells in the path are marked. The
destination end system monitors the congestion status and sends congestion notification cells in the reverse
direction to inform the source of the congestion status. In BECN, backward congestion notification cells
are generated directly by the congested switch instead of the receiving end. In both FECN and BECN, the
cell rate is heuristically determined (multiplicatively decreased when congestion detected and additively
increased while congestion is not experienced). In explicit rate control, a Resource Management cell
periodically explores the path and, at each switch, the optimal cell rate is computed so that the lowest
computed rate is returned to the sender. The definition of the ABR service in the ATM Forum’s Traffic
Management specification allows for the three schemes, and therefore the source algorithm has to support
all of them [JKGF96].

2In fact, this is not true. Current specifications of ABR allow to specify a Minimum Cell Rate in order to avoid blocking
the ABR connection in case of severe congestion. Thus, ABR is not a pure best effort service category since it provides some
bandwidth guarantee.

1.3. CONCEPTS OF ATM TECHNOLOGY 11

Explicit rate control schemes allow for a faster reaction time [CCJ95] but at the cost of much operation in
the switches. The ATM Forum has not adopted any scheduling algorithm for the ABR-supporting switches
but instead has left this decision as implementation-specific, in order to enable flexibility for switch manu-
facturers. However, some examples of algorithms are briefly described in [ATM96c]: EPRCA (Enhanced
Proportional Rate Control Algorithm), ERICA (Explicit Rate Indication for Congestion Avoidance), and
CAPC (Congestion Avoidance using Proportional Control). These algorithms are summarized in [Jai95].
The ERICA algorithm is fully described in [JKG+96].

1.3.3 Services provided in the ATM Adaptation Layer

The ITU-T Recommendation I.362 [ITU93d] defines the function of the ATM Adaptation Layer (AAL)
as to enhance the services provided by the ATM layer in order to support the functions required by the
next higher levels. The functions performed in the AAL depend on the higher level requirements. The
AAL supports multiple protocols to fit the needs of the different AAL service users. Examples of services
provided by the AAL include handling of transmission errors; handling quantization effect due to cell
information field size; handling of the lost and misinserted cell condition; and flow control and timing
control. With the AAL, the higher layers can be isolated from the specific characteristics of the ATM layer.

ITU-T is considering four different types of AAL to provide a range of basic functions: AAL type
1 (AAL1) for constant bit rate services; AAL type 2 (AAL2) for variable bit rate services; AAL type
3/4 (AAL3/4) and AAL type 5 for packet transport services. In some cases, these basic functions can
be extended to a more service-specific functionality. Another possibility enabled by current definitions
of AAL is to directly provide ATM-layer service, which may be required by some applications. In the
following the functionality of standard AAL types is outlined. Further information can be obtained from
ITU-T Recommendation I.363 [ITU93e].

AAL1.

This AAL type is addressed to applications generating constant bit rate traffic with strong time relations
between both communicating peers. There exist functions for supporting circuit transport, video signal
transport, and voice-band signal transport. The services provided by AAL1 include:� Transfer of data with a constant bit rate and delivery of them with the same bit rate.� Transfer of timing information between source and destination.� Transfer of structure information between source and destination.� Indication of lost or errored information which is not recovered by AAL1, if needed.

The AAL1 accepts data on a bit-by-bit or a byte-by-byte basis. The constant bit rate is ensured by means of
a buffer. Loss of data may be detected by sequence violation. The timing information transfer mechanisms
has been included for applications requiring recovery of source clock frequency at the destination end. For
this purpose. For video and high quality audio signal transport, forward error correction (FEC) may be
performed to protect against bit errors. This may be combined with interleaving of AAL user bits to give
more secure protection against errors. The standardization process of this AAL type is fairly complete.
Some vendors are currently supporting it in their equipment.

AAL2.

AAL type 2 is targeted at supporting all services that require the multiplexing of information from
multiple sources into a single ATM connection. These services currently include voice, data and video

12 1. INTRODUCTION

telephony, in both wire-line and wireless transmission. Unlike the earliest proposals for AAL2, this
AAL type is not targeted at supporting VBR video. Major objectives of AAL2 are to achieve low cell
assembly delay, coupled with high bandwidth utilization efficiency [Cav97]. As being defined in [ITU96],
this adaptation layer is separated into two parts, a Service Specific Convergence Sublayer (SSCS) and a
Common Part Sublayer (CPS).

The CPS provides for dynamic allocation of slots within each cell, where each slot is prefixed by a
three-byte header. Slots can be shorter than one ATM cell, so that several micropackets, as used for mobile
trunking, are multiplexed. In addition, AAL2 allows for AAL-level switching, what means that switches
along a virtual connection can deal with particular slots. Unlike AAL1, no end-to-end time relation is
supported in the CPS. The SSCS enables different types of services to take advantage of the CPS. In
the ATM Forum several SSCS for AAL2 are being defined, corresponding to voice trunking and mobile
communications.

AAL3/4.

This AAL type is the result of the integration of the former AAL3 and AAL4 types. The service provided
by the AAL3/4 is addressed to the transfer of packetized data between peers without time relation between
them. Two sublayers are considered:� Service-Specific Convergence Sublayer (SSCS). It includes those functions required for supporting

a particular packetized data-oriented service. As each service involves its respective SSCS, their
definition is not included in the AAL specification [ITU93e].� Common Part Sublayer (CPS). Its objective is to provided those functions common to most packe-
tized data-oriented services. In particular, the service involves the non-assured transfer of user data
frames with any length. The rest of the comments on the AAL3/4 apply to the CPS only.

The specification considers two types of service for the CPS: message mode service, where the CPS
processes the whole data packet at a time; and streaming mode service, where the CPS operates with
fragments of a data packet —fragmentation has to be done by an SSCS— so that transmission occurs
concurrently with AAL processing. The data packet is delimited by a header and a tailer. Each cell resulting
from the segmentation process includes a 10-bit CRC. Another field in each cell allows for multiplexing
several connections in a single virtual connection. This feature was included for enabling support of
connectionless service through the CLNAP (ConnectionLess Network Access Protocol) described in
[ITU93f]. This AAL is being abandoned because of the large amount of overhead involved in it. Its
function is widely replaced by AAL5, described below, which offers almost the same functionality with
much fewer overhead.

AAL5.

This AAL type is addressed to the transfer of packetized data between peers without time relations,
as AAL3/4. It was proposed by the LAN industry in order to achieve an adaptation layer that were both
simpler and more efficient than AAL3/4. For this purpose, all “per-cell” encapsulation is removed and
“per-packet” encapsulation is kept to a minimum. Thus, as instead of a 10-bit per-cell CRC, a per-packet
32-bit CRC will be used, very low error rates on the underlying ATM virtual connection are assumed.

The internal structure of AAL5 is the same as AAL3/4, that is, there are a Service Specific Convergence
Sublayer and a Common Part Sublayer, both with the same scope as in AAL3/4. The CPS includes
equivalent message mode and streaming services. The delimitation of a data packet is carried out by
marking the cells with a bit in the ATM header, the ATM User-to-User indication (AUU), which is devoted
to carry end-to-end information, as defined in [ITU93c]. When using AAL5, this bit is ‘0’ for every cell
but the last one, which is ‘1’. The last cell contains the 8-byte trailer, which is the only overhead in AAL5,

1.3. CONCEPTS OF ATM TECHNOLOGY 13

including a 32-byte CRC.

From the functionality point of view, there are two major differences between AAL3/4 and AAL5.
The first one is the impossibility in AAL5 of multiplexing several flows in a single virtual connection, as
all cells received between two ‘end cells’ are considered to belong to the same packet. Thus, different
strategies have to be considered for supporting connectionless service. The other difference is in the error
notification; in AAL3/4, the AAL user can be notified of an errored cell as soon as occurred, thanks to the
per-cell CRC; in AAL5, the user will not be notified until the receipt of the last cell, because the CRC is
per-packet and resides in a trailer.

Higher-level AALs.

The possibility of defining service-specific sublayers for several AAL types allows to increase the
adaption to the characteristics of particular applications. These are many proposals of mechanisms in
this direction. Of some of them can be of interest of a wide audience, the ITU-T has recently defined
several of these specific sublayers. All these specifications have been designed to operating over AAL5,
but obviously other definitions of service-specific sublayer may rely on different standard AALs.� Support to signaling. This sublayer is specified in Recommendation Q.2100 [ITU93a]. It relies on

a lightweight protocol so as to provide reliable transfer of signaling data. This protocol is defined in
Recommendation Q.2110 [ITU94b], and is known as SSCOP (Service Specific Connection Oriented
Protocol). We will refer to this protocol later in this work, since it will be the basis of our proposals.� Support to Frame Relay. This sublayer is defined in Recommendation I.365.1 [ITU93g]. It emulates
the bearer service of Frame Relay networks, and can be used as an interworking strategy between
Frame Relay and B-ISDN as well. Several Frame Relay connections may share a single AAL5
connection. This sublayer includes procedures for managing congestion situations.� Support to Connection-Oriented Network Service (CONS). This sublayer is defined in Recommen-
dation I.365.2 [ITU94a]. It provides support to the network service as defined in the OSI model
[ITU92]. For this purpose, like the sublayer for supporting signaling, it relies on SSCOP in order to
achieve reliable transfer of data.� Support to Connection-Oriented Transport Service (COTS). This sublayer is defined in Recommen-
dation I.365.3 [ITU95b]. It provides support to the transport service defined in the OSI model
[ITU93h]. For this purpose, like the sublayer for supporting signaling, it relies on SSCOP in order
to achieve reliable transfer of data.

In addition to these service-specific sublayers, some other proposals have been made in the ATM Forum,
in particular for supporting MPEG video over AAL5 and for supporting voice trunking over AAL2.

1.3.4 Possibility of virtual subnetworks

In ATM networks, two levels of connections are defined: Virtual Path Connections (VPC), and Virtual
Channel Connections (VCC). Virtual Path Connections are labeled paths which can be used to transport,
process, and manage a bundle of Virtual Channel Connections, as illustrated in Figure 1.5. Thus, if the
user is provided with a VP connection, he or she can multiplex several virtual channels within the VP with
considerable autonomy with respect to the network. This characteristic of ATM is useful for reducing
the difficulties inherent to the heterogeneity of ATM traffic, as it enables the subdivision of the traffic
into more homogeneous and, therefore, more easily manageable groups. This feature is known as virtual
subnetworking.

14 1. INTRODUCTION

Virtual
Path (VP)

Virtual
Channel
(VC)

Physical
link

Figure 1.5: The VP concept: Virtual Channels multiplexed within Virtual Paths.

VC a VC b

V
P

 C

VP A VP B

Figure 1.6: Example of virtual subnetwork by concatenating VPs.

Virtual subnetworks on top of ATM can be built by using two strategies, as discussed in [FGCF95]:
(1) using end-to-end virtual paths, and (2) concatenating two or more virtual paths between every two
sites. The use of end-to-end virtual paths is the simplest solution, and has the advantage that the user
has full control of the bandwidth provided by the VP and therefore he/she can multiplex several VC in
a way totally transparent to the ATM network. The main drawback of this scheme is that the virtual
subnetwork may contain many virtual paths, some of which possibly sharing the same physical link and,
consequently, limitations in bandwidth could appear. In addition, the scalability is somewhat poor. For this
reason, the use of concatenated VPs is the approach generally adopted for supporting virtual subnetworks
[FHW96, ATTD94].

Figure 1.6 shows a small example of an ATM virtual subnetwork using concatenated VPs. Two virtual
channels —VC a and VC b— on an end-to-end basis within the subnetwork, which is formed by the virtual
paths —VP A, VP B, and VP C . VC a is embedded in the concatenation of VP A and VP C, while VC b is
built over the concatenation of VP B and VP C. Note that, in this case, VP C is shared by two VCs using
different end-to-end paths, which is not possible with the scheme of end-to-end virtual paths.

In ATM virtual networks, there are two main problems to solve, as discussed in [FHW96]: (1) the
topology of VPCs, and (2) the capacity allocation. The choice of a particular VPC topology greatly
impacts the connection setup and switching costs, as well as the network’s resilience to unexpected traffic
conditions and component failures. Some constraints affect the topology, namely the configuration of the
physical layout, and the maximum number of available VPIs (Virtual Path Identifiers). Regarding capacity
allocation, this problem can be viewed in two levels: a network level, where it is determined how the
network capacity is shared between VPCs, and a VPC level, where it is determined how much bandwidth
is allocated to the individual VCCs within a particular VPC, so that the quality of service of all of them is
maintained. A third problem present in ATM virtual networks is connection signaling and rerouting. As
topologies can be dynamically reconfigured, protocols for this purpose may be designed. In [CS94] this

1.4. MEASURING COMMUNICATIONS PERFORMANCE 15

Table 1.1: Round-trip delay and peak delivered throughput for a variety of commercial local area network environ-
ments. Platform: Solaris 2.4 on SS-20.

UDP/IP Peak TCP/IP TCP/IP Value of n to equate
Round-trip Throughput Half-Power Point per-message & per-byte

Network Time (�s) (Mb/s) (Bytes) contributions

Ethernet: AMD Lance Ethernet
NI and Bay Networks EtherCell 1638+ 2:18n 9.0 108 752
ATM: SunATM-155 NI and Bay
Networks LattisCell Switch 1261+ 0:32n 84.3 2194 3941
ATM: Fore SBA-200 NI and
ASX-200 Switch 1432+ 0:32n 81.2 1196 4446
Myrinet 1492+ 0:36n 75.3 2847 4145

topic is discussed.

1.4 Measuring communications performance

Traditionally, the performance of communications is measured in terms of consumed bandwidth, or
throughput. This habit is inherited from the times when the cost of sending information through the
network was so high that applications were tuned for minimizing the amount of data added to the
transmitted information. The much higher speeds available today, together with the wider diversity of
applications making use of networking, are leading to the revision of the validity of the sole use of
throughput as the performance measure in communications.

1.4.1 Performance parameters

The LogP model proposed by Keeton et al in Berkeley [KAP95] suggests a number of parameters
to characterize the performance of network-based applications, apart from throughput or bandwidth:
overhead and latency. These parameters impact on performance on a per-message basis, regardless of its
length, as opposed to throughput, which affects performance on a per-byte basis. Besides, if the network
is not reliable (as happens in most general purpose networking technologies, including legacy LANs and
ATM), the need of recovering from lost or errored information has an impact on performance as well.

By taking these considerations into account, we can express the performance of a network as p =r(M+nB) = rM+rnB, where M represents the per-message cost, and B the per-byte cost. n indicates
the size in bytes of messages, and r the number of times a message has to be recovered. The per-message
cost includes the time required by the protocol and the network interface to process a message, as well
as the delay introduced by the switches (buffering, scheduling, etc.). Per-byte costs essentially include
the transmission time. It is clear that in slow networks, the importance of the second component is more
dominant but, as the first component is more difficult to reduce that the second, the dominance of the
second component decreases as far as the available bandwidth increases. Table 1.1, displayed in [KAP95],
illustrates this behavior.

The Half-Power Point measures the message size with which half of the peak throughput is achieved.
Both ATM and Myrinet get the higher peak throughput, but rather large message sizes are required for
taking actual advantage of the available bandwidth, so only applications managing large messages are
really capable to achieve significant performance gains. Thus, the characteristics of messages, as well as
the communications pattern of each application, will condition the sensitivity of communications to the

16 1. INTRODUCTION

Table 1.2: Average throughput achieved by real parallel programs (Mb/s).
Parallel kernels Average throughput (Mb/s)

CG 20.66
FT 53.20
IS 39.95
MG 7.29

various parameters, as noted in the next subsection.

1.4.2 Performance of parallel computing applications

The adequate procedure for measuring communication performance of a particular application type de-
pends on the characteristics shown by the communications generated in the application. In [KAP95], the
following issues are considered for deciding the right performance measure:� Overhead & latency. Overhead includes the per-packet cost of communications in the endpoint

hosts, while latency, in [KAP95], is restricted to the per-packet cost in the network. Unlike these
conventions, in this work we refer to “latency” as all the per-packet costs, either in the host or in the
network.� Communication pattern. In operations where messages are sent in a one-way exchange between
sending and receiving hosts, the performance is not seriously conditioned because it is relatively easy
for the application to overlap communication and computation. In contrast, for request-response
operations like Remote Procedure Call (RPC), the requester cannot resume computation until a
response has been received, so in this case latency introduces a significant limit in communication
performance.� Message sizes. Large messages amortize per-message overhead over a large number of bytes, thus
making per-byte costs and bandwidth the more important factors in determining performance. For
smaller messages, per-message costs dominate since more of the communication time is spent in
processing on the host than in actually transmitting the data onto the link.

In the particular case of communications from parallel computing applications, we have to determine,
as far as communication pattern and message sizes are concerned, to which category they belong in order
to suggest the appropriate measures. Regarding communication patterns, parallel computing applications
lie in a hybrid case between one-way communications and request-response communications, since each
parallel task transmits messages to other tasks in a one-way fashion, but periodically parallel tasks
periodically have to wait for responses from the rest of tasks. This behavior indicates that latency will
indeed impact on performance. With regard to message sizes, they depend on the particular parallel
application, and may vary from very few bytes to some 260 KByte per message.

Table 1.2 shows the average throughput —computed in a multiprocessor— generated by a number of
programs from the NAS benchmark suite, described in Appendix A. The highest value (53.20 Mb/s)
corresponds to the kernel generating the longest messages, but even in this case the throughput is sig-
nificantly lower than the peak achievable throughput with ATM and Myrinet as displayed in Table 1.1.
Thus, it becomes clear that throughput is not sufficient to characterize network performance; therefore,the
per-message component has to be taken into account as well. This need is also discussed in [HP96]. As a
consequence, in this work we use latency —which includes all per-message components of performance—
as the primary network performance measure.

2

Potential performance of
ATM in Networks of Workstations

This chapter analyzes the potential capabilities of ATM networks for supporting parallel
computing applications. The non-specific focus of current ATM standards, in addition to
other technical issues including hardware architecture, protocols and operating systems, are
limiting the potential performance of these environments. We evaluate the impact of ATM by
considering a possible evolution of the performance-degrading factors, as compared to the
performance achieved by an Ethernet-based cluster and two multiprocessor environments.
Performance degradation principally is found to be caused by delays in the hosts, although
the network load and the cell loss recovery mechanisms contribute to the degradation as well.
The subject of this chapter is covered by the papers [VSSPJT97] and [VSSPTJ97].

2.1 Performance under ideal conditions

The adoption of a high-speed networking technology such as ATM allows for improving performance
thanks to the alleviation of the impact of communications. However, communications are just one of
the factors in determining performance, so the actual improvement in performance will be related to the
importance of communications in the particular parallel application. We are interested in quantifying
the improvement of performance that the advent of ATM networks can provide to network-based parallel
computing environments. Not only the present advantages, but also the advantages that the technological
evolution will tend to achieve in the future.

In order to undertake this quantification, we consider a number of real parallel computing environ-
ments —including an Ethernet-based environment and two types of multiprocessors— and compare the
performance achieved under these platforms with the results from an ATM-based environment under ideal
conditions. As ideal conditions we mean: a one-switch network, no delays in the hosts and no load in the
network. The only considered delay is the transmission delay. This comparison will allow us to situate
the contribution of the bandwidth to overall performance. If the comparison shows that the performance
is clearly inferior to multiprocessors while keeping close to the performance achieved by Ethernet-based
environments, that would mean that communications do not have much importance to communications
and, consequently, the proposal of higher bandwidth to networks would not lead to significant perfor-
mance improvements. In contrast, a close performance to multiprocessors would indicate that increasing
the available bandwidth for parallel computing applications would be sufficient for them to reach adequate

17

18 2. POTENTIAL PERFORMANCE OF ATM IN NETWORKS OF WORKSTATIONS

(a) Input traffic (b) Output traffic

Figure 2.1: 24-hour Ethernet traffic in the department, measured in the internal subnetwork attachment.

Table 2.1: Processor performance (5 CPUs).
CPU GFLOPS SPECint SPECfp

Environment per CPU per CPU

Ethernet SuperSPARC 0.22 87.0 100.0
SGI R10000 3.88 111.35 310.57
SP2 RS/6000 1.33 122.0 260.0
ATM AXP 21064 1.35 84.0 101.0

performance without the cost inherent to multiprocessors.

The measurements carried out for this purpose have used a set of real algorithms that are described
in Appendix A in detail: PDE1, PDE2, SOLVER, EP, CG, FT, IS, and MG. The comparison has been
performed with executions of these applications over various environments. These environments use
different types of CPUs, whose relative performance can be observed in Table 2.1. In the following we
give a brief description of the considered environments:� A network of workstations based on Ethernet. The measurements have been carried out on five SUN

4 workstations attached to the Ethernet-based department LAN. Two cases have been considered:
silent Ethernet and loaded Ethernet. The former measurements were taken at night and the latter
during daytime. The network activity experiences significant variations between both periods, as
displayed in Figure 2.1.� A shared-memory multiprocessor. A Silicon Graphics PowerChallenge multiprocessor has been
used for these measures, whose interconnection network is bus-based.� A distributed-memory multiprocessor. The multiprocessor used for these measurements is an IBM
SP2 using a dedicated interconnection network based on the purpose-specific high-performance
switch [S+95]. multiprocessor has been used for these measures.� A network of workstations based on ATM. As reasoned above, ideal conditions have been assumed for
this environment. For this purpose, the ATM network has been simulated by an emulator that allows
to run real parallel computing applications over a simulated ATM network. The characteristics of
the emulator are detailed in Appendix B.

Table 2.2 shows the results of these measurements. For each parallel code, they include the total
execution time, the time invested in communication-related issues, and the significance of the communica-
tions time The total execution time is a measure of the overall performance achieved by each application.
The time invested in communication-related issues include, in addition to the actual transmission time,

2.1. PERFORMANCE UNDER IDEAL CONDITIONS 19

the delays introduced by the application in order to build the transferred messages. This parameter, as
well as the measure of its significance with respect to the total execution time, indicates the impact of
communications on performance. According to the results, we observe that:� The lowest total execution time is experienced by the shared-memory multiprocessor in most cases.

In PDE1 and SOLVER, the best performance corresponds to the ATM environment, and in CG the
lowest execution time is experienced by the distributed-memorymultiprocessor. In addition, the total
execution time in the ATM-based environment is much better than in Ethernet-based environments.� Analogously, the time invested in communications achieves the lowest values in the SGI measure
in most cases, except for the CG and FT codes, where the lowest communication times are found in
the SP2 measure. Again, as expected, the measured times in the ATM-based environment are much
better than in Ethernet-based environments.� Despite the absolute values, the contribution of communications to performance is very high in
the SGI measure for some applications. In general, nevertheless, the impact of communications
is higher in Ethernet-based environments, lower in both multiprocessors, and intermediate in the
ATM-based environment.

These results show that the performance achieved in the ATM-based environment under ideal conditions
is closer to multiprocessors than to Ethernet-based environments, even better in some particular cases.
Two conclusions may be drawn from these observations: (1) networking introduces a significant contri-
bution to performance, so the reduction of the delays involved with communications leads to important
improvements; and (2) communications in current multiprocessors still involve excessive delays, which
make some parallel computing applications to perform like environments that in theory are less powerful.
We have to note, however, that not all the differences can be explained with the different behavior of
communications in each environments. Other issues, including the different performance of the respective
CPUs and the way how communications are distributed along the execution time, have to be considered
as well.

The contribution of the different CPUs in each environments is clearly significant, as illustrated in the
measure of the EP parallel code, where no interprocess communications take place. Other issues impacting
on performance are found in the length distribution of messages, as well as the temporal distribution of
messages, in each parallel code, both of which are discussed in Appendix A. These reasons can explain
the behaviors of PDE1, SOLVER, CG, and FT, as well as the rest of irregularities appearing in Table 2.2.
All these factors may hide the contribution of latency to communications time by facilitating the delivery
of data to the receiver prior to their consumption.

In summary, we observe that the reduction of the relative importance of the delays associated with
ATM can accelerate the convergence of network-based environments with multiprocessor technology.
Obviously, multiprocessors will always remain a step forward network-based environments, but the step
will become shorter with the time. Applications with fine- or medium-grained parallelism are most likely
to require dedicated environments such as multiprocessors, while most of applications with coarse-grained
parallelism will suffice with ATM-based environments. The fewer the bottlenecks in communications,
the higher the range of applications that can be supported. As a consequence, it is interesting to attempt
the reduction of the overheads currently present in ATM-based environments that are precluding the
approximation to the ideal conditions considered in this section. For this purpose, we have to determine
where these overheads reside and which relative importance they represent.

20 2. POTENTIAL PERFORMANCE OF ATM IN NETWORKS OF WORKSTATIONS

Table 2.2: Performance achieved by real algorithms over different environments (ATM under ideal conditions).
Ethernet Ethernet Multiproc. Multiproc. Ideal ATM

Measurement (silent) (loaded) (SGI) (SP2) (simulated)

PDE1 Total time (s) 427 509 47.2 34.4 24.5
Comms. time (s) 158 196 7.0 8.61 12.0
% Comms. 37.0% 38.5% 14.8% 25.0% 49.0%

PDE2 Total time (s) 407 671 31.7 47.0 32.8
Comms. time (s) 162 321 3.1 6.66 8.25
% Comms. 39.8% 47.8% 9.78% 14.2% 25.1%

SOLVER Total time (s) 341 454 28.7 30.1 13.2
Comms. time (s) 8.6 283 0.6 2.83 1.4
% Comms. 2.52% 62.3% 2.09% 9.40% 10.6%

EP Total time (s) 53.6 68.2 9.3 42.7 38.5
Comms. time (s) N/A N/A N/A N/A N/A
% Comms. N/A N/A N/A N/A N/A

CG Total time (s) 32.5 39.7 1.7 1.66 5.84
Comms. time (s) 16.6 18.9 0.8 0.29 2.8
% Comms. 51.1% 47.6% 47.1% 17.5% 47.9%

FT Total time (s) 46.5 52.4 3.0 8.37 16.4
Comms. time (s) 35.7 40.7 1.7 0.59 11.3
% Comms. 76.8% 77.7% 56.7% 7.05% 68.9%

IS Total time (s) 46.8 54.4 1.6 1.98 3.6
Comms. time (s) 33.6 39.1 0.3 0.41 0.9
% Comms. 71.8% 71.9% 18.8% 20.7% 25.0%

MG Total time (s) 65.9 107 7.0 8.14 16.8
Comms. time (s) 27.8 48.7 1.0 1.32 3.8
% Comms. 42.2% 45.5% 14.3% 16.2% 22.6%

2.2 Bottleneck analysis in ATM-based environments

For assessing the relative impact of bottlenecks over performance, we have classified the usual overheads
according to the situation when their are produced, and then we artificially vary the delay introduced by
each of these situations in order to study the response of the ATM-based environment. In particular, we
consider that ATM-based environments can suffer from three causes of bottleneck: (1) the network size;
(2) the network load; and (3) the delay introduced in the host. We have performed three experiments
covering these issues. The first experiment measures the influence of the network size and the network
load. The second experiment estimates the incidence of limited buffering under different network loads
and sizes. Finally, the third experiment, for several network loads, explores the performance degradation
introduced by different values of delay in the hosts.

2.2.1 Experiment 1: Impact of network load and network size

The size of the network is a potential cause of performance degradation, because of the accumulation of
transmission and, principally, buffering delays. As the buffering delay is more important the higher the
load in the network, we observe that the influences of network load and network size are closely related. To
illustrate the influence of these magnitudes, we have measured the performance achieved by two parallel
algorithms chosen from those described in Appendix A, PDE1 and PDE2, for different network sizes
and network loads. The measurements have been obtained by means of the ATM emulator described in
Appendix B. Note that in the present experiment we do not assume ideal conditions. Indeed, no host
delays have been considered, but network load has been set to � = 0:0, � = 0:3, � = 0:6, and � = 0:7.
The network sizes have been modeled by considering the network as a chain of switches of variable length.

2.2. BOTTLENECK ANALYSIS IN ATM-BASED ENVIRONMENTS 21

0

10

20

30

40

50

60

1 2 4

M
F

LO
P

S

Number of switches

rho = 0.0
rho = 0.3
rho = 0.6
rho = 0.7

(a) PDE1

0

10

20

30

40

50

60

1 2 4

M
F

LO
P

S

Number of switches

rho = 0.0
rho = 0.3
rho = 0.6
rho = 0.7

(b) PDE2

Figure 2.2: Performance for different network sizes.

In particular, sizes of 1, 2 and 4 switches have been measured. The results are displayed in Figure 2.2.

The impact of both the network size and the network load on performance is very low in the case
of PDE1. In contrast, the results of PDE2 exhibit a slight dependence on the network, specially when
the cross-traffic load is high. This behavior is related to the different message lengths and temporal
distributions observed in PDE1 and PDE2, (see Table A.1 in Appendix A). In order to highlight to effects
of these characteristics, we have carried out a simple experiment concerning the influence of the length
distribution and the network load on the time required to transfer data.

The experiment consists of the measurement by simulation of one synthetic 5-second cell sequence
of 2500 cells crossing a switch suffering from background traffic. Two intensities of background traffic
have been considered: � = 0:7 and � = 1:2, and is generated by four identical ON-OFF sources whose
parameters are tuned to produce cell sequences with the desired value of �. The 2500 cells are grouped in
bursts, and we have repeated the measurement for different burst sizes. The results depicted in Figure 2.3
show that the sensitivity to increases of network load is higher when bursts of cells are short. The figure
also shows that the lower the network load the more apparent the influence of burst size on latency. The
question is now whether this trend occurs in traffic from real parallel applications.

The results shown in Figure 2.3 are consistent to the behavior experienced by PDE2 as depicted in
Figure 2.2, according to the characteristics of communications, since PDE2 generates cell sequences with
low burst sizes. Thus, the higher sensitivity to background traffic occurring in PDE2 involves an increase
in the time required for transferring data and, consequently, to performance degradation. Note that in
this experiment the cost of recovering lost cells has not been taken into account. Loss recovery can
introduce important increases in latency, depending on the load of the network and the characteristics of

22 2. POTENTIAL PERFORMANCE OF ATM IN NETWORKS OF WORKSTATIONS

0.0001

0.001

0.01

0.1

1

10

0 500 1000 1500 2000 2500

M
ea

n
ce

ll
tr

an
sf

er
 d

el
ay

 (
se

c)
Length of bursts (cells)

rho = 0.7
rho = 1.2

Figure 2.3: Impact of network load and burst size on communications latency.

Table 2.3: Performance of different situations for the ATM-based environment, with respect to multiprocessors.
Multiproc. Multiproc. ATM ATM ATM

Measurement (SGI) (SP2) (1 sw, silent) (1 sw, loaded) (4 sw, loaded)

PDE1 Total time (s) 47.2 34.4 24.5 24.6 25.4
Comms. time (s) 7.0 8.61 12.0 12.0 12.8
% Comms. 14.8% 25.0% 49.0% 48.8% 50.4%

PDE2 Total time (s) 31.7 47.0 32.8 32.5 38.6
Comms. time (s) 3.1 6.66 8.25 9.75 14.5
% Comms. 9.78% 14.2% 25.2% 30.0% 37.6%

CG Total time (s) 1.7 1.66 5.84 5.99 6.01
Comms. time (s) 0.8 0.29 2.8 3.03 2.94
% Comms. 47.1% 17.5% 47.9% 50.6% 48.9%

FT Total time (s) 3.0 8.37 16.4 17.7 18.1
Comms. time (s) 1.7 0.59 11.3 13.0 13.3
% Comms. 56.7% 7.04% 68.9% 73.4% 73.5%

the protocols.

In order to realize the importance of both the network size and the network load, four representative
algorithms have been chosen, according to their characteristics of communications, and the performance
achieved by an ATM-based environment with the minimum and the maximum size of the network, for a
load � = 0:7 is displayed in Table 2.3. These results are compared in the same table with the corresponding
issues in Table 2.2. Excepting the case of CG, the influences of both the load and the size of the ATM
network are significantly confirmed. The contribution of each issue depends on the characteristics of each
algorithm. In particular, the more bursty the traffic generated by the algorithm, the more influential the
network size as compared to the network load. The importance of the contribution from communications
on performance also grows with a similar pattern. The high burstiness of CG explains its special behavior,
since the impact of the network size has very low significance.

2.2.2 Experiment 2: Estimation of cell loss

In the previous experiment, as it reflects an ideal case, no cells from parallel applications are supposed to be
lost. In real environments, the cost of recovering from cell loss can significantly degrade the performance
of the ATM-based environment. In order to determine the importance of cell loss, we have measured
the amount of cells each switch would lose for a finite buffer capacity limit. As no transport protocol
is emulated, the excess cells from parallel applications are computed at each switch but not actually
discarded. As a consequence, the results do not represent the exact cell loss ratio but an approximation.

2.2. BOTTLENECK ANALYSIS IN ATM-BASED ENVIRONMENTS 23

0.0001

0.001

0.01

0.1

1

0.6 0.7

C
el

l l
os

s
pr

ob
.

rho

1 switch
2 switches
4 switches

(a) PDE1

0.0001

0.001

0.01

0.1

1

0.6 0.7

C
el

l l
os

s
pr

ob
.

rho

1 switch
2 switches
4 switches

(b) PDE2

Figure 2.4: Cell loss for different configurations.

Figure 2.4 displays the achieved cell loss, computed as the average of the excess cells, for the network
loads producing cell loss, and several network sizes. The results show that the network load has a strong
influence on losses: when � grows from 0.6 to 0.7, the cell loss ratio increases about an order of magnitude.
In actual systems, these lost cells increase and therefore the overall performance of the ATM environment
will degrade. Figure 2.4 also shows that the network size affects the results only for � = 0:6, which
reflects that the cell loss is more homogeneous for high values of �. The higher sensitivity of PDE2 to the
cross-traffic load exhibited in Experiment 1 is reflected also in the present experiment. In addition to the
higher cell loss ratio experienced by PDE2 for � = 0:7, the influence of the network size is also higher in
PDE2. This behavior can also be attributed to the particular characteristics of communications in PDE1
and PDE2.

Another observation from Figure 2.4 is the fact that, when � = 0:6 cell loss depends on the network size
in the sense that the larger the network the lower the loss. This behavior does not apply to � = 0:7. When
several switches have to be crossed, it is easier that the background traffic leaves free slots in the buffer of
some switch at some instants. When � = 0:7, it is more difficult to get these free slots and, consequently,
the cell loss probability becomes independent of the network size.

As a conclusion for the experiment, we observe a sensible influence of the network load on the cell loss
probability which significantly interacts with the network size unless the load is extremely high. Although
the Experiment 1 has not shown an important influence of network size and network load on performance,
we have to note that one of the sources of performance degradation, namely the need of retransmitting lost
information, was not considered. The results of the present experiment show that the likelihood of having
to perform retransmissions can be high, and that this likelihood depends more on network load than on
network size. Thus, we observe that network load can an important contributor to the bottleneck, although

24 2. POTENTIAL PERFORMANCE OF ATM IN NETWORKS OF WORKSTATIONS

not as influential as endpoint host delay, as shown in the next experiment.

2.2.3 Experiment 3: Impact of host delay and network load

The previous experiments have been addressed to the study of delays originated within the network. Unlike
them, in the present experiment we consider the delays occurring within the host, immediately before the
actual transmission and after the actual reception of data. In particular, these delays include the cost
of protocol processing and the overhead in the host-network interface. All these delays are expected to
reduce in the future, so it is interesting to assess how this reduction will be translated to the performance
of ATM-based parallel computing environments.

In the present experiment, we have measured the performance of PDE1 and PDE2 over a simple one-
switch ATM network by means of the ATM network emulator used in all the preceding experiments. As
this emulator allows to configure the delay introduced by the hosts, we have performed measurements
with four different values of the host-introduced delay. These values range from 0 to 500 microseconds,
and cover situations from the ideal conditions —0 �s— to a current TCP/IP-based environment —500 �s.
In addition to the host delay, we have also considered different background traffic intensities in order to
assess how the network load interact with the effects of the host delay.

As shown in Figure 2.5, the influence of the host delay affects the performance achieved by both PDE1
and PDE2 in a similar way, with an exponential pattern. This means that the improvements in performance
achieved by the reduction of delays in the host will increase their significance as long as the importance
of this reduction increases. As in Experiment 2, PDE1 has little sensitivity to network load, in contrast
to PDE2. Note that the degradation in PDE1 achieves a higher impact than in PDE2, due to the longer
time required to process a message from PDE1. As shown in Table A.1, the messages generated by PDE1
are much longer than those from PDE2. In summary, it is observed that the host delay is the primary
contributor to performance degradation.

Analogously as in Experiment 1, we have selected four representative algorithms in order to assess how
host delay affects execution and communication times. Likewise, the performance values corresponding
to the multiprocessors and to the ATM-based environment under ideal conditions are taken from Table 2.2.
These values are displayed in Table 2.4, whose last column represents the behavior achieved with a host
delay of 500 �s and a network load of � = 0:7. As expected, the contribution of communications to
performance is very high, much higher than the impact of the network size displayed in Table 2.2. The
relationship between this impact and the characteristics of communications —specially burstiness— is
also confirmed by the results. The applications experiencing higher burstiness —PDE1 and FT— exhibit
a higher sensitiveness to both network load and endpoint delay than the applications with lower burstiness
—PDE2 and CG, which manifests as a higher impact of communications on the total performance. All
these results reflect the strong impact of endpoint host delays on performance. Thus, the reduction of
the impact of this issue is crucial for allowing ATM-based parallel computing environments to reach the
asymptotic performance as discussed in Section 2.1.

2.3 Discussion

Until recently, the idea of supporting parallel computing applications by means of commodity workstations
interconnected to a general-purpose network has not had a competitive viability because the limited
bandwidth inherent to traditional networking technologies has represented a hard bottleneck. However, the
introduction of ATM with its comparatively higher bandwidth leads to question this viability. Nevertheless,
the comparison of multiprocessor with environments based on commercially available ATM equipment

2.3. DISCUSSION 25

0

10

20

30

40

50

60

0 125 250 500
M

F
LO

P
S

Host delay (usec)

rho = 0
rho = 0.3
rho = 0.6
rho = 0.7

(a) PDE1

0

10

20

30

40

50

60

0 125 250 500

M
F

LO
P

S

Host delay (usec)

rho = 0
rho = 0.3
rho = 0.6
rho = 0.7

(b) PDE2

Figure 2.5: Performance for different host delays.

Table 2.4: Performance of different situations for the ATM-based environment, with respect to multiprocessors (1
switch only).

Multiproc. Multiproc. ATM ATM ATM
Measurement (SGI) (SP2) (no delay, silent) (no delay, loaded) (500�s, loaded)

PDE1 Total time (s) 47.2 34.4 24.5 24.6 199.5
Comms. time (s) 7.0 8.61 12.0 12.0 187.0
% Comms. 14.8% 25.0% 49.0% 48.8% 93.7%

PDE2 Total time (s) 31.7 47.0 32.8 32.5 103.0
Comms. time (s) 3.1 6.66 8.25 9.75 81.1
% Comms. 9.78% 14.2% 25.2% 30.0% 78.7%

CG Total time (s) 1.7 1.66 5.84 5.99 144.5
Comms. time (s) 0.8 0.29 2.8 3.03 104.9
% Comms. 47.1% 17.5% 47.9% 50.6% 72.6%

FT Total time (s) 3.0 8.37 16.4 17.7 151.7
Comms. time (s) 1.7 0.59 11.3 13.0 147.2
% Comms. 56.7% 7.04% 68.9% 73.4% 97.0%

26 2. POTENTIAL PERFORMANCE OF ATM IN NETWORKS OF WORKSTATIONS

shows that the performance is still far from what multiprocessors achieve, but the issues limiting the
performance may be tied to technological reasons that may evolve over time. For this reason, a study
of the viability of ATM-based environments as parallel computing platforms requires us to abstract from
these transient technological issues and consider an asymptotic case instead. The results indicate that
ATM-based environments are a worthy platform to consider as their performance without accounting for
the transient overheads is very close to multiprocessors, so bandwidth is no longer a problem for achieving
competitive performance. However, this potential performance is not reachable without the minimization
of the bottlenecks present in current ATM environments.

The rest of experiments in this chapter have been addressed to determine the relative impact of the main
causes of bottleneck in ATM-based environments: network size, network load, and endpoint host delay.
The results have shown that the endpoint host is, with difference, the most influential bottleneck, and is due
to protocol and driver processing, as well as the host-network interface. Although in a lower extent than
the endpoint host delay, the load of the network significantly contributes to degrade performance, since
the mechanisms to recover from lost cells introduce additional latency. The contribution of the network
size is less important, but for certain applications and topologies could be more significant, specially if
very large networks and/or large switch buffers are used.

As a conclusion, the results indicate that any strategy aiming at taking full advantage of ATM has to
reduce the combined effects of host delays and network load. This goal can be achieved with the adoption
of enhanced host interfaces, and with the improvement of the protocol stack. Many research works are
dealing with both issues for this purpose. Regarding host-network interfaces, it is a very active research
area. Many proposals exist in the literature, all of them triggered in reducing the latency introduced by
the interface itself and the device driver controlling it. See [Dav93, TS93] as examples of studies on this
subject. Particularly, there are proposals oriented to systems supporting parallel computing, for example
the interface described in [vEBBV95]. In this work, nevertheless, is focused on protocol-related solutions.
Within this scope, many other researchers have made suggestions about how an efficient ATM-oriented
protocol stack should behave, whose contributions are summarized in the next chapter. The present thesis
introduces new approaches which take into account the network load induced by background traffic. In
order to achieve as good performance as possible, they attempt to exploit the specific features of ATM.

3

Strategies for introducing
ATM in parallel environments

As shown in Chapter 2, ATM-based parallel computing environments are potentially
capable of providing satisfactory performance to parallel applications. Many researchers
have also had this intuition, and therefore several strategies have been proposed to introduce
ATM in parallel computing environments. In this chapter, we present a summary of the
strategies addressed to parallel computing over ATM networks that is an extended version of
[VSSP96a]. The ideas guiding each of these strategies have been combined in the proposal
of a model for the integrated network architecture that is discussed in Chapter 4.

3.1 Traditional protocols over ATM

The attractiveness of parallel computing over LANs has lead to some studies of both the performance
of workstation clusters over legacy networks and their limitations due to this assumption, as in [FW94],
where several cluster environments, based on legacy LANs, are compared to multicomputers. The achieved
performance can potentially be improved with the introduction of a high-speed network technology such
as ATM. In order to enable full compatibility of applications, it is possible to replace the legacy networking
technology with ATM. There are two popular strategies for achieving this goal: LAN Emulation and IP
over ATM. The performance of the resulting protocol stack has been measured in a number of studies.

3.1.1 Interfaces between existing protocols and ATM

Enabling current protocol stacks to support ATM without significant changes requires to deal with:
(1) an interface at some layer of the stack that it is common to both ATM and legacy network, and
(2) the interoperation of ATM-based segments with other network segments that are still based on legacy
technologies. A good report on the state of the art in both subjects can be found in [All95]. For these
purposes, there are two popular strategies, both setting the interface at level 3: LAN Emulation and IP over
ATM. LAN Emulation is a protocol defined by the ATM Forum [ATM95] in which traditional transport
protocols contemplate ATM as a 802.x MAC technology like Ethernet and Token Ring. IP over ATM is
based on an LLC-level encapsulation, whose schemes are defined in the RFC 1483 [RFC93].

The LAN Emulation protocol defines a service interface for higher layer (that is, network layer)

27

28 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

LAN Emulation Clients

(LECs)

ATM
Network

LAN Emulation Server

(LES)

LAN Emulation Configuration

Server (LECS)

Server (BUS)

Broadcast & Unknown

Figure 3.1: LAN Emulation architecture.

protocols, which is identical to that of existing LANs, and that data sent across the ATM network are
encapsulated in the appropriate LAN MAC packet format. Thus, the emulation involves the interface
only; no attempt is made to emulate the actual medium access protocols of the specific LAN concerned
(802.3 or 802.5). As the LAN emulation service presents the same interface of existing MAC protocols to
network layer drivers, no changes are required in those drivers.

Figure 3.1 depicts the ATM Forum’s LAN Emulation architecture. It is based upon the overlay model,
so that the LAN Emulation protocol can operate transparently over the ATM network, using only standard
ATM signaling procedures. The basic functions of the LAN Emulation protocol is to resolve MAC
addresses into ATM addresses. In traditional LANs, address resolution is accomplished by broadcasting
the destination address to the LAN. With ATM, the mechanism is more complex. Four entities cooperate
in the protocol:� LAN Emulation Client (LEC). LECs are the entities in the end systems. Each LEC is identified by a

unique ATM address, and is associated with one or more MAC addresses.� LAN Emulation Server (LES). There is one LES per emulated LAN, and includes the control function.
Each LES is identified by a unique ATM address.� Broadcast and Unknown Server (BUS). The BUS is a multicast server that is used for implementing
broadcasting and multicasting within the emulated LAN, including the search of unknown MAC
addresses. It is identified by a unique ATM address and associated to the MAC’s broadcast address.� LAN Emulation Configuration Server (LECS). There is a LECS per administrative domain, and
contains information assigning individual LECs to particular emulated LANs under its domain.

The LECs are aware of their own ATM address by consulting the LECS (through well-known ATM
address or permanent connection). The LECS also provides information about the emulated LAN,
including the ATM address of the LES. Then, the LEC can register its own MAC and ATM addresses with
the LES. Thus, any LEC can know the corresponding ATM address to a particular MAC address through
the LE-ARP (LAN Emulation Address Resolution Protocol). This procedure is used to find out the ATM
address of the BUS (corresponding to the MAC broadcast address). The BUS then typically adds the
soliciting LEC as a leaf in a point-to-multipoint connection.

3.1. TRADITIONAL PROTOCOLS OVER ATM 29

144.254.45.X

144.254.67.X 144.254.10.3

144.254.10.3

144.254.10.1

144.254.23.X

144.254.10.1 144.254.10.3

144.254.45.X

144.254.67.X

A

B

C

144.254.10.X

144.254.23.X 144.254.10.2
Direct

Routing table in 144.254.10.1

144.254.45.9

Target IP address: 144.254.45.9

ATM Address Resolution

ARP Server

C144.254.10.3

144.254.10.2 B

144.254.10.1 A

ATM
Network

Figure 3.2: IP routing across an ATM network.

During data transfer, the sender LEC gets the ATM address for the destination MAC address by
connecting to the LES through the LE-ARP. If the destination belongs to the same emulated LAN, there
will be an immediate response. If not, the destination may be located behind a bridge (it might even be
non-ATM). Thus, the LE-ARP asks for the address to all LECs in the emulated LAN (through the BUS),
in order to get the ATM address of the responsible bridge. When the target ATM address is finally known,
a virtual circuit can be set up (if not already established) through which data transfer will take place.

As far as IP over ATM is concerned, there are two main components: a packet encapsulation procedure
and an address resolution procedure. Packet encapsulation occurs at the LLC level, and allows for a
received AAL5 packet to determine which application or higher layer protocol entity should receive it.
The IETF (Internet Engineering Task Force) defines in RFC 1483 [RFC93] two strategies for doing this:
LLC/SNAP encapsulation, where the IP packet is prefixed by a standard LLC/SNAP header, and VC
multiplexing, in which only a single protocol is carried across a single ATM connection.

Prior to transfer data, it is necessary to resolve IP addresses to their corresponding ATM addresses. For
this purpose, the RFC 1577 [RFC94] defines a protocol to support automatic address resolution. Each IP
subnetwork can contain one or several Logical IP Subnets (LIS), each of them being associated to a single
ATM network. Each LIS includes a so-called ATMARP (ARM Address Resolution Protocol) server.
Clients wishing to communicate first connect to this ATMARP server in order to register and ask for the
ATM address corresponding to the destination IP address —all clients within a LIS know the address of
the ATMARP server in advance. If the destination lies within the same LIS, the ATM connection can
already be set up. If not, the ATMARP will provide the ATM address corresponding to a default router
of the IP subnetwork. Figure 3.2 shows an example of the interactions between IP and ATM networks,
according to RFC 1577.

3.1.2 Performance studies

In [LDTM95], the performance achieved with traditional LAN technologies has been measured and
compared to that of an equivalent environment when the traditional technology is replaced by ATM.

The performance achieved by the replacement of traditional LAN technologies by ATM is analyzed in
[LDTM95, TL93]. Table 3.1 shows the results presented in [LDTM95], where the performance over 100-
Mb/s-ATM is compared to Ethernet and FDDI. In the three cases, the messages are generated by a UNIX
socket API (Application Programming Interface). The throughput measurement has been computed

30 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

Table 3.1: Performance under sockets and TCP/IP.
Technology Capacity (Mb/s) Throughput (Mb/s) Startup latency (s)

Ethernet 10 8.40 1:053� 10�3

FDDI 100 17.20 1:833� 10�3

ATM 100 16.72 1:960� 10�3

Table 3.2: ATM, Ethernet and FDDI under a simple RPC protocol.
RPC time (�s)

Activity Ethernet (10 Mb/s) FDDI (100 Mb/s) ATM (140 Mb/s)
Short Long Short Long Short Long

System Calls 123 671 153 280 108 560
Interrupt Handling 51 51 112 126 34 37
Total Software 174 722 265 406 142 597
Controller Latency 51 52 97 164 16 88
Time on the wire 115 1278 9 127 6 91
Total Latency 340 2052 371 697 164 776

Software Speedup - - 0.6 1.8 1.2 1.2
Hardware Speedup - - 0.5 0.3 3.2 0.6
Network Speedup - - 12.7 10.0 19.1 14.1
Global Speedup - - 0.9 3.0 2.1 2.6

by considering very large messages so that the measurement corresponds to the maximum achievable
throughput. In contrast, the latency measurement has been carried out with very short messages —just
four bytes, in order to represent the minimum latency experienced by any message. The throughput
achieved by FDDI and ATM are similar and significantly higher than the throughput of Ethernet. In
contrast, the latency experienced by Ethernet is clearly lower than that of FDDI and ATM, which in turn
are similar. Despite the similarities between FDDI and ATM measurements, the performance is always
slightly better in the case of FDDI, due to the higher overhead involved in ATM.

Note that the Ethernet network experiences a high utilization —84%— as opposed to FDDI and ATM
—approximately 17%. In the former case, the bottleneck is found in the network, while for FDDI and ATM
the protocol stack implementation is precluding the achievement of better utilizations. Thus, the protocol
stack becomes a bottleneck when the available bandwidth increases. The slightly lower throughput that is
experienced in ATM with respect to FDDI means that the aggregate impact of overheads on performance
is slightly more apparent in ATM that in FDDI, basically due to the need of segmenting data in small cells
that is inherent in ATM.

Table 3.2 shows the results presented in [TL93], where the latency experienced by a lightweight RPC
(Remote Procedure Call) protocol is analyzed with Ethernet, FDDI and ATM, as before. In particular, the
different contributions to latency are separately studied, and two sizes of messages have been considered,
which are labeled “short” (about 50 bytes) and “long” (1500 bytes). The speed improvements achieved by
each contribution to latency with respect to the performance over Ethernet have been included in Table 3.2.
These results show that although the bandwidth with ATM achieves a gain of 14 for short messages and
19 for long messages, the effective speed increases with a factor of only 2. The latency ratio software
to time-on-wire is higher for ATM and FDDI than for Ethernet, highlighting the importance of the host
processing, as was shown above. In addition, ATM involves significant overhead due to the need of
segmenting and reassembling user packets into cells that, consequently, is closely related to the length of
user packets. On the other side, each FDDI frame includes a fixed overhead of 20-32 bytes —depending
on the addressing scheme— regardless of the length of the information field, which is significantly larger
than the 5 bytes per ATM cell. For this reason, the performance for short messages is clearly better in

3.2. INTRODUCING AN ATM-SPECIFIC API 31

ATM because fewer bits are injected to the network. In contrast, the performance for long messages can
be better in FDDI than in ATM because the amount of overhead bits remains 20-32 bytes in FDDI while
in ATM they grow to 160. Thus, unlike for short messages, the information-to-overhead ratio is more
favorable in FDDI.

A full advantage of ATM technology will only be achieved in the immediate future with the minimization
of the bottlenecks revealed by the measurements in Tables 3.1 and 3.2. The following sections discuss
several approaches published recently in the literature which aim at this objective, as far as software
is concerned. In addition to these advances, progress in hardware issues is mandatory, so research on
high-speed host-network interfaces is currently very active.

3.2 Introducing an ATM-specific API

Although the absolute time required for protocol processing could be reduced by the increased processing
capacity of workstations, the relative impact of latency on the overall time may increase. This fact demands
strategies to reduce this impact. Intuitively, one of the solutions to overcome the overhead introduced by the
protocol structure is to bypass it, allowing for applications to directly access ATM through an ATM-specific
API. Several papers are devoted to the study of the ATM API behavior [LDTM95, ZG95, DSBC95]. These
papers compare the performance of ATM API against other interfaces and evaluate its integration with
existing software mechanisms for supporting parallel computing over LANs. In particular, two approaches
for the integration of an ATM API appear: (1) Leaving some transport-layer functionality to applications,
without modifying any underlying system software such as operating system and message-passing libraries,
and (2) Modifying message-passing libraries so as to obtain ATM API-specific implementations. Both
approaches are discussed in the following.

3.2.1 The ATM API

APIs (Application Programming Interfaces) allow to hide the complexity of the network layer from the
application layer [Ros95]. Examples of typical APIs are the socket libraries in UNIX systems, RPCs
(Remote Procedure Calls), etc. As far as ATM is concerned, two trends in specifying APIs have appeared:
(1) To hide ATM from the API and overlying protocols, by using procedures such as LAN Emulation
and IP over ATM, explained in the previous section, and (2) Using ATM-aware, vendor-specific APIs,
which enable ATM-specific operations by relying on the architecture depicted in Figure 3.3. The ATM
Forum recommends that all vendors delivering APIs subject to a common semantic specification, defined
in [ATM96b]. Recently, Microsoft and Intel have jointly developed the Winsock-2 API, which includes
ATM-Forum compliant procedures to natively operate over ATM networks [Int96]. So far, probably the
most used ATM API is the one supplied by Fore systems, a principal vendor of ATM equipment, which is
described in [BCS93] and summarized in the following.

Fore Systems supplies with its host interfaces a software module addressed to applications requiring to
exploit ATM-specific capabilities including bandwidth reservation, selection of a specific AAL, multicas-
ting, etc. Fore’s ATM API follows the client-server model of distributed computing. Both unidirectional
and bidirectional point-to-point connections, as well as multicast connections from one sender to multiple
receivers. The ATM API is implemented by a subroutine library, with support from the ATM device driver.
Depending on the platform, the communications between the subroutine library and the device driver takes
place through a Streams (System V) or Sockets (BSD) interface, so a potential bottleneck appears in the
user-kernel boundary, whose effects will be demonstrated in the measurements described below. As these
details are hidden to the programmer, the interface described in the following is portable across platforms.

32 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

ATM API chooses AAL

for given class of

service; negotiates

QoS parameters

Desktop Application

ATM-aware API

ATM AAL

ATM layer

ATM PHY (Sonet/SDH)

(API performs

transport, session

and presentation

functions)

Layers 4-7

Layers 2-3

(ATM signaling

and addressing

(routing)

Layer 1

Physical layer

Figure 3.3: Native ATM API-based architecture.

A more complete description of each routine function is available on the on-line manual included with the
library [For94].

A client program opens an ATM connection by calling the atm connect routine, whose arguments
specify the destination ATM address, the desired and minimum acceptable resources, the AAL to use and
the type of connection (unidirectional, bidirectional, or multicast). The opened connection is bound to a
UNIX descriptor. A server program uses the atm listen operation to receive requests from incoming
ATM connections. The server can the choose to accept or reject the connection. The atm accept
operation allows the server to place additional restrictions on the resources it is willing to commit to the
connection; these restrictions are propagated back to the client.

Data are transferred by giving atm send and atm receive a data buffer and waiting for the transfer
to complete. One data packet is transferred on each call. The maximum size of the packet depends on
both the AAL selected for the connection and the constraints inherent to the underlying UNIX Sockets or
Streams implementation. The data given with atm send are segmented according to the selected AAL,
and each cell is prefixed with the outgoing VCI (Virtual Channel Identifier) for its connection as it is
transmitted. On the receiving side, the data are reassembled and delivered via the connection descriptor
corresponding to the incoming VCI. This implementation of the ATM API assumes the VPI (Virtual Path
Identifier) as 0. Note that Fore’s ATM API does not include functions not defined in the ATM or AAL
such as retransmission of lost cells or flow control. These function have to be provided by the application.

3.2.2 Performance without an adapted message-passing library

In [LDTM95], a comparative study of four APIs has been carried out: PVM, RPC, BSD sockets and the
ATM API supplied by Fore Systems, described above. Figure 3.4(a) shows how the protocol structure
looks like at all cases. For a simple echo test program, these combinations provide the performance values
shown in Table 3.3.

The main result from Table 3.3, obtained from [LDTM95] is that the ATM API achieves both the
highest throughput and the lowest latency among the measured interfaces. It is very important to remark,
however, that the functionalities provided by these APIs are not comparable. As opposed to RPC, PVM
and BSD sockets where fully reliable communications are supported, the ATM API offers no additional
features with respect to ATM, and therefore in many cases they have to be provided by upper layer

3.2. INTRODUCING AN ATM-SPECIFIC API 33

Applications

PVM RPC

BSD Sockets

{TCP,UDP}/IP Fore’s ATM API

ATM

{AAL3/4,AAL5}

(a) Protocols considered by Lin et al [LDTM95].

Applications

BSD Sockets

{TCP,UDP}/IP Fore’s ATM API

ATM

{AAL3/4,AAL5}

PVM

(b) Protocols considered by Dowd et al [DSBC95].

Figure 3.4: Protocol stacks for ATM-API-based architectures.

Table 3.3: Performance of five protocol combinations from a ping-pong test.
Protocol structure Capacity (Mb/s) Throughput (Mb/s) Startup latency (s)

RPC 100 12.72 2:957� 10�3

PVM 100 12.16 2:766� 10�3

BSD Sockets 100 16.72 1:960� 10�3

ATM API over AAL3/4 100 32.56 1:034� 10�3

ATM API over AAL5 100 31.68 0:869� 10�3

software or the application itself, which introduces a cause of performance degradation not considered in
the measurements. Note that in either case the achieved throughput is very far from the maximum capacity
of the ATM network, even in the case of the ATM API. There are many implementation issues yet to be
improved in the APIs.

In order to assess the real impact of the introduction of the ATM API, in [LDTM95] measurements
using real algorithms have been performed, which are displayed in Table 3.4. It is observed that the
execution times experienced with the ATM API are not much better than those experienced with the rest of
configurations. This behavior indicates that the extra user-level functionality counteracts the improvements
in the raw communications performance enabled by the ATM API. Another issue from Table 3.4 is the
fact that PVM over ATM, i.e. PVM-TCP/IP-ATM, performs better than ATM API for small matrices,
which indicates that the impact of message length is better for the API rather than the traditional transport
protocol.

Table 3.4: Execution time of matrix multiplication over several APIs.
Protocol structure Matrix Size

32� 32 128� 128 256� 256

Sequential 0.0988 s 6.6205 s 64.0001 s
PVM over ATM 0.0524 s 1.9493 s 16.4005 s
PVM over Ethernet
(silent) 0.0134 s 1.9693 s 16.9130 s
PVM over Ethernet
(30% loaded) 0.0341 s 2.0355 s 17.2416 s
Sockets over ATM 0.0736 s 1.9177 s 16.4030 s
Sockets over Ethernet
(silent) 0.0627 s 1.9136 s 16.7187 s
Sockets over Ethernet
(30% loaded) 0.0714 s 1.9932 s 16.9256 s
ATM API 0.0629 s 1.7758 s 16.2709 s

34 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

Table 3.5: Performance of PVM over several architectures.
Protocol structure Capacity (Mb/s) Bandwidth (Mb/s) Latency (s)

PVM over AAL5 (API) 100 26.608 1:617� 10�3

PVM over AAL3/4 (API) 100 17.776 1:646� 10�3

PVM over IP-ATM 100 16.848 1:234� 10�3

PVM over IP-Ethernet 10 8.608 1:662� 10�3

Figure 3.5: Performance of several software structures obtained by Dowd et al [DSBC95].

3.2.3 Performance with adapted message-passing libraries

Applications relying on low-level functionality mechanisms like the ATM API involve a high degree
of complexity in them because of the need of implementing functions that are usually provided by
the communications system in most environments. Therefore, it becomes wise to adopt a more user-
friendly interface to ATM, which will manage the additional functionality required by applications. In the
particular case of parallel computing, a message-passing library like PVM can incorporate such functions,
thus relieving applications from the burden of implementing them. Papers [ZG95, DSBC95] deal with
this case, and both are based on the architecture shown in Figure 3.4(b).

In [ZG95], the PVM library has been modified in order to support direct access to the ATM API. In
addition to some PVM implementation issues, a guaranteed transmission facility has been incorporated.
The performance achieved by this enhancement has been compared to PVM-IP-ATM and PVM-IP-
Ethernet. A particular implementation of these functions into the PVM library is discussed in [CDH+94].
This approach has the disadvantage that a specific version of PVM is required for every vendor’s ATM
API, but in the future this problem can be partially solved thanks to current API standardization efforts in
the ATM Forum [ATM96b].

The results in Table 3.5, obtained from a simple ping-pong test, suggest that (1) the introduction of ATM
enables faster communications, as expected, and (2) the direct access to the ATM API does not involve
significant improvements with respect to the access through IP. Architectures directly using the ATM API
experience increases in bandwidth, basically in the AAL5 case since the important amount of overhead
inherent to AAL3/4 seriously limit the achieved increase. In contrast, the performance in latency of both
direct APIs is worse than in the IP-ATM structure. The reasons of this unexpected behavior can be found
in (1) the quality of the implementation of the additional features within PVM, and (2) the implementation
of the ATM API. With regard to the ATM API, it is implemented in user space, and the communication
with the device driver in kernel space takes place through the standard UNIX communication mechanisms
—sockets or streams—. Thus, UNIX communication mechanisms are used twice when using the ATM

3.3. SPECIFIC MECHANISMS FOR PARALLEL COMPUTING 35

API —when applications invoke communication procedures, and within the API— while in the IP-ATM
structure are used only once —when applications invoke communication procedures, as IP is already
implemented inside the kernel. Standard UNIX communication mechanisms involve a lot of buffering, so
in the case of the ATM API, a more intensive use of buffering is performed. In addition, the ATM API
requires to cause a context switch, which introduces an important amount of overhead. All these facts
explain why the ATM API achieves the best throughput but not the best latency.

In [DSBC95], a similar a study has been carried out. The PVM library has been modified to enable direct
access to the ATM API, in order to determine the magnitude of the performance improvement compared
to ATM over TCP/IP. Figure 3.5 depicts the latency and throughput achieved by running simple ping-pong
tests in several configurations. Both ATM-API and Ethernet-based environments have been considered.
The results show that there is little benefit of direct API access with current implementations of ATM
networks. The throughput when using ATM through UDP is even superior. All the reasons explaining
the results in Table 3.5 apply in this case. The best throughput experienced by IP-ATM with several
packet sizes is also related to the fact that TCP/IP and UDP/IP are implemented in kernel space. The
slightly different behaviors are a consequence of different measurement conditions, as Table 3.5 bandwidth
measurements correspond to a packet size of 262144 bytes.

3.2.4 Discussion

The replacement of the protocol structure by an ATM API, which does not add any functionality to that of
ATM, involves that some functions like flow control and error recovery have to be performed elsewhere,
specially when AAL5 is used. If these functions are left to applications, their implementation become
more complex and the performance improvement is not very significant. If transport-layer functions are
implemented in ATM-API-specific implementations of the message-passing library, applications do not
get increased complexity, but the achieved performance does not get significant improvements either. In
both cases, the reasons for this behavior are twofold:� The implementationof the transport-layer functions is not specific for supporting parallel computing.

Therefore, some of the problems of generic transport protocols still remain.� The sensitivity to the implementation of the ATM API is very high. In particular, the Fore’s ATM
API has shown not to be optimized for achieving low latency.

As a result, in order to achieve the desired performance it will be necessary to replace current imple-
mentations of the API and the message-passing library by more efficient versions which really take into
account the specificities of ATM and parallel computing, specially the need of low-latency communications
[MSD94].

3.3 Specific mechanisms for parallel computing

Several authors have proposed mechanisms that reduce the impact of the bottlenecks on the performance
of parallel computing applications. In this section, these proposals are classified in three groups, according
to the primary issue the enhancement impacts on: (1) the ATM API; (2) the transport protocol; and (3) the
application context. Examples of these approaches are [vEBB94], [HPPF94], and [YRHF95, HHM95],
respectively.

36 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

Table 3.6: Performance of Active Messages over ATM [vEBB94].
Machine Peak BW Round-Trip Latency

SP-1 + MPL/p 66.4 Mb/s 56 �s
Paragon + NX 584.0 Mb/s 44 �s
CM-5 + Active Messages 80.0 Mb/s 12 �s
SS-20 cluster + SSAM 60.0 Mb/s 52 �s

3.3.1 API-level enhancement mechanisms

In Section 3.2, the implementation of the API adopted for the experiments has shown to be an important
bottleneck. Therefore, the research on alternative APIs becomes a key requirement to achieve enhanced
performance for ATM-based parallel computing environments. In [vEBB94], a multicomputer commu-
nication mechanism, namely Active Messages is adapted to ATM. Active Messages offer simple, general
purpose communication primitives as a thin layer over the raw hardware, in order to serve as a base
for building higher-level communication libraries and to be included in compiled codes generated from
parallel languages.

As defined in [vECGS92], the basic communication primitive is a message with an associated small
amount of computation (known as a handler) at the receiving end. One of the fields in an Active Message
is a pointer to the handler associated with that message. On message arrival, the computation on the node
is interrupted and the handler is executed. the role of the handler is to extract the message out of the
network, by integrating it into the ongoing computation and/or by sending a reply message back, thus
the communications take place under the request/reply paradigm. The only buffering provided by Active
Messages is that involved in actual data transport. Note that this scheme requires that all the nodes contain
the same code image, so it is only suitable for running SPMD (Single Program, Multiple Data) algorithms.
There are implementations for several systems, including multiprocessors and networks of workstations.
In [vEBB94] an implementation tailored for ATM-based networks of workstations is discussed.

The implementation of Active Messages for ATM networks consists of two parts: a device driver
which is dynamically loaded into the kernel, and a user-level library to be linked with applications using
Active Messages. The driver implements standard functionality to open and close the ATM device, and
a trap-based interface with the library so that the code for sending and receiving individual ATM cells is
directly accessed. Nevertheless, all functionality specific to Active Messages is in the user-level library.
In addition to the standard functionality of Active Messages, the user-level library includes flow control
and buffer management procedures.

The flow control mechanism has been added because of the unreliability inherent to ATM, as opposed to
the interconnection network of most multiprocessors. For this purpose, a simple sliding window scheme
is used in order to prevent overrun of the receive buffers and to detect cell losses. The window size
is dimensioned to allow close to full bandwidth communication among pairs of processors. For each
received message, the receiver generates an acknowledgment that can be piggy-backed in the reply, if
applicable. The recovery scheme used in case of lost or duplicate cells is standard —retransmission-based,
except that the reception of duplicate request messages may indicate lost reply messages which have to be
retransmitted. There is no attempt to minimize message losses due to congestion.

Table 3.6 from [vEBB94] shows the performance achieved by a micro-benchmark by several super-
computers and a workstation cluster with Active Messages. The results indicate a significantly high
performance for the workstations with Active Messages, as the performance lies in the same order of
magnitude as multiprocessors. However, Active Messages involve a number of serious drawbacks com-
promising this performance.

3.3. SPECIFIC MECHANISMS FOR PARALLEL COMPUTING 37

ISIS

High-Speed
Applications

EXPRESS PVM

Standard transport/network
protocols (e.g. TCP/IP)

HCP

HiPPIISDN LAN ATM-LAN

Message-passing tools

...

Runtime System

Usual Networking
Applications

Figure 3.6: Dedicated protocol environment for parallel computing.

As noted in [vECGS92], handlers are not allowed to block, since deadlock might result. For example,
a handler that attempts to acquire a held lock may cause deadlock as the thread or process holding the
lock is suspended by the activation of the handler, hence the lock cannot be released during execution
of the handler. Other deadlocks may arise when the handler execution is excessively long, since it
precludes the processing of new incoming messages. Other situations leading to network congestion can
also produce deadlocks. In general, Active Messages put many burdens on the programmer, who must
worry about deadlock in the network, synchronization between messages and computations, and other
timing-dependent problems. In order to solve these problems, in [WHJ+95] a solution is proposed for is
applicable in multithreaded environments.

The proposal in [WHJ+95] is known as Optimistic Active Messages. Unlike other compilers generating
Active Messages handlers, it is assumed that every piece of code that is executable as a handler will be
effectively compiled as a handler, without checking for deadlocks, etc. —that is why they are called
“optimistic”. When executing the handlers, if a cause of deadlock is detected, the execution of the affected
handler is aborted. Then, three strategies can be considered in order to resume the execution of the aborted
code. The particular strategy is selected as a function of the application, the programming language or
even the architecture.

3.3.2 Transport-level mechanisms

Traditional transport protocols have regarded the communication bandwidth as a scarce resource and
the communication medium as inherently unreliable, therefore they were designed to be very general in
order to handle complex failure scenarios. These characteristics have lead to complicated and therefore
time-consuming protocol implementations. The high speed and high reliability of current networks allows
for simpler protocols. In [HPPF94], a communication environment specifically tailored for supporting
parallel computing applications is presented, whose architecture is shown in Figure 3.6. The hardware
portion of this environment includes a host interface processor, a high speed network, and a “normal”
speed network. The software portion consists of a high-speed communication protocol (HCP) and a HCP
API. The API is an interface between a parallel computing application and the HCP services implemented
on an interface processor. The keys for the high speed are: (1) implementing the protocol in a special
communication processor, thus offloading the host from protocol processing, and (2) making the protocol
implement the basic functionality of message-passing libraries.

HCP includes the services that are common to most popular message-passing libraries: point-to-point

38 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

S

C C

C

S

C C

C

Control
Data

C:
Control Thread

Compute Thread
CT: MC: Multicast Thread

Flow Control ThreadFC: Send Thread
R: Receive Thread
S:

NYNET Communication System

Control threads
threads

Data transfer

CT

MCFC
R

NYNET Communication System

Control threads
threads

Data transfer

CT

MCFC
R

Application
User

Application
User

Control
Information

Data Control
Information

Data

Trap Interface

Network Interface Network Interface

Data Connection

Control Connection

Figure 3.7: Architecture of a multithreading environment for supporting parallel computing.

communications, group communications, process synchronization, system control and management, and
error handling. Thus, HCP offers a series of primitives for accessing these services. the functions
supported by HCP include synchronous and asynchronous data transfers, broadcast, barrier and system
configuration.

For transferring data, two schemes are used depending on the message size. Short data packets are
transferred in a datagram-like fashion. In contrast, long messages involve setting up a connection prior to
the transfer of each of them. Reliability of the transport service is assured by simple error and flow control
mechanisms. For each sent frame, the sender waits for an acknowledgment. Upon receipt of a positive
acknowledgment, the next frame is sent, while a negative acknowledgment triggers the retransmission of
the frame. If the receiver has not enough room for the frame, it responds with a not-ready indication
so that the source stops to send data. Thus, HCP implements a very simple window-based flow control
mechanism where the frames are individually acknowledged.

This protocol is not designed to be implemented over ATM but over a proprietary high-speed network.
Nevertheless, the software can be adapted to run for an ATM network embedding the “normal” speed
network and the high speed network. Implementing HCP in an ATM host interface card is more difficult.

3.3.3 Application-level mechanisms

Despite the availability of the enhanced mechanisms described so far, a portion of latency can remain
unavoidable. Several approaches intend to take advantage of the idle timer for doing more computation.
One common technique for this purpose is multithreading, which consists of allowing several concurrent
execution flows per task, so-called threads, sharing all the resources allocated on a per-task basis. Thus,
computation and communication can overlap, since while one thread is waiting for a message to arrive,
another thread can carry out computations not requiring the data in the expected message. This feature is
specially interesting in WAN environments as the propagation delay can be hidden.

An example of an ATM-specific multithreading mechanism is the NCS (NYNET Communication

3.3. SPECIFIC MECHANISMS FOR PARALLEL COMPUTING 39

NCS appl

Message-Passing Subsystem (NCS_MPS)

Multithreaded Subsystem (NCS_MTS)

ATM API

AAL3/4 AAL5

ATM

Passing filters
Message

PVM applp4 appl

Figure 3.8: Multithreading support for distributed parallel computing.

Table 3.7: Execution timer of Matrix Multiplication (seconds).
Nodes p4 NCS MTS/p4 % Improvement

1 24.89 25.03 -
2 14.4 11.51 20.06%
4 7.52 5.41 28.05%

system) discussed in [YRHF95, PHK+96]. In this environment, a process consists of user threads and
system threads. User threads are in charge of performing the actual computations of a given parallel
computing application, and are written and activated by the user. Systems threads include control, data
transfer, flow control, or multicast threads, and are created on initializationof the environment and activated
by the control thread according to a user specification. Thus, for example, in an ATM network, the control
thread establishes ATM connections for data transfer and maintains configuration data of each machine;
the data transfer threads (send and receive threads) are solely addressed to data transfer. In addition,
users may choose among several flow control and multicast algorithms in order to adopt the best for each
particular application. All these threads share data structures in memory so that they can interoperate. The
architecture of the NCS environment is depicted in Figure 3.7.

The NCS can be viewed as two main subsystems, as shown in Figure 3.8: the MultiThreaded Subsystem
(NCS MTS) and the Message-Passing Subsystem (NCS MPS). The NCS MTS provides all thread-related
services, including initialization, context switching, scheduling and synchronization issues. the NCS MPS
provides the communication services required by applications. For this purpose, two approaches have
been considered: (1) to integrate an existing message-passing library (p4 or PVM), including traditional
transport protocols such as TCP/IP, like the first strategy, and (2) to avoid traditional communication
protocols and directly access the ATM API, like in the second strategy. Table 3.7 shows the performance
gains experimented by a matrix multiplication algorithm over such an environment.

Another work taking advantage of multithreading is [HHM95]. For each task, separate threads are
created for computation, data send and data/ack receive. Here, multithreading is exploited for configuring
efficient collective communications, such as gather and reduction, with the construction of configurations
where communications can occur concurrently. For this purpose, multicast is implemented by using a point-
to-multipoint connection, whilst the acknowledgments are carried in a series of point-to-point connections
arranges as a spanning tree. The data send and date receive/acknowledge threads concurrently operate

40 3. STRATEGIES FOR INTRODUCING ATM IN PARALLEL ENVIRONMENTS

on this configuration. In this work, many-to one connections are implemented by using bidirectional
point-to-point connections arranged as a spanning tree, as in multicast. Here a single thread operates on
all data transfers, namely send, receive and acknowledge.

3.3.4 Discussion

Two classes of mechanisms have been suggested for enabling support of parallel computing applications
over ATM networks. One class of mechanisms attempt to increase the speed of communications but at the
same time they try to keep compatible either with protocols addressed to traditional networking applica-
tions, such as TCP/IP, or at least with existing message-passing libraries, such as PVM. Thus, unnecessary
overhead in communications is introduced that precludes the achievement of the potential performance
enabled by ATM. For instance, the mechanisms for replacing the legacy networking technology by ATM
(LAN Emulation, IP over ATM and the adaption of an ATM API) that have been presented earlier in
this chapter are conceived to be integrated in general-purpose architecture, which experience significant
performance degradation. As far as the various ATM API-based strategies, they rely on an interface that is
common to all types of applications. In addition, supporting a message-passing over such an API does not
take advantage of the special characteristics of both parallel computing applications and ATM, since the
communications interface of current message-passing libraries is tailored to be supported by traditional
protocols.

The other class of mechanisms involves the proposal of mechanisms specially tailored for supporting
parallel computing. As the communication overhead is minimized, the performance achieved by these
mechanisms is superior. However, the fact that these mechanisms are efficient for parallel computing
applications does not mean that all applications be properly supported. For example, the usefulness of
Active Messages for supporting applications other than parallel computing is yet to be proved. With regard
to HCP, the physical network is not shared, but rather a high-speed network is crafted aside the “normal”
speed network. Inside the high-speed network, HCP should be common to all high-speed applications,
which is not the case as HCP is specifically tailored for supporting parallel computing applications. In
addition, some of the specific mechanisms require special programming for applications. The Active
Messages interface involves such particular programming conditions that the programmer has to be aware
that the program is relying on Active Messages. Multithreading-based approaches demand the addition of
synchronization and mutual exclusion calls, so applications require specific programming as well.

As a result, some mechanisms intended for supporting parallel computing over ATM networks are
conceived to be integrated in a general-purpose architecture. Other mechanisms, in contrast, are specifi-
cally designed to optimize performance for parallel computing applications, but without considering the
existence of other networking applications sharing the ATM network. For this reason, in this work we
propose an architectural model in which mechanisms for supporting parallel computing are integrated,
and then they coexist with other architectures that are specific to other types of networking applications.
Thus, all mechanisms will be members of an integrated network architecture for a particular application
type, one of which being parallel computing. The characteristics of the specific architecture for parallel
computing will enable the future development of message-passing libraries that allow to fully exploit
the advantages of ATM-based environments while programmers can be hidden most of the programming
details that current application-specific mechanisms usually require.

4
The network architecture model

We propose a global framework for supporting parallel computing communications over
ATM networks. For this purpose, we assume a model of network architecture that allows to
integrate specific mechanisms for parallel computing within an ATM network that is shared
with the network architectures of many other application types. We also advance the suggestion
of two possibilities for building an overlay network where signaling procedures are decoupled
from the execution of parallel computing applications, in order to outline the final appearance
of ATM-based parallel computing environments.

4.1 Integration of specific mechanisms over ATM

As pointed out in Chapter 3, the best performance for parallel computing applications can be achieved
with the introduction of mechanisms specifically tailored for parallel computing. Nevertheless, this is
not exclusive for parallel computing applications; every type of application gets the best performance
with the use of specific mechanisms. However, the traditional approach up to now has been the use of a
common protocol architecture for all applications. The reasons were (1) the short range of networking
applications did not demand for specific mechanisms, and (2) traditional networking technologies did
not provide any facilities for developing specific mechanisms, since the bottleneck to minimize was not
protocol processing but network-level transmission, as discussed in previous chapters. Currently, with the
availability of a technology such as ATM and the consequently increasing base of networking applications,
network architectures tend to include diverse application-specific architectures coexisting on top of ATM,
each one corresponding to different types of applications, One of these architectures can be devoted to
support communications in parallel computing applications.

Some proposals of application-specific network architectures have already been made. As an example,
in this section we review specific mechanisms for transporting MPEG-coded multimedia information, and
for supporting a video-on-demand service.

A proposal of an AAL specific for multimedia applications is made in [GVH96]. The main character-
istics of multimedia data streams are their continuous nature —as opposed to the bursty nature found in
data applications— and their very stringent constraints in terms of delay and delay variations —known
in this field as delay jitter. When a compression scheme is used, traffic from multimedia applications
becomes also sensitive to cell loss, although the actual impact of loss depends on the type and location of
lost information. The most suitable standard AALs for the transport of multimedia information, AAL1

41

42 4. THE NETWORK ARCHITECTURE MODEL

and AAL5, but they suffer from some inconveniences. In particular, the FEC (Forward Error Correction)
scheme included with AAL1 includes some unnecessary overhead. As far as AAL5 is concerned, it is not
capable to known the position of lost cells. Then, when cell loss is detected, the corresponding packet
is discarded with a consequent increase of loss at application level. For all these reasons, the proposal
in [GVH96] consists of a specific AAL, whose organization is displayed in Figure 4.1(a), which includes
cell-level granularity to improve error detection, and a selective, specific FEC scheme to selectively protect
essential data. Several versions of this AAL can be developed for the diverse coding schemes (MPEG-2,
H.261, etc.), as shown in Figure 4.1(b).

Another example of application for which a specific AAL has been proposed is the environment for
supporting the Video-on-Demand service discussed in [CF96]. As displayed in Figure 4.2(a), this service
is organized as an ATM virtual network including video servers —called “Information WareHouses”
(IWH)— that are in charge of providing the service to the specialized nodes —called “Intelligent Access
Periferals” (IAP)— which in turn will deliver the appropriate information to the users. As each IAP can
apply for diverse videos in one IWH, a protocol is necessary to determine which demand is serviced at a
particular instant, according to the deadlines of the contending demands, which are a consequence of the
real-time constraint. This operation mode conveys the need of transmitting information on a per-burst basis.
For this purpose, this Video-on-Demand architecture relies on the presence of Fast Resource Management
in the network, which is possible when the actual data transfer is performed through a virtual circuit using
the ABT (ATM Block Transfer) service category that is defined by the ITU-T in the Recommendation
I.371 [ITU95a]. Users explicitly demand each burst of information by using an original protocol, the
MTEX (Multi Token EXchange protocol), whose operation is illustrated in Figure 4.2(b). When the IAP
issues a request to the corresponding IWH, it waits for the reception of a token. This token can be accepted
or rejected. If the token is accepted, the IAP prepares for delivering the service and instructs the IWH to
start the FRM procedure in order to transfer an information burst. The rejection of a token occurs when
the IAP is already serving a request with a higher priority.

4.2 Specific architecture for parallel computing

All application-specific network architectures like the previous examples can be integrated over a common
ATM network, as shown in Figure 4.3. In this section we focus on describing our specific network
architecture for supporting parallel computing. Figure 4.3 outlines the internal organization for this
network architecture within the general architectural model. The idea of a specific architecture for parallel
computing coexisting with other applications appears in [HPPF94], although that proposal is oriented to
supporting a particular mechanism. In contrast, the proposal discussed in the work is intended to integrate
whatever mechanisms are specifically conceived for parallel computing. Our specific network architecture
includes two components: (1) the overlay network over which parallel computing applications will be
supported, and (2) the mechanisms within the endpoint stations that will perform the actual data transfers
during execution of applications. We outline some possibilities for the overlay network, but we specifically
focus on the component within the endpoint stations because it is the component that actually impacts on
the performance of parallel computing applications.

4.2.1 Overlay network for signaling in parallel computing

In order to understand the characteristics of the mechanisms for supporting parallel computing, we first
discuss the structure of this service. In order to illustrate over which environment parallel computing
applications operate, we assume that parallel computing applications will run over a virtual network
interconnecting the endpoint stations participating in the execution of a particular application. This virtual

4.2. SPECIFIC ARCHITECTURE FOR PARALLEL COMPUTING 43

ATM Adaptation Layer

Upper Layer

ATM Layer

AAL Common Part

Segmentation &
Reassembly

Sublayer

Sublayer

CPS-PDU

48 octets 47 octets

1 octet

use
Future

number
Sequence

53 octets

8 ATM cells

(a) Structure of the specific AAL (common part)

Application (MPEG-2) Application (H.261) Other applications

ATM Layer

Physical layer

ATM Adaptation Layer (Common part)

MPEG-2 specific
AAL sublayer AAL sublayer

H.261 specific Other application
specific AAL sublayer

(b) Global view

Figure 4.1: Specific architecture for supporting multimedia applications suggested in [GVH96].

SET-TOP

SET-TOP

IWH

SET-TOP

IWH

IAP

SET-TOP

IAP

IAP

SET-TOP

ATM

Network

VP1

VP2

ATM
XC

ATM
XC

ATM
XC

(a) ATM virtual network for supporting Video on Demand

IAPIWH User
Request

Go signal

Request

Token

Accept/Reject

DATA

DATA

Data ack.

(b) Operation of MTEX

Figure 4.2: Specific architecture for supporting the Video on Demand Service as suggested in [CF96].

44 4. THE NETWORK ARCHITECTURE MODEL

level
Network

level
Convergence

level
Application

Video on
Demand

Bulk Data
Transfer conference

Video- ...

ATM

Hi-Fi AudioComputing
Parallel

Parallel Computing

Convergence Entity

ATM Network Entity

Parallel Computing-ATM

Application Entities

Applications

Telephony

Figure 4.3: Integration of services over ATM.

network is set up before the execution of a particular parallel computing application, and released after
this execution. Thus, the realization of signaling operations is restricted to be performed outside the
execution of the application, so that signaling does not impact on application performance. The effective
performance as perceived by the user —which includes both signaling and application performance— is
not significantly affected by signaling either, provided that applications run during long periods —hours
or days—, as actually expected for real parallel computing applications, because otherwise the signaling
delay would quit the advantages of introducing parallelism in a particular application.

The conceptually easiest strategy to build a virtual network is to establish virtual paths among all
communicating pairs of stations. In parallel computing applications it is very easy that each station needs
to communicate with the rest of stations. This is feasible when the parallel computing environment is
composed by a few stations but, as long as the number of stations grows, the maintenance of so many
connections becomes rapidly infeasible [New94a]. For this reason, in order to enable a smooth scalability
of ATM-based parallel computing environments, we have to consider more complex virtual networks.
Thus, a virtual network for supporting parallel computing will include two types of nodes: (1) the
endpoint stations where parallel computations are performed, and (2) parallel computing servers, which
are in charge of supporting signaling procedures in order to build virtual topologies. The latter procedures
include the setup of data transfer connections and the selection of the ATM service categories over which
these connections need to rely. As an example of such virtual networks, we will present two possible
overlay networks for supporting parallel computing over ATM networks.

The parallel computing servers receive the invocation of the service by the users. In the example shown
in Figure 4.4, the parallel computing servers are permanently interconnected with a ring topology. Each
server, is permanently connected with a number of endpoint stations. If the requested configuration is
sufficiently small, the server will ask the respective endpoint stations to setup data connections among
them. If more stations are required, the server will setup a data connection with another server and tell it to
establish connections between the remote server and the respective stations. The signaling connections and
the data connections between servers can be contained within a single Virtual Path between the concerned
pair of servers. Thus, when a station wants to exchange data with a station not connected to the same
server, it forwards the data to the server so that it routes the data to the appropriate server, which in turn
will deliver these data to the destination station. This strategy for building a virtual network is inspired
by the ‘virtual machine’ model used in PVM [G+94], and is quite simple. However, much delay may be
involved in building the virtual network, as well as during data transfers to remote stations, if the number

4.2. SPECIFIC ARCHITECTURE FOR PARALLEL COMPUTING 45

Server
Parallel Computing Parallel Computing

Server

Signaling connection
(permanent)

Data connection
(semipermanent)

Server
Parallel Computing

Figure 4.4: A virtual ring overlay network.

of parallel computing servers is large, due to the use of a virtual ring topology. The second example
attempts to overcome this limitation, at the cost of increased complexity.

The example virtual network shown in Figure 4.5 attempts to reduce the number of servers to be crossed
for building the virtual network, as well as to enable direct connections between either endpoint stations
or parallel computing servers. Each server can be connected to a number of endpoint stations, like in
the previous example, but also to other servers. Thus, we obtain a hierarchical configuration. As before,
servers —in fact, only those servers connected to endpoint stations— receive invocations from users, and
ask the endpoint stations for building the virtual network. When endpoint stations connected to other
servers are required, the local server requests the address of the remote station by accessing the remote
server through the tree, in order to allow for the direct connection between the concerned stations. In case
direct connections are not possible because there are no free VCI identifiers left, the data will be transferred
through a data connection via the server. All these procedures are valid for the servers, in the sense that
direct data connections may be established between the servers in order to enable the communication
between two remote stations that have run out of VCIs.

In both schemes, addressing is performed on the basis of the VPI/VCI pair in each cell in the commu-
nications between two stations connected to the same parallel computing server. For accessing stations
connected to remote servers, an additional field is required since several connections can share the virtual
channels associated to the servers, analogous to the MID field found in AAL3/4 packets, which will be used
by the servers for routing and for the remote endpoint stations to determine the origin of the messages. In
addition to routing functions, parallel computing servers may contain other functions, for instance mech-
anisms for the automatic selection of stations for building the virtual network. These mechanisms can
operate by using a distance criterion, or even load-balancing schemes. Although so far in this subsection
we have considered a single data connection between communicating pairs, actually several connections
may be established. This is the case described in Chapter 6, where several connections using different
ATM service categories are setup in order to take advantage of the features of each service category in the
adequate moments.

We do not attempt to make a deeper study of virtual networks for supporting parallel computing over

46 4. THE NETWORK ARCHITECTURE MODEL

Parallel Computing
Server

Parallel Computing
Server

Parallel Computing
Server

Signaling connection
(permanent)

Data connection
(semipermanent)

Parallel Computing
Server

Figure 4.5: A virtual tree overlay network.

ATM networks as they are out of the scope of the present thesis. We have suggested these examples
in order to give an idea about the characteristics of the environments over which we expect that parallel
computing applications will be executed. This thesis is more focused on mechanisms that are present in the
endpoint stations for performing the actual data transfers. The knowledge on characteristics of the virtual
networks will then facilitate the understanding about some of the assumptions made in the mechanisms
discussed in the rest of the work, whose characteristics are outlined in the remainder of this chapter.

4.2.2 Protocol architecture

In this subsection we review the architecture in which the mechanisms supporting run-time communications
during the execution of parallel computing applications. As we assume that run-time communications and
signaling are neatly separated, the network architecture for supporting run-time communications should
actually be independent of the design of the overlay network.

The objective of the specific network architecture for parallel computing is to provide applications
with a smooth transition to the peculiarities of ATM networks while satisfying the requirements of
communications in parallel computing environments, that is, to minimize end-to-end latency with full
guarantee of data delivery. Another issue to have into account is the condition that the ATM network
used by parallel computing applications is shared with other networking applications. Thus, it becomes
necessary to decouple communications as viewed by parallel computing applications from the actual data
transfer service provided by ATM. For this purpose, as discussed in [SPVS96, VSSP96b], we consider
the network architecture for supporting communications in parallel computing applications as organized
in three levels, as depicted in Figure 4.3. In the following we summarize the scope of each level.� Application level. The communicating entities attempt to implement interprocess communication

by assuring the correct delivery of data by taking advantage of the special properties of the data
generated by parallel computing applications, as shown in Subsection 4.2.3.� Network level. The functionality contained by the communicating entities is facilitated by the
networking technology. In the present work, this level implements the standard functionality of
ATM, as summarized in Section 1.3.

4.2. SPECIFIC ARCHITECTURE FOR PARALLEL COMPUTING 47� Convergence level. The communicating entities implement the functions needed for supporting
the service requirements of entities in the Application level that cannot be directly provided by the
network technology itself. Our work is mainly concerned with this level.

This architecture has to be understood as an analogy to the OSI reference model. Thus, communication
between two peer entities in a particular level is transparent to the other levels. As shown in the follow-
ing subsections, each level incorporates particular protocols with their own message units. Interfacing
between two adjacent levels involves the adaption of the their respective message formats. The view of
communications as understood in each level is discussed in the next subsections.

4.2.3 Requirements for the Application Level

In order to achieve low-latency communications, we attempt to take as much advantage as possible of the
nature of communications generated by parallel applications. At the highest level, we observe that the
data exchanged by parallel computing applications consists of chunks of some elementary types of data.
For instance, mathematical applications exchange arrays of floating-point numbers.

The message generation procedures of current message-passing libraries, such as PVM and MPI, are
designed to pack the elementary data types into large messages. The reason is that these libraries were
conceived to run on traditional protocols like TCP/IP on LAN environments (then, usually Ethernet and
Token Ring). In these environments, as the cost of communications is dominated by the capacity of the
network, the objective is to maximize the throughput by avoiding as much overhead as possible. Thus,
parallel applications seek to encapsulate as much information as possible in a single message although
sometimes it were necessary to delay the transmission or the reception of some of the components of the
message.

In ATM, the higher speed significantly reduces the importance of the network capacity in the overall
cost of communications. Thus, the natural data unit is no longer a variable-size large packet but a small
fixed-size cell. For this reason, there is no sense in delaying the transmission and reception of data, so
we can associate an elementary type of data (which is shorter than an ATM cell) as the basic application-
level PDU (herein PC-PDU, after Parallel Computing PDU). Given this assumption, we can now classify
applications according to the characteristics of PDU sequences and their distribution along the time. As
far as the sizes of PC-PDUs are concerned, we consider:� Basic PDUs. They correspond to elementary data types (such as float, int, double in C

language), as mentioned above, and therefore their length does not go beyond 16 or 24 bytes in usual
workstation systems. These are the shortest data unit that are understandable by parallel computing
applications in a semantic sense. They are the predominant type of PDUs in message-passing
systems.� Uncertain-length PDUs. They correspond to whole memory blocks that cannot be structured as
sequences of basic PDUs. These PDUs include strings and cache lines, the latter being used in
shared memory programming models. These PDUs are rarely used in message-passing systems.

The distribution of the elements within the sequences of PC-PDUs is also important to determine the
behavior of communications in parallel computing applications. In this work we consider two main
distributions of these sequences:� Non-correlated. PC-PDUs are smoothly distributed along the time, with a regular and significant

spacing between them. This situation corresponds to uniformly distributed transmission of basic
PC-PDUs.

48 4. THE NETWORK ARCHITECTURE MODEL� Correlated. PC-PDUs are transmitted in bursts, where the spacing within the PC-PDUs is rather
short, interleaved with periods of low activity. This behavior occurs when arrays of PC-PDUs are
transmitted.

As a summary, parallel computing applications using a message-passing model essentially generate basic
PC-PDUs which in many cases belong to highly correlated sequences, since many algorithms deal with
arrays and matrices. All the services provided by both the network entity and the convergence entity
have then to be tuned to provide an efficient transmission of this traffic. Some other characteristics of
communications in parallel computing applications will help for this purpose:� Parallel computing applications execute for fairly long periods of time —hours or days. Communi-

cations do not occur continuously during this period but rather they consist of sparse transactions.� As a consequence, the average bit rate is moderate due to a fairly low frequency of communications,
although the bandwidth requirements are much more important when communications effectively
take place.

This behavior of communications, together with the requirement of a total reliability that is common
to all applications dealing with data, conditions the characteristics of the convergence level. In partic-
ular, the relative importance of keeping a high throughput can be exploited for reducing the latency in
communications, which is more relevant to parallel computing applications.

4.2.4 Architecture of the Convergence Level

In parallel computing applications, like usual data applications, but unlike real-time applications including
video, audio, etc., the reliable delivery of the transferred data is mandatory. The characteristics of ATM
make it a suitable technology for transferring short messages such as PC-PDUs. Unfortunately, ATM
networks, as defined in the specifications by ITU-T and the ATM Forum, are not capable of providing
guarantee of data delivery, so this function has to be implemented elsewhere. As we assume the hypothesis
that only standard definitions for the ATM service are considered, the functions needed to provide the
service requested by parallel computing applications will be implemented in the convergence level. For
this purpose, some of the facilities discussed in Section1.3 can facilitate the deployment of efficient
convergence level mechanisms. In particular, the following capabilities have been considered for use in
the convergence level:� Service categories. Among the service categories that have been standardized for ATM, namely

CBR, rt-VBR, nrt-VBR, UBR and ABR [ATM96c], as well as ABT [ITU95a], we consider that for
the data transfer service the only eligible categories are the best-effort ones, namely UBR and ABR,
since the traffic generated by different parallel applications have no common properties allowing for
its characterization a priori, as would be required for the rest of service categories. For the control
flows, in contrast, any of the categories could be used, depending on the desired operation of the
convergence level mechanisms.� Adaptation layers. As currently standardized, AAL1, AAL3/4, AAL5 and the user-defined AAL
can be used to smooth the transition between the convergence level and the raw ATM. AAL adds
some functionality for real-time constant-rate services, so it is not appropriate for parallel computing
applications. As AAL3/4 is currently being abandoned, the alternative is between AAL5 and the
user-defined AAL. The size of the PDUs is the criterion to decide the finally adopted AAL.

4.2. SPECIFIC ARCHITECTURE FOR PARALLEL COMPUTING 49

Table 4.1: Suitable mechanisms to support convergence level functions.
Functions Mechanisms Examples

PDU mapping ATM API Message-based mapping
Cell-based mapping

Loss Recovery Retransmission Selective ARQ
Go-back-N ARQ

Addition of Redundancy Standard FEC
Connection replication

Flow Control Congestion Evaluation
Routing Simultaneous Replication

Adaptive Routing Alternative paths
Indirect connections

Burst Distribution� VC/VP connectivity. The structure of virtual paths and virtual channels inherent to ATM allows for
the setup of private virtual subnetworks and redundant paths in order to provide fault tolerance.

With these facilities, the convergence level has to implement a number of mechanisms whose final
objective is to provide a reliable service to parallel applications by minimizing the impact on performance.
As argued in [Fel93], for achieving adequate performance the convergence level has to be strict in
eliminating unneeded or replicated functionality, as well as taking care of the implementation of the
mechanisms. By taking these criteria into account, the convergence level can give support to the following
functions:� Service interfacing. In general, this function consists of the adaption of the PDU from an overlying

application entity to the data unit managed by the corresponding network entity. If the application-
PDUs are longer than the network-PDUs, this process involves segmentation. In the particular case
of parallel applications, PC-PDUs are shorter than one ATM payload, so no segmentation is done.
In addition to the adaption of PDUs, the service interfacing functions solicit to the network level the
facilities required by the rest of functions in the convergence level.� Loss recovery. They are very important in parallel computing communications since they allow
for the fulfillment of the reliability requirement of this type of communications. The contribution
to end-to-end latency from loss recovery mechanisms can be highly significant; therefore, special
attention must be paid to both the algorithm and the implementation of these mechanism in order to
achieve the desired performance for parallel applications.� Flow control. Since the cost in latency from the loss recovery mechanisms is very high, the flow
control function shapes the traffic so that the occurrence of losses is reduced and, consequently, the
cost of loss recovery decreases. As the reduction is usually achieved by decreasing the speed at
which data are sent, the mechanisms implementing flow control have to be precisely tuned in order
to optimally tradeoff the contributions to latency from flow control and loss recovery.� End-to-end routing. The possibility of redundant paths enabled by the virtual path/virtual channel
hierarchy allows for the reduction of the costs of loss recovery and flow control functions by routing
the traffic through alternative paths.

Some suitable mechanisms for implementing the functions in the convergence level are outlined in
Table 4.1. For service interfacing functions, there are some ATM APIs (Application Programming
Interface) already defined. In subsection 3.2.1 Fore Systems’s API is discussed. The mechanism included
in this particular API is oriented to large frames and, although it allows for single cell-sized payloads, it

50 4. THE NETWORK ARCHITECTURE MODEL

is not optimized for this purpose. As a consequence, parallel computing communications require a more
specialized mechanism in order to optimally dealing with short PC-PDUs.

Regarding loss recovery functions, there are two basic types of mechanisms available to improve relia-
bility: retransmission-based and redundancy-based. The former achieve reliability with the retransmission
of data that were not correctly received by the receiver. For this purpose, the transmitter and the receiver
have to exchange state information about the status of individual messages. At least one round-trip latency
is added for each retransmission. On the other hand, redundancy-based mechanisms provide robustness
by adding redundant information to the original data. If a sufficiently low amount of data has been lost,
the added redundancy enables a reconstruction of the original data at the receiver, thus avoiding the need
of retransmitting it. The ability to recover lost information strongly depends on the degree of redundancy.
Redundancy-based mechanisms seem attractive for applications with latency constrains, since they enable
the saving of additional latencies induced by retransmissions, as stated in [Bie93]. Unfortunately, they in-
volve considerable processing overhead and, in addition, they result in increased bandwidth consumption,
which in turn leads to cause higher information loss, so a well designed and tuned retransmission-based
mechanism may also offer adequate performance, even in time-sensitive applications [DLW94].

Retransmission-based mechanisms are known as ARQ (Automatic Repeat Request). There are two
classes of ARQ mechanisms: selective mechanisms, in which the retransmitted information strictly
corresponds to the lost information, and go-back-N mechanisms, in which, when a failure is detected,
the subsequent information is retransmitted, independently of it was lost or not. ARQ mechanisms have
been implemented in most popular protocols, including TCP, X.25, etc. Regarding redundancy-based
mechanisms, the most relevant are the FEC mechanisms, which consist of encoding the transmitted
information in order to introduce redundancy. Such a FEC strategy is included in the specification of the
AAL1, since it is targeted at supporting real-time services [ITU93e]. A similar proposal has been discussed
in the ATM Forum to be used with AAL5, in order to cover a wider range of applications [ECG+95].
In this case, since FEC can recover some of the lost information but cannot guarantee the delivery of all
transmitted data, an ARQ mechanism has to be present. Despite this, FEC has been proposed for some
data applications [ECD+95].

In order to minimize the impact of loss recovery mechanisms, the convergence layer can make use of
both flow control functions and routing functions. Flow control mechanisms adapt the traffic characteristics
to the state of the network so that cell loss can be reduced. Although standard approaches like sliding
window can be used, in ATM-based environments it is interesting to take advantage of the flow control
facility provided with the ABR service category [ATM96c]. Finally, routing mechanisms can make use of
redundant paths and information about the network in order to use the fastest path at each moment. An
example of such a mechanism is proposed in [SPSLA95], where the virtual path carrying the information
is dynamically assigned to a data flow among several redundant paths.

4.3 Summary

In this chapter we presented a network architecture which allows to integrate the specific architectures of
a wide diversity of applications on top of a common ATM network. As examples of specific architectures,
we summarized the characteristics of a multimedia data transport service and a video-on-demand system.

Parallel computing is one application more among those to be integrated on top of a common ATM
network. Its associated specific network architecture includes two components: (1) an overlay network,
and (2) the endpoint run-time mechanisms. We outlined the characteristics of the overlay network, but we
focus on the endpoint runtime mechanisms as they directly affect the performance experienced by parallel
computing applications.

4.3. SUMMARY 51

The endpoint component of the network architecture for supporting parallel computing applications is
organized in three levels: (1) the application level, (2) the network level, and (3) the convergence level,
which contains the functions needed by the application level that are not provided directly by the network
level, in out case ATM networks.

The immediate chapters are addressed to the proposal of concrete mechanisms to be implemented within
the convergence level. In Chapter 5 we suggest an AAL specific for parallel computing —the PC-AAL—
in which an existing transport protocol for providing end-to-end reliable data transfer, the SSCOP (Service
Specific Connection Oriented Protocol) is modified for it to adapt to the special characteristics of the data
generated by parallel computing applications, in particular to the short length of the basic data units —the
PC-PDUs. In Chapter 6 we discuss a strategy to introduce the diverse service categories supported by
ATM in order for the network architecture to benefit from their features. The final goal is to optimize
the performance to cost ratio. For this purpose, the more expensive service categories, as is ABR with
respect to UBR, are activated only when the advantages really compensate the additional cost. A real-time
monitoring process is used to determine the periods when this activation can yield positive results.

52 4. THE NETWORK ARCHITECTURE MODEL

5

Coupling SSCOP with
ATM-based parallel computing

The first phase of the implementation of the convergence level involves the proposal of a
mechanism for providing reliable delivery in parallel computing communications. For this
purpose, we have adopted an existing lightweight transport protocol as a basis for developing
this mechanism, in particular SSCOP. The modifications introduced in SSCOP allow for the
removal of AAL5, in such a way that a novel, specific AAL for parallel computing has resulted.
In this chapter, we first review the operation of standard SSCOP, and then we describe the
modifications introduced in order to achieve the specific Parallel Computing AAL. After that,
the results of the performance evaluation study of these modifications are exhibited. This
work is covered in [VSSP96b, SPVS96].

5.1 Description of SSCOP basic functionality

The Service Specific Connection Oriented Protocol (SSCOP) has been recently proposed by the ITU-
T [ITU94b] in order to support certain types of data transfer over ATM networks which require assured
service. In particular, one of these services is the support to signaling [ITU93a] and to a reliable connection
oriented transport service (COTS) [ITU95b], both mentioned in previous chapters. ATM has increased the
available bandwidth of communication networks and, in parallel, emerging applications are consuming
more and more bandwidth. Under these conditions, some currently used data communication protocols
extended beyond their assumed operating environment and, consequently, cause service degradation, as
noted in [Hen95]. These concerns justify the adoption of an ATM-specific approach such as SSCOP.

5.1.1 Interest of SSCOP in ATM networks

In this subsection we discuss the reasons why a novel protocol such as SSCOP has been developed for
supporting reliable data transfers over ATM networks, instead of considering other existing and well-
known transport protocols like TP4 or TCP. These widespread protocols were designed by considering
the available bandwidth as the dominating bottleneck. For this reason, they use a generous amount of
processing power in order to reduce transmission costs, with the addition of extra processing to minimize
the bandwidth required to recover from errors and incorporating relatively simple flow-control algorithms.
The current availability of networks offering greater bandwidths, together with the higher reliability

53

54 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

provided by fiber optic cables, claim to minimize processing requirements, even if transmission bandwidth
has to be sacrificed, to optimize protocol processing for the case of error-free communication, and to
include more effective flow-control algorithms [DDK+90].

Some authors argue that, in high speed networks, most of inefficiencies found in TCP come from
the implementation and environmental factors; thus, they believe that by optimizing the critical path in
the protocol implementation is sufficient to achieve adequate performance [CJRS89, MPBO96], with the
advantages introduced by the full compatibility with all current applications relying on TCP. In contrast,
many other researchers have focused on designing new protocols from scratch that intend to satisfy the
requirements pointed out above. Thus, the transport protocols are specifically tailored to take advantage of
high-speed networks, and therefore the relative importance of implementation is lower and consequently
the advantages are more sustainable as long as the speed offered by networks increases. As these protocols
focus on reducing processing, they are known as “lightweight protocols”. A survey of lightweight protocols
has been published in [DDK+90]. Examples of these protocols are NETBLT (Network Bulk Transfer)
[CLZ87], VMTP (Versatile Message Transaction Protocol) [CW89], Datakit [FM89], XTP (eXpress
Transfer Protocol) [SDW92] and SNR (named after its inventors) [NRS90, LT94].

For providing a reliable data transfer service, the standardization bodies chose to include a lightweight
protocol which takes advantage of the functionality offered by AAL5. The first application that was in
mind of the designers was the support of signaling procedures. Thus, ITU-T chose SSCOP as the protocol
to be supported by ATM. SSCOP is based on SNR and Datakit, and the main difference between them
and SSCOP is the fact that status reporting is initiated by the sender instead of the receiver; this behavior
is convenient for supporting signaling since most signaling operations are analogously initiated by the
originator. SSCOP relies on AAL5: it does not include checksumming as AAL5 already provides it.

As mentioned above, SSCOP was first conceived to be the heart of the so-called Signaling ATM
Adaptation Layer (SAAL), which is a protocol stack defined by ITU-T in Recommendation Q.2100
[ITU93a]. Later on, ITU-T has agreed on suggesting SSCOP for supporting other applications, such as the
Connection-Oriented Network Service (CONS) (Recommendation I.365.2 [ITU94a]) and the Connection-
Oriented Transport Service (Recommendation I.365.3 [ITU95b]). As we are also interested in supporting
reliable data transfer on top of ATM, we have considered SSCOP as well for the particular case of parallel
computing applications. Although the final version of the mechanism comprises many modifications
with respect to the standard SSCOP, we have captured the retransmission mechanism, which is the most
characteristic feature of SSCOP. In the following subsection, this mechanism is outlined.

5.1.2 Operation of the loss recovery mechanism

SSCOP transfers data to its peer in variable data length protocol data units (usually referred to as “frames”).
The sent frames are stored for potential retransmission until the receiver has acknowledged them. The main
contribution of SSCOP is the correction of errors and losses by selective retransmission of missing frames
via Automatic Repeat Request (ARQ) procedures. In particular, frames are numbered sequentially, and
the receipt of frames is explicitly acknowledged. If the receiver determines, through the examination of
received sequence numbers , than one or more frames are missing, it explicitly requests the retransmission
of the missing frames. Unlike other protocols like TCP, no timeouts are used to detect the possible losses.

SSCOP defines four basic frames for data transfer: SD (Sequenced Data) for user data, and the POLL,
STAT and USTAT frames for control flow. Figures 5.1 to 5.4 show the formats for these frames. Table 5.1
displays the SSCOP protocol variables in both sender and receiver peers, as well as the associated PDU
parameter when applicable. Other important fields of the SSCOP PDUs are shown in Table 5.2. In the
following the function of the SSCOP PDUs that are relevant to the loss recovery mechanism is described.

5.1. DESCRIPTION OF SSCOP BASIC FUNCTIONALITY 55

Table 5.1: Relevant protocol variables and PDU parameters.
Peer Variable PDU Parameter Meaning

Sender VT(S) N(S) Sequence number of the current/next SD PDU
VT(PS) N(PS) Current value of the POLL sequence number
VT(A) - Next expected SD PDU sequence number to be ack’ed

Receiver VR(R) N(R) Next expected in-sequence SD PDU sequence number
VR(PR) N(PR) Last received POLL sequence number
VR(MR) N(MR) Maximum acceptable SD PDU sequence number

Table 5.2: Meaning of the fields common to several PDUs.
Field Meaning

PAD Unused octets complementing PDU length to 4-multiple
PL Pad Length (in octets)
Reserved 32-bit alignment. Other functions, for further study
List Returned status of the receiver peer� SD (Sequenced Data) frames, whose format corresponds to Figure 5.1, convey the user data to

transfer. Each SD frame contains up to k octets, where k is currently set to 65528 octets, so that
SD frames do not exceed the maximum capacity of an AAL5 payload. The N(S) field contains the
current sequence number, which will be used to detect losses.� POLL frames are periodically issued by the transmitter in order for the receiver to respond with an
update of its status. As shown in Figure 5.2, POLL frames contain in the N(S) frame the sequence
number of the next new SD frame to be issued by the sender, as well as a “POLL sequence number”
in the N(PS) field, which functions as a timestamp.� STAT (Solicited Status) frames are issued by the receiver as a response to the receipt of a POLL
frame. They contain the receiver status as far as received and pending SD frames are concerned, by
means of the format depicted in Figure 5.3. This information is contained in the “list element” fields
in the following way: the first element contains the sequence number of the first missing SD frame;
the second one contains the sequence number of the next successfully received SD frame; the third
one is the sequence number of the next missing SD frame, and so on. The N(PS) field conveys the
“POLL sequence number” of the POLL frame to which the STAT frame responds. The With all
this information, the sender can acknowledge the successfully received frames and retransmit the
missing frames. N(MR) and N(R) fields are used by the flow control mechanism of SSCOP, which
we are not considering in the present work.� USTAT (Unsolicited Status) frames are issued by the receiver when the sequence number of the
last received SD frame is higher that the expected, thus meaning that one or more SD frames are

Information (maximum k octets)

N(S)

PAD (0 - 3 octets)

PDU
typeRes.PL

8 4 3 2 17 6 5

Octets
1

1

432

...

N

Figure 5.1: SSCOP SD frame format.

56 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

PDU
type

8 4 3 2 17 6 5

1

1 2 3 4
Octets

N(PS)

2 Reserved

Reserved

N(S)

Figure 5.2: SSCOP POLL frame format.

PDU
type

8 4 3 2 17 6 5

Reserved

Reserved

L+3

1 2 3 4
Octets

1

L+1

L+2

L

2

... ...

Reserved

PAD

PAD

PAD

N(PS)

N(MR)

N(R)

List element L

List element 2

List element 1 (a SD PDU N(S))

Figure 5.3: SSCOP STAT frame format.

missing. In order to accelerate the retransmission of these frames, the USTAT is immediately sent,
containing in the list element field the currently expected SD sequence number and the sequence
number that the receiver was expecting prior to the receipt of the offending SD frame. The format
corresponds to Figure 5.4. As in STAT frames, the N(R) and N(MR) parameters are used for the
flow control mechanism.

By following this scheme, unnecessary retransmissions might occur. In particular, it could happen that
the receiver gets a frame retransmitted upon a USTAT frame just after the issue of a STAT frame, which
will be received by the sender after the retransmission. Thus, the STAT frame will report on some missing
frames whose retransmission has been already issued. In order to avoid a new retransmission triggered
by the STAT frame, for retransmissions triggered by USTAT frames the next “POLL sequence number”
is recorded. If the received STAT frame corresponds to a POLL sequence number that is lower than the

PDU
type

8 4 3 2 17 6 5

Reserved

Reserved N(MR)

N(R)

3

4

1 2 3 4
Octets

1

2

PAD

PAD List element 2

List element 1 (a SD PDU N(S))

Figure 5.4: SSCOP USTAT frame format.

5.1. DESCRIPTION OF SSCOP BASIC FUNCTIONALITY 57

record, the concerned SD frame is not retransmitted, giving an opportunity to receive the retransmission
issued upon the USTAT.

Figure 5.5 displays the flowcharts representing the sender behavior in the data transfer service of SSCOP.
The main sender loop is depicted in Figure 5.5(a), where three possible events are managed:� Sending a new SD frame. Prior to effectively sending the frame, the record of the current sequence

number is increased (variable VT(S)), and a copy of the frame is stored in the sender window,
together with the current value of the POLL sequence number (variable VT(PS)), in order to enable
the avoidance of unnecessary retransmissions.� Receiving a STAT frame. The fields of interest are the sequence number of the corresponding
POLL frame (parameter N(PR)) and the list of sequence numbers reflecting the status of the receiver
peer. The sender reads the list and acknowledges the successfully received frames and triggers the
retransmission of the missing frames. After reading the list, the sender window is updated. The
N(PR) parameter is used to avoid unnecessary retransmissions, as explained above.� Receiving a USTAT frame. In this case, the only task to do is to retransmit the frames indicated
in the list —actually, it contains just two elements. It is not necessary to care about unnecessary
retransmitions, since USTAT frames are not supposed to trigger them.

The retransmission procedures used by the main sender loop are represented in Figure 5.5(b). The
leftmost flowchart is tailored to avoid unnecessary retransmissions. Thus, for each frame considered for
retransmission, the record of the POLL sequence number that was stored in the sender window during
the last transmission is retrieved and compared with the POLL sequence number provided with the STAT
frame (parameter N(PR). The retransmission is effective only when the parameter N(PR) is higher than the
record, meaning that the receiver is not expecting any previous retransmission. In case the retransmission
is carried out, the record in the sender window is updated to the current value of the POLL sequence
number (variable VT(PS)). The rightmost flowchart is similar to the leftmost one, excepting for the fact
that there is no testing for unnecessary retransmissions, since USTAT frames are not supposed to trigger
them. The sender window is then always updated to the current value of the variable VT(PS).

The process issuing POLL frames runs concurrently with the main sender loop, as indicated in Fig-
ure 5.5(c). POLL frames are sent with a periodicity TPOLL, and include the next in-sequence SD sequence
number, as well as the current POLL sequence number. The variable VT(PS) containing the latter is
incremented with each issue.

The flowchart in Figure 5.6 illustrates the behavior of the receiver peer. Note that it is significantly
simpler that the sender behavior, as all functionality of SSCOP is governed from the sender peer. The loss
recovery mechanism of SSCOP processes two events in the receiver:� Receiving an SD frame. The sequence number in the received SD frame (parameter N(S)) is

compared to the expected one (in the variable VR(R)), in order to detect possible missing frames.
If both numbers are equal, no missing frames have been newly detected and then the expected SD
sequence number is increased and the receiver window is updated. If N(S) is lower that VR(R), the
received SD frame corresponds to the retransmission of a previously missing SD frame and then
no action is undertaken apart from updating the receiver window. Finally, the parameter N(S) can
be higher that the expected number VR(R)), meaning that the SD frames with sequence numbers
between VR(R) and N(S) - 1 are possibly missing. In this case, an USTAT frame is build and the
variable VR(R) is set to expect the next frame after the received one (N(S)). The receiver window is
updated in the three possibilities.

58 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

Retransmit2
(List(1),List(2))

Wait for event

STAT received

?

Retransmit1

VT(S)++

Store frame
(VT(S), VT(PS))

Send frame
(VT(S))

USTAT receivedSend new SD frame

i > L-1

i <= L-1

i = i + 2

i = 1
ack = VT(A)

ack = List(i+1)

(ack, List(i))

(ack, List(L))

VT(A) = List(1)

i = L

i > L
?

Acknowledge

Acknowledge

(List(1), List(2))

(N(PR), List(1:L))

(List(i), List(i+1), N(PR))

(a) SD frame transfer

?

Update frame

Retransmit frame
(j)

j ++

j = i0

?

j = i0

?
Exit

(i0, i1)

(j, VT(PS))

nps = VT(PS)[j]

Exit

Retransmit1 Retransmit2

j >= i1

j < i1 j < i1

j >= i1

(i0, i1, N(PR))

Update frame

Retransmit frame
(j)

j ++

(j, VT(PS))

N(PR) < nps

N(PR) >= nps

(b) Retransmission procedures

T = T POLL

Wait until T = 0

Send POLL
(VT(S), VT(PS))

Start timer

VT(PS) ++

(c) POLL frame generation

Figure 5.5: SSCOP sender behavior flowchart.

5.2. MODIFICATIONS TO SSCOP 59

?

VR(R)++

(N(S))
SD received

Wait for event

POLL received
(N(S), N(PS))

N(S) < VR(R) N(S) > VR(R)

N(S) = VR(R)

VR(R) = N(S) + 1

Send USTAT
(VR(R), N(S))

receiver buffer
Update

Send STAT

Build status list

VR(PR) = N(PS)

(List(1:L), N(S))

(VR(PR), List(1:L))

Figure 5.6: SSCOP receiver behavior flowchart.� Receiving a POLL frame. With the receiver status stored in the receiver window, together with
the N(S) parameter corresponding to the next in-sequence SD frame to be issued by the sender,
the receiver peer builds the status list indicating both the successfully received and the missing SD
frames. This list is sent through a STAT frame including the received POLL sequence number
(parameter N(PS)) in order to avoid unnecessary retransmissions.

A simple example for the operation of SSCOP is illustrated in Figure 5.7. After the first 4 frames have
been sent, a POLL frame is issued. After a while, a STAT frame has been received which acknowledges the
correct receipt of those SD frames. After issuing the POLL frame, the transmitter has sent the SD frames
numbered from 5 through 9, prior to the next POLL frame, but the frame number 7 has been lost. The
receiver detects this loss when frame number 8 is received, and then a USTAT frame is issued requesting the
retransmission of frame number 7. The transmitter receives the USTAT frame and immediately retransmits
frame number 7, with priority over new data. Note that when the POLL sent right after frame number 9 is
received, the retransmission of frame number 7 has not reached its destination yet, so the STAT frame again
requests the retransmission of frame number 7. When the transmitter receives the STAT frame, it observes
that a retransmission of frame number 7 has occurred after the issue of the POLL frame corresponding to
the current STAT frame, so a new retransmission is inhibited expecting that the retransmission issued by
the USTAT frame will successfully reach the receiver. If it were not the case, the next STAT frame would
stimulate a second retransmission.

5.2 Modifications to SSCOP

As SSCOP is a protocol specifically designed to be supported by ATM networks, it allows to achieve better
performance than that of other traditional transport protocols. However, SSCOP is not application-specific,

60 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

USTAT (Receiver
detects loss of #7)

STAT

STAT (again requests
#7 to be retransmitted)

5

6

7
POLL

3

2

7

8

9

10

4

0
1

POLL

11

Transmitter
retransmits #7

Here, the transmitter does not
resend #7 because it determines
that the STAT predates possible
reception of the retransmission

0 through 4
are acknowledged
by STAT

Figure 5.7: Example of SSCOP operation.

and therefore it is not adapted to the characteristics of any particular application type. Thus, the specific
characteristics of traffic from parallel applications may be captured in order to achieve a new version of
SSCOP that be well tuned for cell sequences like those from parallel computing applications.

5.2.1 The “frame corruption by cell loss” problem

Traditionally, networking applications try to maximize the throughput of the networks, specially those
managing large amounts of data. For this reason, most packet-based transport protocols rely on variable
size packets, whose length applications attempt to keep as long as possible. In case of congestion, whole
packets are discarded and, in the case of ARQ protocols, they have to be retransmitted. This is the behavior
experienced by common protocols such as TCP.

When packet-based transport protocols are introduced on top of an ATM network, the behavior varies.
Indeed, when congestion is experienced, individual cells are lost, as opposed to complete packets, so
the characteristic effect of congestion on packet-based transport protocols over ATM is the corruption of
packets, instead of their loss. Thus, the destination endpoint can receive an amount of cells corresponding
to corrupted packets. As the whole packet has to be retransmitted, the successfully received cells will be
transmitted again, and therefore a significant amount of bandwidth may be wasted, depending on the size
of the packets. To reduce the impact of this problem, two approaches can be observed: (1) to alter the
network so that useless cells are discarded; and (2) to set the transmission unit in such a way that useless
be minimized or avoided.

In [RF94] two strategies altering the network are described: Partial Packet Discard (PPD), and Early
Packet Discard (EPD). Partial Packet Discard is an algorithm implemented on ATM switches that consists
of dropping all subsequent cells from a packet as soon as one cell has been dropped. It can be implemented
on a per-virtual connection basis. Thus, if AAL5 is used, once the switch drops a cell from a virtual
connection, the switch continues dropping cells from the same virtual connection until the switch observes
that the AUU (ATM User-to-User) bit in the ATM header is set indicating the end of the AAL packet. This
cell indicating the end of an AAL packet is not dropped. This approach reduces the amount of useless cells
in the network, but does not eliminate them, because all the cells belonging to the corrupted packet that

5.2. MODIFICATIONS TO SSCOP 61

were received in the switch earlier than the first lost cell will continue in the network. Thus, the amount
of useless cells is reduced, but the number of corrupted packets is not.

Early Packet Discard enhances the operation of PPD by discarding entire packets. If the first cell of
a packet is received in an EPD switch whose buffer occupancy exceeds a fixed threshold, all subsequent
cells belonging to this packet are dropped, even if buffer occupancy falls below the fixed threshold during
the reception of the packet. In contrast, if the first cell of a packet comes across a buffer occupancy that
is lower than the fixed threshold, all subsequent cells belonging to this packet, even if buffer occupancy
grows until exceeding the fixed threshold, unless there is no physical room in the buffer for the cell. Thus,
the behavior of ATM switches becomes similar to packet-based switches. In [RF94], the threshold is set
to half the buffer size. With this approach, ATM switches have to include mechanisms for monitoring the
buffer occupancy. The effective throughput achieved with EPD is clearly better than with PPD and, in
the case of sufficiently large buffers, the throughput gets very close to the ideal. Both PPD and EPD are
supported by a number of ATM switch manufacturers, for example in Fore’s switches [For96].

The simulation results presented in [LST+95] indicate that UBR+EPD does not provide fair bandwidth
allocation to the concurrent sources. The operation of EPD favors the connections finding a buffer
occupancy lower than the fixed threshold, which is more apparent the longer are the packets. Thus, in
case virtual connections conveying short and long packets compete for the buffer, the latter are allocated
most of the bandwidth. Both PPD and EPD, in addition, are designed to maximize throughput and
bandwidth utilization in the switches, but are not specially conceived to reduce end-to-end delay. Indeed,
retransmissions are not directly avoided, so neither EPD nor PPD are not good mechanisms for supporting
parallel applications. Adopting a modified version of those mechanism involves all the inconveniences
inherent to network-level mechanisms, including the need of implementing the mechanism in all switches
in the path. Another solution is to consider end-to-end convergence-level mechanisms.

As shown in the following subsections, the introduction of useless cells can be avoided by encapsulating
the “packet” in one ATM cell. Thus, it is not necessary to discard cells in the switches and the receiver.
This approach involves a higher degree of overhead —a packet-level overhead in each ATM cell, but the
gain in latency may compensate for the lower throughput. In the following subsection, several strategies
to build cell-based PDU mapping schemes are discussed.

5.2.2 Cell-based PDU mapping

Current message-passing libraries are designed to be supported by traditional transport protocols, as
mentioned in Subsection 4.2.3. Thus, their communication procedures involve encapsulating a certain
number of PC-PDUs in larger messages. The PVM (Parallel Virtual Machine) library, one of the most
popular ones, operates this way, so we can assume that PVM generates PVM-PDUs which in turn are
composed by a number of PC-PDUs. Using a frame-based protocol, as is the case of TCP and the standard
SSCOP described in Section 5.1, involves encapsulating a PVM-PDU into a transport packet. To avoid
the problems demonstrated in the previous subsection, these PVM-PDUs should be segmented so that
each fragment can accommodate in one cell, thus avoiding the generation of useless cells. Two different
strategies can be considered for the fragmentation of PVM-PDUs.� Unstructured fragmentation. The PVM-PDU is considered as an unstructured piece of data. Thus,

the fragments do not necessarily have any relationship with the PC-PDUs contained in the PVM-
PDU, as depicted in Figure 5.8(a).� PC-PDU-based fragmentation. The PVM-PDU is fragmented in such a way that each cell contains
an integer number of complete PC-PDUs. Figure 5.8(b) shows an example.

62 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

PVM-PDU

ATM cells

PC-PDUs

(a) Unstructured fragmentation

ATM cells

PVM-PDU

PC-PDUs

(b) PC-PDU-based fragmentation

Figure 5.8: Fragmentation strategies.

Unstructured fragmentation strategy achieves a higher efficiency as far as the amount of generated cells
is concerned, but leads to the reception of incomplete PC-PDUs. Thus, if we are interested in allowing
the receiving endpoint to use the received PC-PDUs as soon as received, extra complexity in the receiver
is needed to reassemble PC-PDUs, which contributes to increase the processing latency. In contrast, PC-
PDU-based fragmentation ensures that all received data are immediately usable by the receiver endpoint,
without further complexity. The operation of PC-PDU-based fragmentation enables the deployment of
novel message-passing libraries that are based on streaming of PC-PDUs. In the rest of the work, the
PC-PDU-based fragmentation is adopted. Although in Figure 5.8(b) all the cell payload is dedicated to
encapsulate PC-PDUs, in practice part of the payload will contain some overhead as well as PC-PDUs.

With the fragmentation strategy, the frames to be used by SSCOP can be accommodated in one cell.
As standard SSCOP is designed to rely on AAL5, one-cell AAL5 packets can encapsulate the fragments.
Nevertheless, this scheme incurs in unnecessary overhead. In particular, the 32-bit CRC is excessive
for a one-cell AAL packet —a 10-bit CRC like that included in cells generated by AAL3/4 is probably
overdimensioned [AA93]. In addition, the ‘packet length’ field does not need two bytes —6 bits are
sufficient. For this reason, we can skip the AAL and submit the fragments from SSCOP directly as ATM
cells, without further adaptation. This procedure in fact is equivalent to the definition of a new AAL
specialized in conveying PC-PDUs, which we refer to as “Parallel Computing AAL” (PC-AAL).

5.2.3 Encapsulation schemes

As a result of the guidelines expressed above, the SSCOP requires some modification in order to build the
PC-AAL. The modifications we performed to SSCOP involve the removal of AAL5-related fields and the
addition and/or adaption of further fields that are more related to PC-PDUs or the application-level library
supported by the PC-AAL. The key point in the proposed modifications is that the AAL-level PDU will
consist of just one cell. With this particular characteristics, SSCOP frames have to be modified. Some
modifications apply to all SSCOP frames while others are particular to a certain frame. In the following
we discuss the common modifications:� The SD sequence numbers are allowed 4 bytes (32 bits) instead of 3 bytes (24 bits). This increase is

motivated by the presumably higher number of frames transferred as a consequence of the fact that

5.2. MODIFICATIONS TO SSCOP 63

241Variable

Pad Sequence
number

CRC

type
PDU

2 2 Variable Variable

PC-PDUTag Other user-level informationOffset

User data

48 bytes

(bytes) (bytes)

(a) One PC-PDU per cell

Tag PC-PDU

Variable

PC-PDU

Variable

PC-PDU

Variable222

. . .Offset
first

Offset
last

241Variable

Pad Sequence
number

CRC

type
PDU

Variable

User data
(bytes)(bytes)

48 bytes

(b) Several PC-PDUs per cell

Figure 5.9: Encapsulation schemes for SD frames (sizes in bytes).

one frame is accommodated in one cell.� CRC is set to 16 bits. Although 10 bits would have been sufficient, an integer number of bytes has
been preferred for byte alignment purposes. In any case, it is half of AAL5’s standard 32-bit CRC.� No variation have been considered for the ‘PDU Type’ field (4 bits). In the rest of the discussion,
we include four additional 4 bits that are reserved for future purposes in this field, hence the 1 byte
length shown in Figure 5.9 below.

After discussing the common modifications, we revisit each SSCOP frame type in order to propose
modifications to their format. These modifications are required for letting the information contained in
each AAL-PDU be processed without having to rely on the receipt of other AAL-PDUs. In particular, the
modifications include the addition of some fields in order to enable compatibility with current upper-level
message-passing libraries —which mostly generate large SDUs as they are designed to run over traditional
networks such as TCP/IP-based LANs— as well as slight differences in the STAT list generation procedure
in order that, when the list has to be contained in more than one cell, the sender can retransmit missing
cells without requiring the receipt of all cells composing the STAT list. In the following paragraphs, each
frame type is discussed their modifications and particular characteristics in more detail.

As far as SD (Sequenced Data) frames are concerned, two schemes of PC-PDU encapsulation have
been considered: encapsulating one PC-PDU per cell, shown in Figure 5.9(a), and encapsulating several
PC-PDUs per cell, depicted in Figure 5.9(b). Allowing only one PC-PDU leads to degrade the throughput
and to increase the amount of generated cells, but the generation of SSCOP frames is simpler and therefore
it is possible to reduce the latency, provided that the achieved performance be not much lower than that
obtained when encapsulating several PC-PDUs per cell. In addition, when encapsulating one PC-PDU
per cell, the unused space can be dedicated to other functions (for example, adding redundancy). It is
highly intuitive that the encapsulation of several PC-PDUs will lead to achieve better performance than the
alternative of encapsulating just one PC-PDU. The comparison of both encapsulation schemes will allow
to separately determine the contributions of the cell-based PDU mapping strategy and the PC-PDU-based
fragmentation.

The ‘user data’ field in the frame formats shown in Figure 5.9 include the PC-PDUs (one or several,
depending on the scheme), together with other user-level informations in case of encapsulating one
PC-PDU per cell. In addition, other fields are included that are necessary to support PVM. For each

64 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

PC-PDUs

TagOrg. Dest.

PC-PDU offset 80 1 2 3 4 5 6 7 9

Figure 5.10: Structure of a PVM message.

message generated by PVM (PVM-PDU), the programmer associates an integer value (known as a tag),
that is used by the receiver to distinguish between different incoming messages. Thus, the ‘tag’ fields
in Figure 5.9 contain the tag number of the PVM PDU to which the PC-PDUs in the frame belong. the
‘offset’ fields indicate the relative position of PC-PDUs in the PVM message, as illustrated in Figure 5.10.
When encapsulating one PC-PDU per cell, only one ‘offset’ field is required; when several PC-PDUs are
accommodated in one cell, two ‘offset’ fields are considered, one for the first PC-PDU and the other for
the last PC-PDU. Thus, one cell can contain PC-PDUs from one PVM message only. This scheme is
also valid for other message-passing libraries such as MPI (Message-Passing Library) [DOSW96]. Other
programming models will require alternative schemes. In particular, if the message-passing library directly
generates PC-PDUs, no “offset” field would be required. The development of an efficient PC-PDU-aware
message-passing library may enhance in a great extent the features of the PC-AAL.

POLL frames can be accommodated in one cell,even with standard SSCOP. Thus, the only modifications
in the POLL frame format include the addition of the 16-bit CRC and the use of 4-byte sequence numbers.
The same considerations apply for the USTAT frames.

The STAT frame, in contrast, possibly spans several cells, due to the unspecified length of the status
list. Recalling the format of the status list, explained in Subsection 5.1.2, it is organized in pairs of
numbers: the first one indicates the start of a sequence of missing frames and the second one represents
either the start of a sequence of successfully received cells or the sequence number of the next frame
to be issued by the sender —known by means of the POLL frame. An unpaired sequence number may
be added if the receiver infers from the information contained in the POLL frame that cells are being
successfully received, and therefore it is not possible to determine the end of this sequence. These pairs
can be distributed in several cells so that each cell contains complete pairs —plus an unpaired element in
the last cell, if necessary. Unlike standard SSCOP, a STAT sequence may be partially received. If the first
cell of the sequence is lost, the receipt of a subsequent cell would acknowledge the receipt of all cells until
the first element contained in the cell, including the missing frames indicated in the lost STAT cell. To
avoid this effect, each cell contains a field with the last element in the STAT sequence indicating the start
of a sequence of successfully received frames —or directly the last acknowledged SD frame if the cell
contains the first elements in the STAT sequence—, which we call LAF (Last Acknowledgeable Frame),
so that the acknowledgment of missing cells is precluded. When a cell containing part of a STAT sequence
is received, all SD frames whose sequence number is higher than LAF but lower than the first element in
the cell are acknowledged. Figure 5.11 illustrates the operation of this mechanism. Note that, although
only one pair per cell is represented, in reality one cell can accommodate as many pairs as possible.

5.3 Experiments

For assessing the performance of the specific AAL for parallel computing, we want to test the response
of this AAL to the load in the network produced by the rest of networking applications sharing the ATM
network. In frame-based mechanisms, congestion situations may become worse due to the increased
number of cells generated as a consequence of the retransmission of large frames. By forcing that the
retransmitted cells correspond exclusively to lost cells, we expect to smooth congestion situations. Another

5.3. EXPERIMENTS 65

1,x,x,4,5,x,x,8,x,10

N(S) = 11

(2,4),(6,8),(9,10),(11)

Received SD Frames:

Received POLL Frame:

STAT List: STAT #3

STAT #2

STAT #1

STAT List

2,4

6,8

9,10,11

STAT #1

POLL

STAT #2

STAT #3

LAF

4

8

0

as if successfully received

would have been acknowledged

Without LAF, missing frames 2 and 3

LAF is the last frame in the sequence

that has been possibly acknowledged

Acknowledged frames: 5, 8

Acknowledged frames: 1, 4

Acknowledged frames: 10

Figure 5.11: Example of issuing a STAT sequence.

Switch #1

WS

WS

WS

WSSwitch #2

WS WS

.........

Figure 5.12: Simulated environment.

effect of frame-based mechanisms is that the receipt of the whole frame is required for processing the
contents. With the PC-AAL, received PC-PDUs can be processed immediately, so latency is expected to
decrease. Finally, we will determine the advantage obtained when encapsulating several PC-PDUs per
cell, with respect to the performance achieved when encapsulating one single PC-PDU per cell. All the
experiments have been performed with simulations. One reason is that we did not have suitable equipment
available when experiments were carried out. Another reason is the flexibility in configuring the scenario
that the use of simulation allows for.

5.3.1 Measurement scenario

As discussed in Section 1.4, the most indicative performance measure in parallel computing environments
is latency. Latency includes the delays introduced in the host and the network along the retransmissions
required for the correct reception of data. The contribution of cell-based PDU mapping scheme goes in
the direction of reducing cell loss, so performance improvements are expected to be related to the cell loss
ratio experienced in communications.

For measuring communication latency when emphasis is made on cell loss, it is sufficient to adopt a
simple environment with a bottleneck link for carrying out the measurements. Using a simple environment
is also interesting for letting simulation time keep within reasonable limits. Thus, the scenario displayed in
Figure 5.12 is sufficient for our purposes. It consists of a number of workstations connected to a network
of two switches, where the link interconnecting both switches acts as a bottleneck link. The modeled
environment, as specified earlier, provides for the support of traffic from both parallel computing and
traditional applications sharing the ATM network. The impact of this background traffic over the network
is user-configurable, what enables the study of the response of the PC-AAL under different conditions.
As far as parallel computing applications are concerned, each task of a parallel computing applications is
assumed to execute on a different workstation, and is allowed to communicate with any of the remaining

66 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

Table 5.3: Parameters of simulation.
Parameter Value

Link capacity 155.52 Mb/s
Protocol processing delay 100.0 �s per transport PDU
Additional delay per retransmission 50.0 �s per transport PDU
Interrupt processing delay 75.0 �s per received packet
Bus transfer delay 0.85 �s per cell

tasks. All the necessary connections between communications are assumed to be established prior to
execution. A particular communication can be either local (to a task attached to the same switch) or
remote (to a task attached to the other switch).

Table 5.3 shows some of the most relevant simulation parameters. The protocol processing delay
corresponds to to half of the time invested in processing TCP/IP, as shown in [DDP94]. The reason for
considering half of TCP/IP’s delay is the fact that the PC-AAL is intended to require less processing
than traditional protocols. For each retransmission, the latency experienced by the concerned message is
added half the protocol processing —i.e. 25% of TCP/IP processing time— in order to include the part of
operations that are performed on each transmission. The values for the rest of delay parameters are taken
directly from [DDP94].

The traffic from parallel applications is modeled by traces attached to each source that contain refer-
ences to calls to communication functions of a message-passing library, which have been obtained from
executions of real algorithms over a LAN of SUN 4 workstations. In this work we have considered one
algorithm running over the PVM (Parallel Virtual Machine) message-passing library [G+94]: PDE1, from
the GENESIS benchmark suite [AGH+91], whose characteristics as far as communications are concerned
are detailed in Appendix A. In PVM, the basic communication procedures of PVM are pvm send
and pvm recv. In standard operation, the sequence for sending a message is pvm initsend, several
pvm pkx, and pvm send. For receiving a message, the sequence is pvm recv, and several pvm upkx.
pvm initsend initializes a buffer for transmitting a message; pvm pkx adds one or several PC-PDUs of
type x to the current buffer; pvm send effectively sends the message. In the receiver process, pvm recv
retrieves a full message and stores it in a buffer; pvm upkx extracts one or several PC-PDUs of type x from
the current buffer. As observed, this operation is clearly oriented to build large messages, since PVM, like
most of the message-passing libraries, was designed to be supported by traditional protocols like TCP/IP.

The encapsulation schemes for the PC-AAL described above, however, do not rely on the transmission
of large messages, as the AAL-PDU is as long as one ATM cell. Instead, communications are actually
issued by the pvm pkx and pvm upkx, that is, in the instants when PC-PDUs are explicitly involved. The
operation of the PVM calls now becomes like this:� pvm initsend: A communication (i.e. a buffer) is initiated. Unlike the standard call, the

destination and tag fields, supplied in the pvm send call in the standard operation, have to be
provided because the actual transmission occurs before pvm send, as shown below.� pvm pkx: In the one-PC-PDU-per-cell encapsulation scheme, as many cells as PC-PDUs are sent,
each of them containing just one PC-PDU of type x. In the several-PC-PDUs-per cell encapsulation
scheme, the PC-PDUs are accumulated in a one-cell-wide buffer that is sent when there is no room
for the next PC-PDU.� pvm send: In the one-PC-PDU-per-cell encapsulation scheme, simply closes the communication.
In the several-PC-PDUs-per cell encapsulation scheme, the buffer is first flushed.� pvm recv: The reception of expected data is initialized.

5.3. EXPERIMENTS 67

Table 5.4: Values for the high state average rate and average link utilization.
Average Average Average Average

peak rate (Mb/s) minimum rate (Mb/s) � peak rate (Mb/s) minimum rate (Mb/s) �
150 10 0.4 400 10 1.1
200 10 0.5 450 10 1.2
250 10 0.7 500 10 1.4
300 10 0.8 550 10 1.5
350 10 0.9� pvm upkx: One or several PC-PDUs or type x are explicitly demanded. This involves the reception

of as many cells as PC-PDUs in the case of encapsulating one PC-PDU per cell, while when
encapsulating several PC-PDUs per cell the number of expected cells will be lower.

In addition to the traffic from parallel computing applications, the ATM network is assumed to drive
traffic from other networking applications as well. Thus, a variable intensity of background traffic is
considered that will compete for networking resources with parallel computing communications. This
background traffic is modeled by means of ON-OFF sources, analogously to the model used for the ATM
network emulator discussed in Appendix B. Like in this emulator, the attachment of ON-OFF sources
is not made on a per-output basis but on a per-switch basis, in order to avoid unreasonable simulation
times and, for the same reason, when a cell is generated by the ON-OFF source in a particular switch, it is
determined for each output of this switch, with a uniform probability of 50%, whether this outputs holds a
copy of the generated background cell. Thus, the risk of correlation that would appear if all outputs hold a
copy of the generated cell is reduced. The parameters for the ON-OFF traffic are set for representing the
result of multiplexing many background traffic sources on a single switch input.

The average network load is represented by the parameter �, which represents the quotient between the
traffic using the network and the capacity of this network. The operation of networks is straightforward
when � < 1 because the network is capable of absorbing all the traffic submitted to it although in some
periods congestion is experienced. However, when � > 1, the network is not capable of absorbing all the
traffic injected to. The consequence is that finishing a particular communication with such an extreme
congestion situation will be considerably difficult. For example, in the subsections below we will observe
that standard frame-based mechanisms are not capable of transmitting all the data. The fact that we rely
on ATM networks, however, will allow to overcome this effect. Table 5.4 contains the values for the
parameters of the ON-OFF sources that have been used to produce the values of � used in the experiments.

For validating this environment, we have measured the latency experienced by an ‘echo’ program, the
same as in the validation study of the ATM emulator discussed in Subsection B.2.2 of the Appendix B, in
the three studied mechanisms: standard SSCOP and the two encapsulation schemes for the PC-AAL. The
conditions are set to be similar to the round-trip study in [TL93]. Thus, by approximating the simulated
rout-trip time by twice the latency, we compare the achieved values. For the standard SSCOP measurement,
we consider the two packet sizes used in [TL93]. In contrast, in both PC-AAL encapsulation schemes

Table 5.5: Values considered for the validation study, in �seconds.
Component Value

Controller latency 4
Control/data transfer 4.25
Sum of per-cell components 8.25

Vectoring the interrupt 12.5
Sum of per-packet components 12.5

68 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

Table 5.6: Results of validation study, in �seconds.
Environment Cells/packet Measure Latency Round-trip time

Standard 1 Original measure [TL93] 73
SSCOP Simulation 37.257 74.514
Standard 29 Original measure [TL93] 746
SSCOP Simulation 337.686 675.341
PC-AAL 1 Original measure [TL93] 73
(1 PDU/cell) Simulation 37.257 74.514
PC-AAL 1 Original measure [TL93] 73
(several PDU/cell) Simulation 37.257 74.514

we only consider a one-cell packet because the concept of ‘packet’ does not apply to the PC-AAL as it
operates on a per-cell basis. Table 5.5 is the same as Table B.3 and contains the values adopted for the
simulation parameters. The comparison of the results, shown in Table 5.6, confirms the validity of the
ATM model in the simulator.

5.3.2 Behavior of PDE1

Our first experiments are intended to compare the performance achieved by one particular application
when using both proposed encapsulation schemes with the performance resulting from using the standard
SSCOP. The communications pattern generated by the particular application, PDE1, consists of a sequence
of bursts around 8 KByte long that are sparsely generated along the execution time, as deduced from the
information in Table A.1 in Appendix A. In the measurements we consider a wide range of values for the
background network load as an indication of the degree of occupancy that the ATM network experiences
due to all the applications sharing the network. In particular, we refer to values of � > 1 in order to
determine the behavior of each communication mechanism for extremely high load.

The measured parameter that indicates the performance achieved by communications is the average
latency. This latency can be originated by a number of issues, but the proposed PC-AAL is designed to
improve the contribution due to retransmission. Thus, we display the experienced cell loss in order to
assess the relationship between latency and retransmissions. Finally, we consider the execution time of
the algorithm as a measure of the impact of each communication mechanisms that the user will actually
observe.

Figure 5.13 displays the results for the first experiment. The two switches in the simulated scenario
have been allocated a capacity of 200 cells. Another parameter to set is the interval between successive
POLL frames in the SSCOP operation. As it is recommended to use a value as high as possible whenever
the offered performance is satisfactory, we first tried with a value of 0.5 seconds for this POLL interval.
As expected, as long as the load in the network (�) approaches to 1, the standard SSCOP rapidly tends
to get unstable. Indeed, the cell loss ratio becomes so high that some cells cannot ever be retransmitted,
hence the infinite latency experienced in this case and, as a consequence, the infinite execution time. When
using an cell-based encapsulation scheme for our PC-AAL, however, it is possible to successfully finish
the execution of the application in all cases, even under extremely congestion. Thus, the first advantage
observed to occur with the PC-AAL is the high robustness with respect to the load experienced in the ATM
network.

It may be surprising to observe a stable behavior for very high values of �. The reason is quite simple
though. Figure 5.14 illustrates an equivalent example for three cases: (a) a byte-oriented, frame-based
protocol, like BSC; (b) a cell-oriented, frame-based protocol, like SSCOP; and (c) a cell-oriented, cell-
based protocol, like the PC-AAL. In all cases, � > 1 implies that the input cell rate is on average higher than

5.3. EXPERIMENTS 69

0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.6 0.8 1 1.2 1.4

La
te

nc
y

(s
ec

on
ds

)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(a) Average task-to task latency

0

0.005

0.01

0.015

0.02

0.025

0.03

0.4 0.6 0.8 1 1.2 1.4

C
el

l l
os

s
ra

tio

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(b) Experienced cell loss by application

30

35

40

45

50

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(c) Total execution time

Figure 5.13: Performance of PDE1 for a buffer capacity of 200 cells and a POLL interval of 0.5 seconds.

70 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�

����
����
����
����

�
�
�

�
�
�

���
���
���
���

������

������

������

������

������

������

������

������

(c) Cell-oriented, cell-based protocol(b) Cell-oriented, frame-based protocol(a) Byte-oriented, frame-based protocol

Corrupted frame

Retransmission of the whole frame

Corrupted frame

Retransmission of the whole frame

Lost cells

Retransmission of missing cells only

i i iv > v v > v v > vooo

Figure 5.14: Why cell-based fragmentation leads to stability.

the output rate. In the first case, in each frame sent under these conditions a part of the bytes is lost due to
congestion in the buffer. Thus, these frames become corrupted and therefore they have to be retransmitted,
and the successfully received data are useless. If congestion conditions do not cease, it will be impossible
to successfully receive the frame, hence the instability. The second case is analogous, except for the fact
that the buffer elements are added and removed in groups of 53 bytes —the size of a cell—, instead of
individual bytes. Again, the successfully received cells cannot be usefully exploited by the receiver. In
the third case, however, the “frames” are not longer than the buffer elements. Thus, information can either
be received or not, but never be corrupted, so the receiver is sure that the successfully received data are
useful. As a consequence, only missing cells have to be retransmitted.

As far as latency is concerned, both encapsulation schemes achieve better performance than standard
SSCOP, specially when the background load begins to grow. Note that there is a direct relationship
between the latency measurements in Figure 5.13(a) with the cell loss measurements in Figure 5.13(b),
what confirms the importance of the impact of cell loss and the subsequent retransmissions on latency.
The latency performance of each environment is also reflected in the execution time measurement, where
the relationship with latency is very clear for PDE1.

The results also confirm the better behavior when encapsulating several PC-PDUs per cell, as compared
to encapsulating one PC-PDU per cell. Although the cell loss of the latter encapsulation scheme is not
much higher, both latency and execution time are substantially longer. The reason is the large amount of
cells generated by the one-PDU-per-cell encapsulation scheme. The comparison of both encapsulation
schemes shows that the contribution of the cell-based mapping is as significant as the contribution of
the encapsulation scheme, so therefore it is worthwhile to adopt the several-PDUs-per-cell encapsulation
scheme for the PC-AAL. In the next measurements we will assess these observations under different
environmental conditions.

In the first experiment, we fixed the values of the buffer capacity in the switches, as well as the interval
between consecutive POLL frames. Since both factors intuitively have an impact on performance, we
have repeated the first experiment with new conditions. At first, we consider the influence of the buffer
size in the switches, since a larger size can lead to increase latency and to reduce the cell loss rate. In
particular, we have assigned a capacity of 1000 cells to the buffers in the switches, instead of 200 cells. A
first look to the results, which are displayed in Figure 5.15, shows that the behavior is very similar to the
200-cell case: Standard SSCOP becomes unstable when the background load grows; both encapsulation
schemes are stable even for extremely high background loads; and the performance achieved by the
several-PC-PDUs-per-cell encapsulation scheme is clearly better than the other encapsulation scheme.

5.3. EXPERIMENTS 71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.6 0.8 1 1.2 1.4

La
te

nc
y

(s
ec

on
ds

)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(a) Average task-to task latency

0

0.005

0.01

0.015

0.02

0.025

0.03

0.4 0.6 0.8 1 1.2 1.4

C
el

l l
os

s
ra

tio

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(b) Experienced cell loss by application

30

35

40

45

50

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(c) Total execution time

Figure 5.15: Performance of PDE1 for a buffer capacity of 1000 cells and a POLL interval of 0.5 seconds.

72 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

A closer appreciation on the results uncovers the particular influence of the buffer size. The first issue
is the lower cell loss experienced by all mechanisms, particularly by the standard SSCOP. The effect
of this lower cell loss varies upon the mechanism. In the standard SSCOP, the background load has to
reach higher values to produce significant increase in latency, as compared to the 200-cell case. When
encapsulating one PC-PDU per cell, the increase of latency as a consequence of network load is higher due
to the longer delay occurring in the switches. When encapsulating several PC-PDUs per cell, the effects
are not noticeable as the influence of cell loss has little significance in both cases —200 cells and 1000
cells in the switch buffers. The execution times experienced by PDE1 in this case reflects the trend of the
discussed latency measurements.

In the next experiment, we study the influence of the interval between POLL frames. A longer POLL
interval, for example, is expected to delay the notification of many cell losses and, consequently their
retransmission, so latency can increase. In order to assess this behavior, we have measured the three
scenarios again. For this purpose, the switches have been allocated a capacity of 200 cells each, as in the
first experiment, but the POLL interval has been set to 1.5 seconds, instead of 0.5 seconds. Figure 5.16
shows the results achieved under these conditions. Unlike the previous experiment concerning buffer
capacity, a significant influence of the new POLL interval is demonstrated. As expected, there are no
significant differences in the behavior as far as cell loss ratio is concerned, in contrast to latency. In
particular, standard SSCOP experiences higher latency prior to become unstable, with respect to the first
experiment. In the cell-based mechanisms for the PC-AAL, latency also increases but the application
remains stable as in the previous cases. The magnitude of the increases has very little significance
when encapsulating several PC-PDUs per cell, as opposed to the much higher importance of the increase
experienced when encapsulating one PC-PDU per cell. The higher the amount of generated cells, the
higher the absolute amount of lost cells and, consequently, the higher the number of retransmissions. Thus,
the expected impact of POLL interval on latency will be higher as more retransmissions are required.

The experiments discussed so far consider a single application, PDE1. We should check if the con-
clusions drawn from the results of these experiments can be generalized to other applications. For this
purpose, in the next subsection we discuss the behavior experienced by other applications under the same
conditions as those experienced by PDE1 in the measurements studied in the present subsection.

5.3.3 Behavior of PDE2 and SOLVER

PDE2 and SOLVER are two applications belonging to the same benchmark suite as PDE1. The main
differences between the three parallel kernels lie in their communication patterns. While PDE1 involves
the sparse generation of 8 KB-long bursts, in PDE2 the traffic is more uniformly distributed along the
execution time. SOLVER reflects an intermediate situation between PDE1 and PDE2, although in fact it
is closer to PDE1 that to PDE2. The main objective of the measurements of PDE2 and SOLVER is to
assess whether the most outstanding property enabled by the PC-AAL when running PDE1, namely the
stability of latency even for extremely high background load, is verified by other different applications.
For this purpose, we have performed the measurement under the conditions of the first experiment —a
switch buffer capacity of 200 cells and the interval between POLL frames set to 0.5 seconds— with other
applications.

Figure 5.17 depicts the latency and the cell loss ratio experienced by PDE2 and SOLVER and, as a
reference, it is compared to the measurement of PDE1 displayed in Figure 5.13(a). These measurements
have been carried out with an encapsulation of several PC-PDUs per cell. The latency results indicate that
(1) a expected, communications remain stable when extremely background load in the network is reached,
and (2) the characteristics of communications have a significant impact on performance as well, hence the
different behaviors experienced by each application. Nevertheless, the relationship between latency and

5.3. EXPERIMENTS 73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.6 0.8 1 1.2 1.4

La
te

nc
y

(s
ec

on
ds

)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(a) Average task-to task latency

0.005

0.01

0.015

0.02

0.025

0.03

0.4 0.6 0.8 1 1.2 1.4

C
el

l l
os

s
ra

tio

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(b) Experienced cell loss by application

30

35

40

45

50

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

Standard SSCOP
One PDU per cell

Several PDUs per cell

(c) Total execution time

Figure 5.16: Performance of PDE1 for a buffer capacity of 200 cells and a POLL interval of 1.5 second.

74 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.4 0.6 0.8 1 1.2 1.4

La
te

nc
y

(s
ec

on
ds

)

Cross Traffic (p)

PDE1
PDE2

SOLVER

(a) Average task-to-task latency

0.005

0.01

0.015

0.02

0.025

0.03

0.4 0.6 0.8 1 1.2 1.4

C
el

l l
os

s
ra

tio

Cross Traffic (p)

PDE1
PDE2

SOLVER

(b) Experienced cell loss by application

Figure 5.17: Latency and cell loss of PDE1, PDE2, and SOLVER for a buffer capacity of 200 cells and a POLL
interval of 0.5 seconds. Encapsulation scheme: several PC-PDUs per cell.

cell loss is shown to be very close, as happened with PDE1.

Figure 5.18 reflects the effects of latency on the execution time. These times cannot be compared to
one another as each application has its own time scale. The most important result is that latency does
contribute to increase the execution time but the impact of other factors has an equivalent impact. This is
not apparent in the measure of PDE1 but is clearer in SOLVER and, specially, in PDE2. This behavior has
to do with the absolute amount of information exchanged by the parallel tasks, as well as the way in which
this information is distributed along the execution time. The latter two issues are precisely what make
difficult to build analytical models of the kind of traffic generated by parallel computing applications, as
each particular application has its own specific characteristics.

5.3.4 Confidence of results

A confidence interval has been determined for the measurements in order to assess the applicability
of the conclusions drawn from the results. In experiments where some conditions depend on random
parameters, the results are in fact random variables, and the actual value of the parameters is just one
of the possible values belonging to the distribution of the random variable. Usually, the mean value of
the random variable population is adopted as the representative value of this population. Thus, if the
results of two or more measurements belong to populations with different means, we can assure that the

5.3. EXPERIMENTS 75

20

25

30

35

40

45

50

55

60

65

70

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

PDE1

(a) PDE1

20

25

30

35

40

45

50

55

60

65

70

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

PDE2

(b) PDE2

760

780

800

820

840

860

0.4 0.6 0.8 1 1.2 1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Cross Traffic (p)

SOLVER

(c) SOLVER

Figure 5.18: Execution time of PDE1, PDE2, and SOLVER for a buffer capacity of 200 cells and a POLL interval
of 0.5 seconds. Encapsulation scheme: several PC-PDUs per cell.

76 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

Table 5.7: Confidence intervals for the measured mechanisms (confidence level: 90%).
Confidence interval

Mechanism (% over mean)

Standard SSCOP 7.60%
PC-AAL
(one PC-PDU per cell) 5.16%
PC-AAL
(several PC-PDU per cell) 12.30%

results of these measurements are different from one another. However, the population mean is usually
unknown. As explained in textbooks on statistical techniques (for example [Jai91]), an estimation of the
population mean can be obtained by repeating n times the experiment and computing the average values
of the measured parameters. As this estimation cannot be perfect, statistical bounds should be given, so an
interval around the sample mean —the confidence interval— is computed. If we have the sample means of
some measurements of a parameter whose confidence intervals do not overlap with a certain probability,
we can assert that these measurements correspond to different populations with this probability.

As the simulations performed for evaluating the PC-AAL are quite long, we have not determined the
confidence interval for all the parameters under all the measured network loads in every experiment.
Instead, we have considered the average latency measurements only with the network loads on which the
conclusions of the measurements particularly rely. This is possible because the initial conditions are the
same in all cases, and the parameters are closely related to one another. Thus, we have repeated 10 times
the experiments on which we compute the confidence interval. By using the t distribution and a confidence
level of 90%, we observe the radiuses of the confidence intervals displayed in Table 5.7.

It is difficult to obtain good confidence intervals for these measurements because the network load is
a random variable as well. As the network load directly conditions latency performance, the samples
for estimating the population mean do not strictly rely on equivalent conditions. Nevertheless, in the
present experiments, the obtained intervals are good enough to enable the differentiation of the latency
performance of the three measured mechanisms. Note that, for the PC-AAL when encapsulating one
PC-PDU per cell, the particular confidence interval is (0:157; 0:175), while in the case where several
PC-PDUs are encapsulated in one cell, the interval is (0:0098; 0:0126). Thus, both confidence intervals
are far from being overlapped, so we can assure that the latencies achieved in both encapsulation schemes
of the PC-AAL are different (with a probability of 90%).

5.4 Discussion

The mechanisms presented in this chapter are intended to implement one of the most important functions
in charge of the convergence level of the network architecture for supporting parallel computing over
ATM, the support to reliable delivery of the data that parallel tasks exchange. Like all the mechanisms in
the aforementioned architecture, the latency involved in the operation of the mechanisms is the parameter
to minimize. For this reason, a lightweight transport-level protocol has been adopted as the basis of
the mechanisms. Instead of designing a whole protocol from scratch, we have used one of the many
lightweight protocols already defined. The particular protocol, the SSCOP, has been chosen because (1) it
relies on ATM, therefore it is adapted to the addressing characteristics of ATM —VC/VP, etc.; and (2) as it
was designed for supporting signaling, it is adequate for services whose data generation pattern is sparse,
which is the case for parallel computing applications as well.

Standard SSCOP relies on AAL5, which is best suited for transporting large frames. However, the fact

5.4. DISCUSSION 77

that the data exchanged between the tasks of parallel computing applications is structured as a sequence of
PC-PDUs —each PC-PDU represents, as mentioned earlier, an elementary data type whose length will not
exceed a few bytes— allows for the frames to be as short as to fit in single ATM cells. As the overhead in
AAL5 becomes useless for one-cell frames, we have defined a specific AAL for parallel computing —the
PC-AAL— which relies directly on ATM and provides support to the encapsulation of PC-PDUs and to
overlying message-passing libraries. The selected encapsulation scheme consists of including in an ATM
payload as many complete PC-PDUs as possible. The other considered encapsulation cell, namely one
single PC-PDU per cell, involves the generation of such a large number of cells that the lower delay for
generating the convergence-level PDU is very far from compensating the high latency consequent to the
harder impact on buffers.

The results from the measurements show that the decision of replacing the AAL5 by a specific PC-AAL
whose elements are not longer than one cell leads to achieve a high degree of robustness when the network
becomes highly loaded. This is an important result because these situations will eventually occur due to
the fact that parallel computing applications share the ATM network with other networking applications.
In addition, all the data successfully received can be immediately used by the received as no incomplete
PC-PDUs are contained in the cells. Thus, the latency is lower than in mechanisms like standard SSCOP,
where the whole frame has to be received to guarantee the complete delivery of the data.

The performance achieved by the PC-AAL is possible because it relies on the fact that switching in
ATM networks is cell-based and, consequently, only uncorrupted cells are delivered to the received —the
rest are dropped. Thus, the PC-AAL is a step forward to couple SSCOP with ATM. Nevertheless, ATM
networks provide much more features that are not exploited by the PC-AAL. In particular, the various
ATM service categories can satisfy diverse traffic requirements that eventually can be useful for parallel
computing applications. The definition of the PC-AAL presented in this chapter does not provide for a
particular ATM service category. The experiments have been carried out by assuming the simplest —and
worst-performing— service category, namely UBR (Unspecified Bit Rate). Considering the adoption
of other service categories will eventually contribute to enhance the performance of the PC-AAL and,
according to the particular strategy adopted to introduce these service categories, the cost involved in the
enhanced PC-AAL can remain very reasonable. In the next chapter, these issues are discussed in detail.

78 5. COUPLING SSCOP WITH ATM-BASED PARALLEL COMPUTING

6
Exploitation of ATM services

In this chapter, we propose a mechanism specifically conceived for optimizing the cost-
performance tradeoff in fairly long parallel executions. The proposed mechanism relies on
a modified version of the loss recovery procedure of SSCOP, which is enhanced by means of
a more intensive exploitation of ATM service categories in order to reduce the occurrence of
cell loss. For this purpose, we make use of both the UBR and ABR service categories, with
ABR being only introduced in the periods of high latency. These periods are determined by
periodically monitoring the experienced latency. This chapter is based on [VSSP97].

6.1 Enhancing the Parallel Computing AAL

The PC-AAL as discussed in Chapter 5 replaces AAL5 and improves performance by avoiding the
retransmission of more cells than those effectively lost. With this AAL, applications are less sensitive
to the network load induced by the rest of applications sharing the ATM network and communications
achieve better latency performance. This AAL, however, does not rely on any particular ATM service
category. If we consider particular service categories for the PC-AAL, we can benefit from their specific
properties in order to improve the performance and/or the cost of communications.

6.1.1 Introducing ATM service categories

An important consideration in parallel computing applications is the fact that the exchanged messages are
not very long and that they are sparsely issued along execution time, usually hours or even days. This
behavior indicates that UBR (Unspecified Bit Rate) and ABR (Available Bit Rate) are the most appropriate
service categories to support communications in ATM-based parallel computing environments, since their
cost will mostly rely on the effective consumption of bandwidth, as opposed to other service categories
where the length of connection period will be a more important issue. UBR is the least expensive
service category, but the latency can be excessively high due to the cell loss occurring as the network
load increases, while ABR is more expensive but faster, as the built-in flow control mechanism allows to
achieve lower latency thanks to the fewer retransmissions needed. However, during the execution time
of parallel applications some periods with low network traffic may appear in which the performance of
UBR is sufficient and, as a result, the higher cost of the ABR service category is not amortized. Thus, for
achieving cost-effective performance the data transfer should be conveyed through UBR when the latency
experienced in the network and, when latency through UBR is excessively high, data transfer should be

79

80 6. EXPLOITATION OF ATM SERVICES

CommunicationCommunication
Effective Effective

Engine (ECE) Engine (ECE)

Monitoring connection (UBR)

Sender Receiver

Ordinary connection (UBR)

Backup connection (ABR)

Feedback connection (VBR)

Latency

Engine (LME)
Monitoring

Latency

Engine (LME)
Monitoring

ATM

Figure 6.1: Mechanisms for extending the Parallel Computing AAL.

moved to an ABR-based connection. As long as the execution time of applications increases, the advantage
in cost with respect to the use of an ABR-based connection all the time is more significant.

We focus on the data transfers occurring during execution time by assuming that the necessary connec-
tions have been established prior to the execution, in such a way that the VCI/VPI (Virtual Channel/Virtual
Path Identifiers) fields in ATM cells will be sufficient for one endpoint to address all the remote endpoints.
We will consider that three connections have been previously established between each pair of communi-
cating endpoints: one using the UBR service category with an unlimited peak rate; another using an ABR
service category with a limited peak rate and a minimum bit rate set to zero; and a VBR (Variable Bit Rate)
service category with a guaranteed low peak rate. These three connections are used by two mechanisms
to be included in each endpoint: (1) The Latency Monitoring Engine (LME), which monitors the latency
in the network in order to determine the periods in which high latency is experienced, and (2) the Effective
Communication Engine (ECE), which performs the actual data transfers according to the information
supplied by the LME. The ECE uses the UBR-based connection —herein, ordinary connection— for
transferring data when latency is low, and the ABR-based connection —herein, backup connection—
as an alternative connection when the LME indicates that latency is high. The LME monitors latency
through the UBR-based ordinary connection, and returns feedback information through the VBR-based
connection, since this information requires a fast and reliable delivery. Later in the paper we will observe
that the adoption of a VBR-based connection on cost does not significantly impact on performance of
parallel computing applications. Figure 6.1 displays a scheme of this configuration. The mechanisms en-
hancing the PC-AAL will obviously introduce additional overhead (including scenario setup and run-time
signaling) but, as noted in Subsection 1.2.2, parallel computing applications are considered to execute
during quite long periods —hours or even days. Thus, the impact of the overheads will not introduce a
substantial performance degradation.

6.1.2 The Latency Monitoring Engine (LME)

The goal of the LME is to provide an estimation of the latency experienced in the ordinary connection.
This estimation can be done concurrently with the data transfer process performed by the ECE. In order to
propose a concrete operation for the LME, we considered different options for (1) computing the latency;
(2) when the operation mode is actually switched; and (3) which particular implementation is the best
suited, as discussed in the following:

6.1. ENHANCING THE PARALLEL COMPUTING AAL 81

Latency

Threshold exceeded
(possible cell loss)

2

3

2

1

0

4

5

0

1

3

4

5

Monitored

Figure 6.2: Operation example for the time-stamped LME.� Averaging vs. instantaneous monitoring. Latency can be monitored by computing the average
latency over a period of time. This is well suited for applications dealing with large chunks of data,
like video and file transfers, but as this procedure has a slow response time, it is not convenient
for applications generating more bursty traffic patterns. Therefore, we believe that instantaneous
monitoring is a more adequate approach for parallel computing applications.� Asynchronous vs. periodic activation. Latency can be monitored either before a burst of messages
or in a periodic fashion. The former case forces the ECE to defer the transmission until the latency
is monitored, so it involves a significant amount of latency. In contrast, the latter approach enables
the ECE to avoid this delay. For this reason, we believe that a periodic LME is more adequate,
despite the extra bandwidth required to support periodic monitoring. Nevertheless, the operation of
the periodic LME can be improved by allowing monitoring to be performed on each data transfer as
well, so in fact we use a hybrid approach.� The monitoring mechanism. We considered the following options: (1) using network-level informa-
tion; (2) computing the Round Trip Time (RTT); and (3) synchronizing peers and using time-stamped
information. The first approach requires the use of a ABR-like network level mechanism providing
accessible feedback information, which is not currently standardized within ATM. In the second
case, the computed time depends on the latencies of both the monitored connection and the return-
ing path, which are not necessarily equivalent. In the third approach, the experienced latency is
monitored by the receiver LME peer, so there is no influence of the returning path on the computed
value. As a result, we adopt the third approach as we find that it suits better the requirements of
parallel computing communications.

The operation of the adopted approach for the LME is as follows: the sender periodically submits a
cell containing a time-stamp. When the receiver gets this cell, it compares its time-stamp to the time
the receiver expected to get the cell. The measured latency corresponds to the difference between both
times, and then the measurement is passed to the ECE so that it takes the appropriate action, which in the
implementation of the ECE discussed above consists of replying to the sender if the monitored latency
exceeds a threshold. As the time-stamped cells might be lost, when a certain amount of time TL has elapsed
since the expected time, the receiver warns the ECE of that circumstance, meaning that a monitoring cell
is possibly lost. Figure 6.2 illustrates the operation with an example. As an enhancement to this basic
procedure, the cells issued by the ECE through the ordinary connection are also monitored their latency
in order to reduce the response time of the whole mechanism. As in the periodic part, the result is passed
to the ECE. In this asynchronous part, no action is carried out by the LME if the ECE cell is lost.

82 6. EXPLOITATION OF ATM SERVICES

. . .

Resynchronizing Task (CBR)

Sender
LME

Receiver
LME

Monitoring Task #1 (UBR)

Monitoring Task #n (UBR)

Figure 6.3: Tasks and connections used in the LME.

It is important to note that both the sender and the receiver must be synchronized to each other in order
for the measurements to be significant. For this purpose, one of the peers has to report the other one on
its current time with a certain periodicity. Thus, we consider two tasks included in the time-stamp LME:
(1) Monitoring task, which deals with both the periodic and the ECE-originated time-stamped cells; and
(2) Resynchronizing task, which guarantees that time values are consistent for both communicating peers.
We can make use of the different service categories provided by ATM in order to implement these tasks.

The Monitoring Task is carried out over the same connection as the ordinary data transfers in the ECE,
so it is supported by a UBR service. The Resynchronizing Task requires also high priority and, as it is
periodic, a CBR service is more adequate. Note that the peak rates for the CBR service should keep low
in order to avoid the allocation of an excessive amount of resources. The concrete value of the period
depends mostly on the characteristics of the system clocks in both communicating peers, since the more
diverging the clocks are, the more frequently the Resynchronizing Task should be activated. Figure 6.3
shows the tasks and the services used to implement them. In the experiments presented below, we will
assume both endpoints as perfectly synchronized and, therefore, no resynchronizing task is considered.

6.1.3 The Effective Communication Engine (ECE)

The Effective Communication Engine (ECE) consists of an extension of the Parallel Computing AAL
—PC-AAL— described in Chapter 5 that allows to exploit the information supplied by the LME in order
to achieve low latency communications. This mechanism is based on a modification of the selective
retransmission procedure of SSCOP. A summary of the standard retransmission mechanism of SSCOP can
be found in Section 5.1. The modification to SSCOP is addressed to limit the length of the frames to one
cell. Thus, unlike standard SSCOP, the amount of retransmitted cells corresponds exactly to the lost cells
and, as a consequence, applications become less sensitive to network load. This modification is possible
thanks to the short length of PC-PDUs, as characterized in Subsection 4.2.3. This mechanism succeeds in
providing robust operation against network load but its performance can be improved with the reduction
of the required retransmissions.

The ECE enhances the preceding mechanism by considering two operation modes: low-latency mode,
and high-latency mode. In low-latency mode, the operation of the ECE reduces to the mechanism of
the Parallel Computing AAL as discussed in the previous chapter. The transfers of data take place over
the ordinary connection, so a UBR service is used. Latency monitoring by the LME takes place also
over this ordinary connection using a UBR service. When the LME detects a significant growth in the
latency through the ordinary connection, the high-latency mode is entered, where the backup connection
is activated. The action undertaken with the ordinary connection in high-latency mode determines several
versions for the ECE. One possibility is to deactivate the ordinary connection, so cells solely use the backup
connection in high-latency mode. We call this strategy the Switching ECE. Another possibility is not to
deactivate the backup connection, so cells can be redundantly submitted through both the ordinary and the
backup connection. We know this strategy as the Duplicating ECE. Figure 6.4 outlines the operation of
these versions of the ECE.

6.1. ENHANCING THE PARALLEL COMPUTING AAL 83

Ordinary connection

Backup connection

UBR

ABR
2 1 0

UBR

ABR
Backup connection

Ordinary connection

(a) Switching ECE (b) Duplicating ECE

Low-latency mode High-latency mode

Ordinary connection

Backup connection

UBR

ABR
2 1 0

2 1 02 1 0

Figure 6.4: Operation of ECE’s latency modes.

241

Sequence
number

CRC

type
PDU

Variable

User data

(bytes)

48 bytes

PadTag PC-PDU

Variable

PC-PDU

Variable

PC-PDU

Variable222

. . .Offset
first

Offset
last

Variable

Time-
stamp

4
(bytes)

Figure 6.5: Modified encapsulation scheme for the ECE.

The higher amount of data managed by the Duplicating ECE will result in a higher bandwidth consump-
tion as compared to the Switching ECE but, on the other hand, some advantage in latency is potentially
possible. As the ordinary connection is based on the UBR service category, the cell rate can be faster that
in the ABR-based backup connection. Thus, if a cell sent through the ordinary connection in high-latency
mode is not dropped, it can reach its destination faster than its replica sent through the backup connection.
Anyway, if that cell is lost, it is not necessary to trigger its retransmission as the replica in the backup
connection will then play the role of the retransmitted cell. Both phenomena can contribute to accelerate
the delivery of cells. The actual extent of these theoretical advantages will be discussed in the performance
evaluation study in order to assess whether the possible better performance is sufficient to compensate for
the extra bandwidth consumption with respect to the switching ECE.

As discussed in Section 6.1.2, we have adopted a LME with a a periodic nature. Ideally, this monitoring
should be done very frequently so that the estimation be sufficiently realistic, but then substantial overhead
traffic is introduced in the network. For this reason, in order to achieve accurate enough estimations
without very high monitoring periodicity, we have added a timestamp field to the PC-AAL frame format.
Then, the reaction to latency increases will be faster, while periodic monitoring will be useful for keeping
a record of the experienced latency in the periods where no traffic from parallel computing applications is
generated. Figure 6.5 shows how the encapsulation scheme in Figure 5.9(b) is modified. In the following
we detail the operation of the two versions of the ECE in both operation modes.

(a) Switching ECE, low-latency mode

The behaviors displayed in Figures 6.6 and 6.7, corresponding to the sender and receiver respectively,
are shown to be similar to the operation of SSCOP as described in Subsection 5.1.2. As far as the sender is
concerned, the actions undertaken when sending an SD frame or receiving STAT and USTAT frames are
substantially similar. The differences lie in the POLL frame generation and the reception of a new frame
type, LSTAT (Latency-triggered STAT). These differences are effective when switching from low-latency
mode to high-latency mode.

The modification in the POLL-generating process consists of including LME data in the POLL frame,
thus avoiding redundant traffic, as both POLL frames and LME are periodic. In Figure 6.6(c), the
periodicity of POLL frames is assumed to be a multiple of the LME period, NPOLL being the multiplicity.

84 6. EXPLOITATION OF ATM SERVICES

STAT received

?

Retransmit1

VT(S)++

Store frame

(VT(S))

Send new SD frame

i > L-1

i <= L-1

i = i + 2

i = 1
ack = VT(A)

ack = List(i+1)

(ack, List(i))

(ack, List(L))

VT(A) = List(1)

i = L

i > LAcknowledge

Acknowledge

(N(PR), List(1:L))

(List(i), List(i+1), N(PR))

Wait for event

USTAT received
(List(1), List(2))

Retransmit2
(List(1),List(2))

?

STAT

LSTAT

Switch to
High-Latency

mode

Send frame [UBR]

(Ts)

?

(VT(S), VT(PS),Ts)

LSTAT received
(N(PR), List(1:L))

(a) SD frame transfer

?

j = i0

?
Exit

Retransmit2

j < i1

j >= i1

Update frame

Retransmit frame

j ++

(j) [UBR]

(i0, i1)

j ++

Retransmit frame
(j) [UBR]

(j, VT(PS))

Update frame

j = i0

?

(j, VT(PS))

nps = VT(PS)[j]

Exit

Retransmit1

j >= i1

j < i1

(i0, i1, N(PR))

N(PR) < nps

N(PR) >= nps

?
LSTAT

STAT

Retransmit frame
(j) [ABR]

(b) Retransmission procedures

EXPT = T

VT(PS) ++

Start timer

Wait until T = 0

N --

?
N > 0

N = 0

Send POLL
(VT(S), VT(PS),Ta)

N = N POLL

Explore Latency
(Ta)

(c) POLL frame generation

Figure 6.6: Sender ECE behavior in low-latency mode (switching ECE).

6.1. ENHANCING THE PARALLEL COMPUTING AAL 85

Latency > TM

Latency > TM

Latency <= T

Send STAT
(VR(PR), List(1:L))

Wait until T = 0

(List(1:L), N(S))

T = T

M

T = T

Start timer

Switch to
High-Latency
mode

EXP

Start timer

Build status list

EXP

Waiting = 1

Send LSTAT

Build status list
(List(1:L), N(S))

Waiting = 1

Latency <= T M

Latency > TM

Switch to
High-Latency
mode

?

VR(PR) = N(PS)

Waiting = 0

(VR(PR), List(1:L))

MLatency <= T

VR(R)++

VR(R) = N(S) + 1

Send USTAT
(VR(R), N(S))

receiver buffer
Update

?
N(S) < VR(R) N(S) > VR(R)

N(S) = VR(R)

?

Wait for event

Waiting = 0

POLL received
(N(S), N(PS))

LME received

?

SD received
(N(S))

Waiting = 0

?

(VR(PR), List(1:L))
Send LSTAT

Build status list
(List(1:L), N(S))

Figure 6.7: Receiver ECE behavior in low-latency mode (switching ECE).

Thus, after NPOLL � 1 monitorizations of latency, the next one is performed via a POLL frame. The Ta
parameter represents the current timestamp, and is used by the LME.

LSTAT frames are sent by the LME when a change of operation mode is required. They contain the
same information as STAT frames, as well as a timestamp (the parameter To) indicating the instant that
the cell whose experienced latency motivated the change of operation mode. In the switching ECE, the
action undertaken is the same as for the reception of STAT frames. The only difference is found in the
retransmission procedure, where retransmissions are performed through the backup connection (using
ABR) instead of the ordinary connection (using UBR) as done when a STAT frame is received.

The receiver behavior shown in Figure 6.7 includes the action undertaken by the LME, which is
described below. The other two possible events continue to be the reception of SD and POLL frames. The
procedures in both cases have been modified in order to allow for them to interact with the LME. Thus,
the LME uses information of both frame types for monitoring latency. When latency exceeds a thresholdTM , an LSTAT frame us built, analogously as when POLL frames trigger the generation of STAT frames,
except for the timestamp added to LSTAT frames indicating the instant when the offending SD or POLL
frames where issued. In low-latency mode of the switching ECE, when an LSTAT frame is triggered by a
POLL frame, the STAT frame is not generated in order to avoid redundant information. Another difference
between the ECE and the original PC-AAL is that all STAT, USTAT, as well as LSTAT frames, are issued
through VBR in order to accelerate their delivery.

(b) Duplicating ECE, low-latency mode

The operation of the duplicating ECE in low-latency mode is essentially the same as the switching
ECE, which in turn is similar to the PC-AAL as described in the previous chapter. In the sender size, the
modifications with respect to the original PC-AAL are concerned again with the POLL frame generation
and the processing of LSTAT frames. The operation of generating POLL frames is identical to the process

86 6. EXPLOITATION OF ATM SERVICES

in the switching ECE, where POLL frames take advantage of LME’s monitoring process.

The action undertaken on receipt of an LSTAT frame is clearly different. The most outstanding
difference, as shown in Figure 6.8, is the use of a new retransmission procedure —labeled Retransmit3—
that is executed prior to the standard retransmission process. This new process involves the retransmission
through the backup connection of all the SD frames issued from the sender between the instant when
the SD frame triggering the mode change was sent —indicated by To in Figure 6.8— and the instant of
reception of the LSTAT frame —represented by Ta. The reason behind this mechanism is the fact that,
in the duplicating ECE, all cells issued in high-latency mode are issued through both the ordinary and the
backup connection. The retransmitted SD frames correspond to those frames issued immediately behind
the frame or monitorization experiencing a latency higher thenTM , which should be issued in high-latency
mode but were not because the sender was not notified yet of this circumstance. Thus, this retransmission
scheme realizes the duplication that was not performed earlier. Another difference lies in the Retransmit1
mechanism where, in case of being triggered by an LSTAT frame, the retransmission is performed through
both the ordinary and the backup connections, as opposed to the use of the backup connection only carried
out by the switching ECE, which is another consequence of the particular characteristics of the duplicating
ECE.

As far as the receiver is concerned, the operation is the same as in the switching ECE, illustrated in
Figure 6.7. The only difference is the possibility of receiving duplicated SD frames, through both the
ordinary and the backup connections, which is not possible in the switching ECE, when the low-latency
mode is recently entered. Therefore, the duplicating ECE needs special procedures to deal with this case.

(c) Switching ECE, high-latency mode

In high latency mode, the behavior of the sending peer of the switching ECE does not experiment strong
variations with respect to low-latency mode, apart from the fact that all data transfers take place through
the backup connection —using ABR— instead of the ordinary connection —using UBR—, which is
illustrated in Figure 6.9. The differences are found in the retransmission procedures —particularly, when
retransmission is triggered by the reception of STAT and LSTAT frames— and the POLL frame generation
process.

Regarding retransmission, the only variation is the exchange of roles of backup and ordinary connections.
In particular, receiving an STAT frame involves that the retransmitted SD frames will be delivered through
the backup connection while LSTAT frames will use the ordinary connection, as this event is related
to a change to low-latency mode. Nevertheless, the most outstanding difference is the fact that, unlike
low-latency mode, POLL frames are not used by the LME to monitor latency. The reason is that these
POLL frames are issued through the backup connection, like the rest of data, while monitoring is carried
out over the ordinary connection only.

As far as the receiving process is concerned, shown in Figure 6.10, it is practically equivalent to the
receiving process in low-latency mode. The process in high-latency mode, nevertheless, is simpler because
neither SD frames nor POLL frames are used by the LME for monitoring latency. Thus the generation of
LSTAT frames can be solely triggered by the periodic monitoring process. The transition to low-latency
mode is realized when the monitored latency falls below the threshold Tm, which is necessarily lower than
the threshold TM that applies for the transition between low-latency and high-latency modes.

(d) Duplicating ECE, high-latency mode

The operation of the duplicating ECE in high-latency mode a little more complicated than the preceding
modes, specially for the receiving peer. The sender part, however, is very similar to the low-latency
operation mode of the same duplicating ECE, as reflected in Figure 6.11. As a characteristic of the
duplicating ECE, each SD frame is issued simultaneously through both the ordinary —UBR— and the

6.1. ENHANCING THE PARALLEL COMPUTING AAL 87

STAT received

?

Retransmit1

VT(S)++

Store frame

(VT(S))

Send new SD frame

i > L-1

i <= L-1

i = i + 2

i = 1
ack = VT(A)

ack = List(i+1)

(ack, List(i))

(ack, List(L))

VT(A) = List(1)

i = L

i > LAcknowledge

Acknowledge

(N(PR), List(1:L))

(List(i), List(i+1), N(PR))

Wait for event

USTAT received
(List(1), List(2))

Retransmit2
(List(1),List(2))

Retransmit3

?

STAT

LSTAT received

LSTAT

Switch to
High-Latency

mode

Send frame [UBR]

(Ts)
(N(PR), List(1:L),To)

?

(VT(S), VT(PS),Ts)

(Ta,To)

(a) SD frame transfer

j ++

Retransmit frame
(j) [UBR]

j = i0

?
Exit

(i0, i1)

j < i1

j >= i1

Retransmit frame

j ++

(j, VT(PS))

Retransmit2

t >= Towith
oldest_framej =

Update frame

(j) [UBR]?

Update frame

j = i0

?

(j, VT(PS))

nps = VT(PS)[j]

Exit

Retransmit1

j >= i1

j < i1

(i0, i1, N(PR))

N(PR) < nps

N(PR) >= nps

?
STAT

LSTAT

Retransmit frame
(j) [ABR]

Retransmit3
(Ta, To)

?
Exit

j < VT(S)

j >= VT(S)

Retransmit frame

j ++

(j) [ABR]

(b) Retransmission procedures

EXPT = T

VT(PS) ++

Start timer

Wait until T = 0

N --

?
N > 0

N = 0

Send POLL
(VT(S), VT(PS),Ta)

N = N POLL

Explore Latency
(Ta)

(c) POLL frame generation

Figure 6.8: Sender ECE behavior in low-latency mode (duplicating ECE).

88 6. EXPLOITATION OF ATM SERVICES

Retransmit2
(List(1),List(2))

STAT received

?

Retransmit1

VT(S)++

Store frame

(VT(S))

Send new SD frame

i > L-1

i <= L-1

i = i + 2

i = 1
ack = VT(A)

ack = List(i+1)

(ack, List(i))

(ack, List(L))

VT(A) = List(1)

i = L

i > LAcknowledge

Acknowledge

(N(PR), List(1:L))

(List(i), List(i+1), N(PR))

Wait for event

?

STAT

LSTAT

Switch to

mode

(Ts)

?

(VT(S), VT(PS),Ts)

LSTAT received
(N(PR), List(1:L))

Low-Latency

Send frame [ABR]

USTAT received
(List(1), List(2))

(a) SD frame transfer

?

Update frame

j = i0

?

(j, VT(PS))

nps = VT(PS)[j]

Exit

Retransmit1

j >= i1

j < i1

(i0, i1, N(PR))

N(PR) < nps

N(PR) >= nps

?
LSTAT

STAT

j ++

Retransmit frame
(j) [ABR]

Retransmit frame
(j) [UBR]

j = i0

?
Exit

(i0, i1)
Retransmit2

j < i1

j >= i1

Update frame

Retransmit frame

j ++

(j, VT(PS))

(j) [ABR]

(b) Retransmission procedures

T = T POLL

Wait until T = 0

(VT(S), VT(PS))

Start timer

VT(PS) ++

Send POLL [ABR]

(c) POLL frame generation

Figure 6.9: Sender ECE behavior in high-latency mode (switching ECE).

6.2. PERFORMANCE MEASUREMENTS 89

Wait until T = 0

Build status list
(List(1:L), N(S))

(VR(PR), List(1:L))

m

T = T EXP

Send STAT

Start timer

Latency >= T

Latency < T

m

VR(PR) = N(PS)

VR(R)++

VR(R) = N(S) + 1

Send USTAT
(VR(R), N(S))

receiver buffer
Update

?
N(S) < VR(R) N(S) > VR(R)

N(S) = VR(R)

Wait for event

POLL received
(N(S), N(PS))

?

SD received
(N(S))

(VR(PR), List(1:L))
Send LSTAT

Build status list
(List(1:L), N(S))

Switch to

mode
Low-Latency

LME received

Figure 6.10: Receiver ECE behavior in high-latency mode (switching ECE).

backup —ABR— connections. Analogously, retransmissions triggered by STAT frames are issued again
through both connections,while retransmissions subsequent to LSTAT frames are supported by the ordinary
connection only, since the ECE is switching to low-latency mode. The most remarkable difference is that
USTAT frames are not processed in this case. The reason is that, in the duplicating ECE, there is no need
of requesting the retransmission of missing SD frames in the ordinary connection, as a replica has been
already issued through the backup connection, hence the lack of USTAT frames.

Monitoring latency, unlike in the switching ECE, is carried out by POLL frames and the replicas of
SD frames that are issued through the ordinary connection, in addition to the periodic monitoring that is
independently performed. POLL frames use the ordinary connection, like low-latency mode and unlike
high-latency mode in the duplicating ECE.

The receiving part, which is displayed in Figure 6.12, is slightly more complicated that in the low-latency
mode due basically to the need of covering the duplicates. As two copies of each SD frame are expected,
it is likely that in some arrivals through one connection it is found that the frame has been successfully
received through the other connection. For this reason, a duplicate detection process has been added. The
rest of procedures is similar to the low-latency operation mode, except for the fact that USTAT frames are
not generated when the sequence of SD frames is broken. We adopted this behavior as the replicas of the
lost frames have probably been already issued and consequently, as expressed above, there is no need of
requesting their retransmission.

6.2 Performance measurements

To characterize the performance, the average end-to-end latency has been measured in a simple config-
uration, in order to realize the impact of the mechanism. The cost of the mechanism is also determined

90 6. EXPLOITATION OF ATM SERVICES

STAT received

?

Retransmit1

VT(S)++

Store frame

Send new SD frame

i > L-1

i <= L-1

i = i + 2

i = 1
ack = VT(A)

ack = List(i+1)

(ack, List(i))

(ack, List(L))

VT(A) = List(1)

i = L

i > LAcknowledge

Acknowledge

(N(PR), List(1:L))

(List(i), List(i+1), N(PR))
?

STAT

LSTAT

Switch to

mode

(Ts)

?

(VT(S), VT(PS),Ts)

(VT(S))

(VT(S))
Send frame [UBR]

Send frame [ABR]

Low-Latency

Wait for event

LSTAT received
(N(PR), List(1:L),To)

(a) SD frame transfer

?

j ++

Retransmit frame
(j) [UBR]

Update frame

j = i0

?

(j, VT(PS))

nps = VT(PS)[j]

Exit

Retransmit1

j >= i1

j < i1

(i0, i1, N(PR))

N(PR) < nps

N(PR) >= nps

?
STAT

LSTAT

Retransmit frame
(j) [ABR]

(b) Retransmission procedures

EXPT = T

VT(PS) ++

Start timer

Wait until T = 0

N --

?
N > 0

N = 0

(VT(S), VT(PS),Ta)

N = N POLL

Explore Latency
(Ta)

Send POLL [UBR]

(c) POLL frame generation

Figure 6.11: Sender ECE behavior in high-latency mode (duplicating ECE).

6.2. PERFORMANCE MEASUREMENTS 91

VR(PR) = N(PS)

Latency < Tm

Latency >= T m

Latency < Tm

Latency < Tm

mLatency >= T

Build status list
(List(1:L), N(S))

Latency >= T m

Start timer

EXPT = T

Wait until T = 0

?
N(S) < VR(R)

N(S) = VR(R)

Wait for event

POLL received
(N(S), N(PS))

LME receivedSD received
(N(S))

VR(R)++ VR(R) = N(S) + 1

N(S) > VR(R)

?
Not a duplicate

Duplicate

receiver buffer
Update

Received through UBR

?

Received through ABR

?

?

Send STAT
(VR(PR), List(1:L))

?

(VR(PR), List(1:L))
Send LSTAT

Build status list
(List(1:L), N(S))

Switch to

mode
Low-Latency

Figure 6.12: Receiver ECE behavior in high-latency mode (duplicating ECE).

and compared to that of the standard ABR service. Other measurements have been performed in order to
decide which ECE is best suited for supporting communications of parallel computing applications. In
additions, we have assessed the impact of several issues concerning the ABR service category, namely the
peak and the minimum cell rates. All the measurements have been carried out by simulation because of
the lack of standard ABR compliant equipment.

6.2.1 Experiment configuration

For moderate network sizes and buffer capacities, the most significant contributions to latency come from
the bottleneck links in the ATM network, due to the cell loss and subsequent retransmissions occurring
when becoming congested. Thus, the configuration shown in Figure 6.13 is sufficient for evaluating the
performance of the proposed mechanism, and is simple enough to allow for simulations to keep within a
reasonable duration. All the links have a capacity of 155 Mb/s. Two types of sources are considered: one
data source modeling traffic from a real parallel computing application by means of a trace, and a number
of background sources modeling traffic from traditional networking applications, by means of ON-OFF
sources. The traffic generated by the data source corresponds to the messages generated by one task of the
parallel computing application. In contrast, the traffic from each background source represents the result
of multiplexing many sources of traffic from traditional networking applications.

The traces for the data source have been collected from the execution of parallel codes from the
GENESIS benchmark suite [AGH+91], whose description can be found in Appendix A. In particular,
the considered codes have been PDE1 and PDE2, which are two parallel equation solvers using different
algorithms. The traffic generated by PDE1 consists of relatively long bursts (around 8 KB). In contrast,
bursts from PDE2 are much shorter (50–100 Bytes). As a result, different behavior is expected for each
code. Actually, the traces are the same as those used in the experiments of the previous chapter. In
particular, we have considered the trace file corresponding to one source. All the data is assumed to be

92 6. EXPLOITATION OF ATM SERVICES

Sink

Cross-traffic

source
Cross-traffic

Cross-traffic

Cross-traffic

Data
source

source

source

source

Figure 6.13: Simulated environment.

Table 6.1: Values for the relevant parameters of the ABR service.
Element Parameter Value

Switch Target Utilization 0.9
Measurement Interval 30 cells

Source Nrm 32 cells
ADTF 0.5 sec
Peak rate 50 Mb/s

forwarded to the same output despite the various destinations in the trace, so as to simulate the effect of a
bottleneck link. The receive instructions are by-passed, so the measured execution time is optimistic.
This is not a problem because we are interested in other parameters that are collected on a per-cell basis
which, as a consequence, are independent of the execution time1.

As far as background traffic sources are concerned, the values for the parameters of both the ON and
OFF states are exponentially distributed. In the measurements, several sets of values have been used in
order to obtain diverse aggregate input rates. In particular, the network utilization � ranges from 0.3 to
1.1, with respect to the output link capacity. As each background source models the result of multiplexing
several sources, as mentioned above, we do not want a very aggressive background traffic. Thus, the
parameters of the ON-OFF models generate a traffic pattern with a burstiness not higher than required to
capture the characteristics of multiplexed cell streams. As demonstrated in several papers, for example
[RV91, dM95], their burstiness decreases as long as the number of multiplexed sources grows.

The switch is modeled as output-queued. Two priority levels are considered: one for guaranteed service
categories (in particular VBR), and the other for best-effort service categories (ABR and UBR). The buffer
space is shared by the logical queues associated with each priority level. The buffering scheme is basically
drop-tail, except for the case of a full switch buffer, where the arrival of a non-UBR cell forces the dropping
of an UBR cell already queued in the switch. The aggregate incoming traffic is arranged in order for the
switch to contemplate it as a mixture of UBR and ABR traffic. The ABR scheduling algorithm adopted in
the measurements in based on ERICA (Explicit Rate Indication for Congestion Avoidance), fully described
in [JKG+96]. Table 6.1 shows the values for the most relevant parameters in the switch and the sources,
which in turn are mostly based on the defaults suggested in [ATM96c, JKG+96, JKVG95]. Table 6.2
displays the values for the parameters used in the performance evaluation study presented in this section.

For validating this environment, we have carried out two tests. The first one measures the latency
experienced by an ‘echo’ program, the same as in the validation study of the ATM emulator discussed
in Subsection B.2.2. The conditions are set to be similar to the round-trip study in [TL93]. Thus, by
approximating the simulated rout-trip time by twice the latency, we compare the achieved values. We
only consider a one-cell packet, as all the simulated mechanisms operate on a per-cell basis. Table 6.3 is

1This is not exactly true, since in the real situations the blocking caused by data requests alter the message generation pattern
and, consequently, the conditions are not strictly equivalent. The difference would lie essentially on a longer spacing between
some messages.

6.2. PERFORMANCE MEASUREMENTS 93

Table 6.2: Parameters for our low-latency mechanism.
Parameter Value

SSCOP POLL interval 0.1 sec
LME monitoring interval 0.1 sec
LME loss threshold TL 0.1 sec
ECE latency threshold TM 0.0001 sec
ECE latency threshold Tm 0.00009 sec

Table 6.3: Values considered for the validation study, in �seconds.
Component Value

Controller latency 4
Control/data transfer 4.25
Sum of per-cell components 8.25

Vectoring the interrupt 12.5
Sum of per-packet components 12.5

the same as Table B.3 in Appendix B and contains the values adopted for the simulation parameters. The
comparison of the results, shown in Table 6.4, confirms the validity of the ATM model in the simulator.

The second test is concerned with checking that the behavior experienced by the modeled ABR-based
connections corresponds to what is expected for real ABR connections. For this purpose, we have
considered a greedy ABR source generating traffic with an intensity of 80 Mb/s. As background traffic,
we have considered a variable number of sources generating traffic according of the Poisson style. The
more congested the switch gets, the effective rate experienced by the ABR source should tend to a “fair
share” that will depend on the number of active background sources. Figure 6.14 displays the results of
the test, and we observe that the variation of both the traffic generated by the background sources and the
number of active sources leads to the expected results. Note that no cell loss is experienced by the tested
ABR-based connection.

6.2.2 Task-to-task latency

Task-to-task latency is the measure determining the effective impact of communications on the performance
of the parallel environment. As we assume that the ATM network is shared with other applications, we
expect important variations on performance according to the load of the ATM network. Figure 6.15 shows
task-to-task latency as a function of the different values for the background load. We have compared our
proposals for enhancing the Parallel Computing AAL with the AAL without these enhancements, the latter
by considering both UBR and ABR as the service categories conveying the data.

Both of our mechanisms achieve equivalent performance as that obtained by relying on an ABR service
all the time. However, we have to consider other facts, such as the effective utilization of the ABR service
and the bandwidth consumption for assessing the actual advantages achieved by our mechanisms, as well
as the advantages of each proposed ECE. The relative performance of the measured approaches depends
on the particular characteristics of the communications in each application —traffic from PDE1 is much

Table 6.4: Results of validation study (1-cell packet), in �seconds.
Measure Latency Round-trip time

Original measure [TL93] 73
Simulation 35.557 71.114

94 6. EXPLOITATION OF ATM SERVICES

20

30

40

50

60

70

80

5 10 15 20 25 30 35 40 45 50

F
or

eg
ro

un
d

A
B

R
 s

ou
rc

e
m

ea
n

ra
te

 (
M

b/
s)

Mean rate per active background source (Mb/s)

5 active sources
4 active sources
3 active sources

Figure 6.14: Validation of the ABR service category model. Peak rate: 80 Mb/s.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

Network load (rho)

UBR only
ABR only

LME/ECE (sw.)
LME/ECE (dupl.)

(a) Parallel code: PDE1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

Network load (rho)

UBR only
ABR only

LME/ECE (sw.)
LME/ECE (dupl.)

(b) Parallel code: PDE2

Figure 6.15: Latency measurements.

6.2. PERFORMANCE MEASUREMENTS 95

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

C
el

l l
os

s
ra

tio

Network load (rho)

UBR only
LME/ECE (sw.)

(a) Parallel code: PDE1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.4 0.5 0.6 0.7 0.8 0.9 1

C
el

l l
os

s
ra

tio

Network load (rho)

UBR only
LME/ECE (sw.)

(b) Parallel code: PDE2

Figure 6.16: Cell loss ratio experienced by applications.

more bursty than traffic from PDE2, as stated earlier. Nevertheless, in the next subsection it is observed
that, as shown in Figure 6.17, the ABR service is used only by the 30%–70% messages, depending on
the application and the network load. Therefore, in addition to equivalent performance, great efficiency in
resource exploitation may be achieved.

In order to assess the relationship between the performances achieved by both the original UBR-only
mechanism and the switching ECE and the need of retransmissions, we have measured the experienced
cell loss ratio with these configurations. We have not measured the cell loss in the duplicating ECE
because retransmissions are not always triggered by lost cells, but rather in high-latency mode each cell
is automatically replicated. The results in Figure 6.16 confirm that retransmissions are a major cause of
latency in ATM-based parallel computing environments, and also that our proposal of ECE succeeds in
reducing the amount of required retransmissions, with a lower cost than necessary for achieving the same
effect with the sole use of the ABR service category.

Due to the random component of the background traffic, several repetitions of the latency measurements
have been performed. When considering a confidence level of 90%, the maximum radius for the confidence
interval is 14% of the mean value in the worst case, which indicates a clear difference between UBR-only
results and the rest.

96 6. EXPLOITATION OF ATM SERVICES

0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

%
 c

el
ls

 o
ve

r
A

B
R

Network load (rho)

LME/ECE (sw.)
LME/ECE (dupl.)

(a) Parallel code: PDE1

0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

%
 c

el
ls

 o
ve

r
A

B
R

Network load (rho)

LME/ECE (sw.)
LME/ECE (dupl.)

(b) Parallel code: PDE2

Figure 6.17: ABR service utilization measurements.

6.2.3 ABR service utilization

We consider the fraction of the cells generated by a parallel task that used the ABR service as a measure
of the utilization of this service. As the ABR service requires more resources from the network (a flow
control mechanism, some kind of priority, etc.) than the UBR service (which just takes advantage of the
bandwidth not consumed by the other service categories, so no particular resources are allocated for it),
the cost of information sent through ABR is also higher.

Figure 6.17 displays the results of this measurement. PDE1 and PDE2 exhibit different behavior, as
expected for the different characteristics of communications. The following observations can be extracted:� In PDE1, the switching ECE achieves 40% utilization for � = 0:7 and 70% for � = 1, and the

duplicating ECE achieves 30% utilization for � = 0:7 and 60% for � = 1. These results show
a highly cost-effective service achievable by both mechanisms. Thus, parallel applications whose
communications follow a similar appearance as those of PDE1 can obtain a performance equivalent
to that of the plain ABR service but with a higher efficiency in resource usage. the different results
achieved by the switching and the duplicating ECEs should be attributed to the special characteristics
of PDE1 traffic —which involves the generation of bursts of cells— since in the case of PDE2 this
different behavior does not appear.� In PDE2, our proposals achieve a slightly higher utilization of the ABR service —40% for � = 0:65,
and 70% for � = 1, in both the switching and the duplicating ECEs. In this case, the service remains

6.2. PERFORMANCE MEASUREMENTS 97

Table 6.5: Bandwidth consumption experienced by PDE1 (Kb/s).� Service UBR only ABR only LME/ECE (sw.) LME/ECE (dupl.)

UBR 266.4 - 154.0 253.9
0.7 ABR - 275.0 122.0 69.1

Total 266.4 275.0 276.0 322.0
VBR - - 5.0 7.1

UBR 266.4 - 88.9 215.4
1.05 ABR - 275.0 190.2 140.1

Total 266.4 275.0 279.1 355.5
VBR - - 5.1 5.5

Table 6.6: Bandwidth consumption experienced by PDE2 (Kb/s).� Service UBR only ABR only LME/ECE (sw.) LME/ECE (dupl.)

UBR 280.0 - 216.0 310.9
0.65 ABR - 289.0 107.6 105.1

Total 280.0 289.0 323.6 416.0
VBR - - 7.1 11.2

UBR 279.0 - 103.6 248.9
1.05 ABR - 289.0 224.5 222.0

Total 279.0 289.0 328.1 470.9
VBR - - 6.0 7.9

cost-effective —although slightly less than PDE1. The utilization of the ABR service is much
less dependent on the application, as opposed to PDE1. Thus, applications whose communication
pattern is similar to that of PDE2 can equally achieve cost-effective communications. The fact that
communications in PDE2 are more sparse throughout its execution, the differences between the
switching and the duplicating ECEs are much less relevant than in PDE1.

In order to realize the effective cost of our mechanism, we should take into account the cost of the
VBR service conveying the feedback information. As illustrated below, its performance depends on the
network load as well, so we can lose some of the advantage in cost-effectiveness, specially in a highly
loaded network.

6.2.4 Bandwidth consumption

This measurement serves to solve two pending problems. The first problem to solve is to decide which of
both ECEs is best suited for parallel computing. So far, their performance has been shown to be equivalent,
although it is intuitive that the bandwidth consumption of the switching ECE will be more important than
that of the duplicating ECE. If the consumption of the duplicating ECE is much more important than in
the switching ECE, we will adopt the switching ECE for the enhanced PC-AAL. The second problem is
to assess the impact of using the VBR service category for conveying feedback information on the cost
of our proposed ECEs. A high utilization of VBR would compromise the cost advantages introduced by
constraining the use of ABR to the periods where is is really necessary, as the cost of the VBR service is
much higher that the ABR service.

Tables 6.5 and 6.6 reflect the bandwidth consumed in both PDE1 and PDE2 by the services carrying
the actual data, for different two network loads in each case. The first observation from Tables 6.5 and 6.6
is that the fraction of bandwidth spent by the ABR service is closely related to the ABR service utilization
displayed in Figure 6.17, specially for the switching ECE. This relationship does apply to the duplicating
ECE as well, but is is hidden by the presence of the duplicate cells in high-latency mode.

98 6. EXPLOITATION OF ATM SERVICES

0

0.0005

0.001

0.0015

0.002

0.0025

0 10 20 30 40 50 60 70 80

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

ABR peak rate (Mb/s)

UBR only
ABR only

LME/ECE (sw.)
LME/ECE (dupl.)

(a) Task-to-task latency

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

%
 m

es
sa

ge
s

ov
er

 A
B

R

ABR peak rate (Mb/s)

LME/ECE (sw.)
LME/ECE (dupl.)

(b) ABR service utilization

Figure 6.18: Measurements for different ABR peak cell rates (PDE1).

The results show that, for the switching ECE, the total consumed bandwidth is slightly higher with
the switching ECE than with ABR or UBR only, and the difference is lower in PDE1. In contrast, the
bandwidth consumption experienced by the duplicating ECE is significantly higher than in the switching
ECE. As a consequence, the use of the duplicating ECE does not involve significant advantages with
respect to the switching ECE, and therefore we conclude that the switching ECE is the most adequate
ECE.

Regarding the bandwidth spent by the VBR service, we recall that the VBR service conveys the STAT
frames, which are periodically generated upon receipt of a POLL frame, as well as USTAT and LSTAT
frames which are generated asynchronously. Thus, as expected, the spent bandwidth strongly depends on
the cell loss ratio, which in turn is related to �. In particular, the higher the background load, the lower the
consumed bandwidth, due to the increased length of high-latency periods. Note that the significance of the
bandwidth consumed by the VBR service is lower than the impact of the ABR service —it is equivalent to
3%–7% of the bandwidth consumption from ABR. Thus, the total cost for the evaluated approach remains
advantageous.

In order to achieve a wider generalization of the results, we have to consider different values for some
cost-determining parameters of the ABR service category. In particular, all the experiments have been
performed, as far as ABR connections are concerned, with a peak cell rate of 50 Mb/s and a zero minimum
cell rate. Presumably, the performance (and the cost) can vary if we change these conditions. This is
discussed in the following subsections.

6.2.5 Influence of the ABR peak rate

All the measurements discussed so far in this chapter have adopted a fixed peak cell rate of 50 Mb/s for the
ABR-based connections. As this option is somewhat arbitrary, we have tested the impact of performance
of different values for the ABR peak cell rate. In particular, we fixed the network load to � = 0:8, and then
we have measured the task-to-task latency and ABR service utilization for both PDE1 and PDE2. In each
case, we tested the switching ECE, the standard PC-AAL using ABR, as well as the standard PC-AAL
using UBR that serves as a reference.

Figures 6.18 and 6.19 show that the influence of the ABR peak cell rate is negligible for both PDE1
and PDE2. This is a consequence of the fact that, in this environment, latency is mostly determined by
cell loss and retransmission, issues that are not involved in this measurement. The sensitivity to ABR
peak cell rate is more apparent in PDE2 than in PDE1, as a consequence of the different communication
patterns. Thus, as peak cell rate in ABR is not a parameter with a significant impact on performance, the
conclusions drawn from the preceding measurements, carried out with a fixed ABR peak cell rate, can be
generalized to a wide range of ABR peak cell rates.

6.2. PERFORMANCE MEASUREMENTS 99

0

0.0005

0.001

0.0015

0.002

0.0025

0 10 20 30 40 50 60 70 80

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

ABR peak rate (Mb/s)

UBR only
ABR only

LME/ECE (sw.)
LME/ECE (dupl.)

(a) Task-to-task latency

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

%
 m

es
sa

ge
s

ov
er

 A
B

R

ABR peak rate (Mb/s)

LME/ECE (sw.)
LME/ECE (dupl.)

(b) ABR service utilization

Figure 6.19: Measurements for different ABR peak cell rates (PDE2).

0

0.0005

0.001

0.0015

0.002

0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

Network load (rho)

ABR only, Vmin = 0
ABR only, Vmin > 0

LME/ECE (sw.), Vmin ABR = 0
LME/ECE (sw.), Vmin ABR > 0

(a) Task-to-task latency

0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

%
 c

el
ls

 o
ve

r
A

B
R

Network load (rho)

LME/ECE (sw.), Vmin ABR = 0
LME/ECE (sw.), Vmin ABR > 0

(b) ABR service utilization

Figure 6.20: Performance of PDE1 when using ABR with a minimum bit rate of 35 Mb/s.

6.2.6 ABR with a minimum guaranteed cell rate

Throughout this chapter, we have considered that the ABR service category does not guarantee any
bandwidth, that is, ABR has been assumed as a full best-effort service category. Nevertheless, the
definition of ABR in the ATM Forum’s Traffic Management specification [ATM96c] allows ABR to
partially behave as a guaranteed service category. This is accomplished with the possibility of assuring
a minimum bit rate. Intuitively, the use of such a feature can lead to achieve a significant improvement
in both the PC-AAL using ABR and the enhancements of the PC-AAL that are proposed in the present
chapter. The cost involved with this ABR service category with minimum bit rate will be higher than the
cost experienced without bit rate guarantees, but the increase in the performance experienced by parallel
computing applications may be sufficient to compensate this additional cost. The cost will depend on the
minimum cell rate adopted for the particular connection.

Figures 6.20 and 6.21 show the task-to-task latency and the utilization of the ABR service, as in
Figures 6.15 and 6.17, when the ABR service category is guaranteed 35 Mb/s. The results are compared
with equivalent mechanisms without guarantee in the ABR service category. The improvement in latency
experienced parallel applications is very important, about one order of magnitude. The latency using the
switching ECE is close to what is achieved when relying on the ABR service category all the time. With
regard to the utilization of the ABR service category, we observe that the adoption of an ABR service
category with a minimum bit rate does not result in significant variations of its utilization.

In order to assess the effect of different values for the ABR minimum bit rate, we have measured the
task-to-task latency for both PDE1 and PDE2. We have considered values from 7.5 Mb/s to 50 Mb/s
—in fact, this is CBR as the peak bit rate is also 50 Mb/s. The results, shown in Figure 6.22, show a
slight influence, which is more important in PDE2 due to its particular communication characteristics.
Nonetheless, the magnitude of the variations is very low. Regarding the utilization of the ABR service, no
significant variation has been experienced.

100 6. EXPLOITATION OF ATM SERVICES

0

0.0005

0.001

0.0015

0.002

0.4 0.5 0.6 0.7 0.8 0.9 1

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

Network load (rho)

ABR only, Vmin = 0
ABR only, Vmin > 0

LME/ECE (sw.), Vmin ABR = 0
LME/ECE (sw.), Vmin ABR > 0

(a) Task-to-task latency

0

20

40

60

80

100

0.4 0.5 0.6 0.7 0.8 0.9 1

%
 c

el
ls

 o
ve

r
A

B
R

Network load (rho)

LME/ECE (sw.), Vmin ABR = 0
LME/ECE (sw.), Vmin ABR > 0

(b) ABR service utilization

Figure 6.21: Performance of PDE2 when using ABR with a minimum bit rate of 35 Mb/s.

0

5e-05

0.0001

0.00015

0.0002

5 10 15 20 25 30 35 40 45 50 55

M
ea

n
la

te
nc

y
pe

r
m

es
sa

ge
 (

se
co

nd
s)

ABR minimum rate (Mb/s)

ABR only
LME/ECE (sw.)

(a) PDE1

0

5e-05

0.0001

0.00015

0.0002

5 10 15 20 25 30 35 40 45 50 55
M

ea
n

la
te

nc
y

pe
r

m
es

sa
ge

 (
se

co
nd

s)
ABR minimum rate (Mb/s)

ABR only
LME/ECE (sw.)

(b) PDE2

Figure 6.22: Task-to-task latency experienced under different ABR minimum bit rates.

6.2.7 Confidence of results

Like in Chapter 5, a confidence interval for the measurements has been determined in order to assess
their applicability. As the simulations performed in the work described in the present chapter are very
long —even much longer than in Chapter 5—, we have not determined the confidence interval for all the
parameters in every experiment, but only those particular cases in which the conclusions rely. We computed
the confidence interval with two different strategies. in the first one, we repeated each experiment 10 times,
and considered all 10 samples in order to build the confidence interval. However, as the network load
is a random variable, not all the samples have been measured under exactly equivalent conditions, thus
getting excessive variability in the samples. For this purpose, we considered to take the 5 samples where
the network load was most similar.

Table 6.7 shows the confidence intervals for the mean latency when the network load is 0.8. The
displayed values correspond to the radius of the confidence interval with respect to the mean value. The
values achieved for � = 1:2 are similar. The difficulties in getting sufficiently good confidence intervals
are even greater than in Chapter 5. For � = 0:8 a certain overlap of confidence intervals occur between the
UBR and LME/ECE measurements in PDE1, which is not the case in PDE2. For � = 0:8, we can then

Table 6.7: Confidence intervals for the measured mechanisms (confidence level: 90%).
Confidence interval (% over mean)
PDE1 PDE2

Mechanism 10 samples 5 samples 10 samples 5 samples

UBR only 11.42% 12.87% 15.77% 13.75%
ABR only 13.05% 18.04% 10.34% 10.39%
LME/ECE (dupl.) 10.80% 14.90% 11.20% 10.04%

6.3. DISCUSSION 101

state that, with a 90% probability, the switching ECE/LME mechanism performs better than the PC-AAL
without introducing ATM service categories. We cannot make such an affirmation for PDE1 with this
network load with a confidence level of 90%, we can only do it with a 80%. In contrast, for � = 1:1 the
statement is possible with a confidence level of 90%.

6.3 Discussion

In this chapter, we have described and evaluated two mechanisms whose aim is to enhance the operation
of the SSCOP-based PC-AAL as defined in Chapter 5. In particular, the enhancements are achieved by
means of the exploitation of the service categories provided by ATM. Typically, data applications use an
ABR service to reduce the occurrence of cell loss, but the use of a UBR service when the network is
unloaded can lead to similar performance. Thus, we suggest to use UBR as the basic transfer service but to
introduce an ABR service when latency experiences a significant increase. By means of this operation, we
achieve low latency in communications and a cost-effective service. For this purpose, we have explored
two strategies for introducing ABR when the latency experienced in the ordinary UBR-based connection
is sufficiently high: (1) to deactivate the UBR-based connections and switch the traffic to the ABR-based
connection, and (2) to use the ABR-based connection as a redundant channel through which the data issued
through the UBR-based connection are replicated.

To evaluate the performance of our proposals, as well as to decide on the most adequate of them
for supporting communications in parallel computing applications, we have undertaken a number of
simulation-based experiments. In particular, we have measured the end-to-end latency and cell loss ratio
experienced by communications, the utilization of the ABR service category, and the bandwidth consump-
tion, particularly of the VBR service category. In view of the results yielded by these measurements, we
observe that (1) the latency achieved by our mechanism is equivalent to the latency experienced when
conveying all communication through ABR-based connections; (2) As in the worst case only 70% of cells
use the ABR service category, the cost of communications with our mechanism is much lower than the cost
inherent to the full use of ABR-based connections; (3) the LME succeeds in determining the high-latency
periods, since our mechanism has been able to avoid most of cell loss; and (4) the bandwidth consumption
and the requirements for the VBR service category are so low that the cost of communications is not
significantly affected. As a summary, our mechanism allows for parallel computing applications that
execute for a significantly long period to achieve cost-effective performance.

Regarding which strategy is best suited to the characteristics of parallel computing applications, the
results have shown that their performance is similar as far as latency and ABR service utilization is con-
cerned. However, as the bandwidth consumption experienced by the duplicating approach is significantly
higher than the consumption measured in the switching approach, we conclude that the switching ECE
is more adequate that the duplicating ECE. It is possible, nevertheless, that in environments where the
computing nodes are spread in a very large network, the duplicating ECE could be more advantageous,
since its main feature is the fact that retransmissions are “advanced” when in high-latency mode, so the
contribution to latency from the notification of cell loss is reduced.

102 6. EXPLOITATION OF ATM SERVICES

7
Conclusions and future work

In this final chapter, we summarize the conclusions drawn as a result of the diverse
proposals made in the thesis. After that, we mention further works that may be undertaken in
order to extend the scope and the functionality of the architectures and mechanisms presented
so far.

7.1 Summary of contributions

The main topic addressed in the thesis is the proposal of a network architecture oriented to the support of
parallel computing over ATM networks. The main originality in this work is the explicit assumption that the
ATM network is shared with other networking applications and, consequently, the network can experience
load variations and congestion situations. The particular contributions include: (1) the assessment of
the promising possibilities reachable with the use of ATM for parallel computing; (2) the proposal of a
network architecture for supporting parallel computing applications; and (3) the design and evaluation of
concrete mechanisms to be implemented within this architecture.

7.1.1 Potential performance of ATM-based platforms

The potential performance achievable with ATM networks for supporting parallel computing have been
studied in order to assess whether further research on such platforms can lead to fruitful conclusions.
The performance of current ATM-based environments is far from multiprocessors, due to the presence of
important overheads in network-based environments. In a simulation study, we have determined which
would be the performance in ATM-based environments if all bottlenecks were removed. The results
showed that, in many cases, the performance could reach multiprocessors, so we concluded that it was
possible for ATM-based environments to deliver competitive performance provided that the impact of
bottlenecks was minimized.

As a complementary study, the relative importance of the various bottlenecks present in current ATM-
based environments has been determined. In particular, we considered the network size –in terms of
number of nodes—, the network load —consequence of sharing the network with other applications—,
and the delays in the endpoint hosts —caused by protocol processing and the host-network interface.
Among these bottlenecks, the most influential of them has been resulted to be the delays experienced
within the endpoint hosts. The network load has shown a significant influence as well. Regarding the

103

104 7. CONCLUSIONS AND FUTURE WORK

network size, in moderate sizes the importance is fairly limited. A consequence of this results is that
any mechanisms attempting to approach the performance of ATM-based environments to the potential
will have to pay special attention on minimizing the processing within the endpoint host —by using a
reduced-processing but robust protocol, by means of special, high-performance host-interfaces, etc. These
mechanisms will have to take the network load into account, since the processing involved in loss recovery
as a consequence of high load situations has a significant impact on performance. Another consequence
shows that the low influence of network size allows for the use of end-to-end mechanisms without a
significant performance degradation. All these issues have been considered in the proposal of a network
architecture for supporting parallel computing over ATM networks.

7.1.2 The network architecture

The promising possibilities of ATM for supporting communications in parallel computing applications
have motivated the proposal of many strategies for introducing ATM in such environments. Among
the strategies, many of them simply consider the adaption of existing protocols for usual networking
applications, or rather ATM-oriented mechanisms which nevertheless are not application-specific but
shared by all applications running on top of the ATM network. This is the case of the mechanisms
relying on the TCP/IP protocol stack over ATM, as well as those proposals of using an API that is
general-purpose. With these strategies, it is not possible to take advantage of the particular characteristics
found in parallel computing applications. Other strategies have been specifically conceived for supporting
parallel computing applications. They can achieve better results than general-purpose applications, as a
consequence in many cases of the fact that no other traffic apart from parallel computing is occupying the
ATM network. This assumption allows them to implement elementary mechanisms that do not consider
the high load or congestion situations occurring in shared ATM networks. In addition, some of these
mechanisms require that applications include additional programming. In active messages, it is hard
to incorporate the new interface because much low-level burden is left to the programmer. Likewise,
multithreading-based approaches require that the programmer bothers on mutual exclusions and thread
management, which are issues that the most commonly available parallel computing applications do not
take into account.

The ideal mechanisms should be specific for parallel computing applications, but simultaneously other
applications should be able to make use of the same ATM network and, in addition, it should be easy for
existing parallel computing applications to be moved to the new environment. For this purpose, we have
proposed a model for the network architecture that allows for each type of applications to rely on specific
mechanisms. In this model, support to parallel computing is one of the application types. Thus, the
specific mechanisms will have to rely on standard features of ATM and, therefore, the adaption between
parallel computing applications and the ATM network —the so-called convergence level— is performed
outside the ATM network. The mechanisms in this convergence level have to guarantee the full delivery of
all data submitted to the network, by optimizing the performance. The principal measure of performance
in parallel computing applications is latency, rather than throughput.

The key point of the mechanisms implementing the convergence level is that they can take advantage
of the special characteristics of parallel computing applications, which include:� The short PDUs that parallel computing applications interpret —the elementary data types integer,

float, etc.— over which more complex structures such as vectors and matrices are built.� The moderate average bit rate due to a fairly low frequency of communications, but with large
bandwidth requirements when communications effectively take place.

7.1. SUMMARY OF CONTRIBUTIONS 105� The long execution time —hours or days— that reality parallel computing applications usually
experience.� The fact that communications in parallel tasks consists of a sequence of requests and responses, be-
cause the importance of throughput as a measure of performance becomes relative and, consequently,
we can sacrifice some throughput if this allows for a gain in latency.

In order to adapt the needs of parallel computing applications to the characteristics of the shared ATM
network, the mechanisms in the convergence level benefit from the small size of PDUs —called PC-PDUs
after Parallel Computing PDUs— in order to obtain more efficient schemes for loss recovery than those
found in existing general-purpose protocols. In addition, ATM networks include several service categories
whose features may be exploited by the convergence level in order to enhance performance while keeping
the cost within reasonable limits.

7.1.3 The mechanisms for implementing the network architecture

The most important contributions of the present thesis are the proposals of concrete mechanisms to be
implemented in the convergence level. Among the functions that can be included in the convergence
level, we have chosen to build mechanisms for assuring the reliable delivery of data. For this purpose,
we have taken advantage of characteristics of both parallel computing applications and ATM network.
Our first mechanisms benefits from the short length of PC-PDUs in order to improve the operation of
a retransmission mechanism. The second mechanism enhances the previous one by making use of the
features provided by different ATM service categories.

The fact that a single ATM cell can contain one or several PC-PDUs has led to consider the possibility
of modifying an existing protocol which is already oriented to operate over ATM networks. In particular,
if the frame unit is the same as the minimum losable data unit —in this case, the ATM cell—, it is possible
that only lost cells be retransmitted. This is not the behavior in traditional frame-based protocols, where
the loss of one cell triggers the retransmission of all the cells belonging to the same frame as the lost
cell. By following this guideline, we have modified a frame-based protocol, the SSCOP (Service Specific
Connection Oriented Protocol), by converting it into a cell-oriented protocol. We chose SSCOP because it
was a protocol designed for running over ATM networks and its initial application scope was the support
to signaling, which requires reliable delivery of data as well. The modification of SSCOP has led to build a
new AAL specific for parallel computing —the PC-AAL— to replace AAL5. The performance evaluation
of this resulting PC-AAL yielded that:� The reliance on short PC-PDUs allows applications to use the received data immediately, without

requiring the complete reception of a large frame. As a result, latency improves with respect to
standard SSCOP.� The reduction of retransmitted information in the network provides communications with a high
robustness with respect to the network load, what indicates satisfactory performance of the PC-AAL
under the conditions experienced by parallel computing applications.

We compared two encapsulation strategies: (1) encapsulating one PC-PDU per cell, and (2) encapsulating
several PC-PDUs per cell. All the tests have demonstrated the best performance of the second strategy,
since the lower processing required in the first alternative does not compensate for the effects of the much
higher number of generated cells.

The PC-AAL as discussed above does not rely on any particular ATM service category, as the only
feature of ATM that has been exploited is the use of small packets as the transmission unit. Service

106 7. CONCLUSIONS AND FUTURE WORK

categories defined for ATM networks can provide additional features, for instance guaranteed bandwidth
and a network-level flow control mechanism, with diverse costs for the user. Given the characteristics of the
traffic exchanged in parallel computing applications, the most adequate service categories for supporting
parallel computing are those based on a best-effort scheme —i.e. UBR and ABR. The measures of the
PC-AAL assumed a UBR service category. The introduction of ABR allows to reduce the cell loss ratio
and, consequently, the performance degradation caused by retransmissions. However, we observe that the
cost of an ABR service category is higher than UBR, while ABR is useful only in the periods where the
network load is high —the remainder periods, the performance of UBR is sufficient. This is the reason
why we have considered a mechanism that is capable of switching from UBR to ABR and vice versa
according to the monitored latency in the network. The complexity involved in this approach requires that
parallel applications have a long execution time, in order to take advantage of the variability in the network
load.

The mechanism proposed as an enhancement for the PC-AAL includes two components: (1) the data
transferring mechanism itself, known as ECE (Effective Communication Engine), and (2) a mechanism
for monitoring latency in the network, the LME (Latency Monitoring Engine). The LME indicates when
the latency exceeds a threshold in order for the ECE to introduce ABR. For the ECE we have considered
two alternatives when ABR has to be introduced: (1) deactivating the UBR-based connection (switching
ECE), and (2) duplicating the data through both the UBR- and the ABR-based connections (duplicating
ECE). In the following, the most outstanding results of the evaluation of this approach are enumerated:� The ECE/LME mechanism achieves cost effective performance. The mean latency is similar to

what is achieved when using the PC-AAL with ABR all the time. The cost of LME/ECE is lower
as the more expensive ABR service category is used by only between 30% and 70% of messages,
depending on the load in the network and the parallel application.� Regarding both schemes for the ECE, they achieve similar performance while the duplicating ECE
is more bandwidth-consuming. Therefore, we considered the switching ECE as the best scheme for
supporting parallel computing applications.

These conclusions are valid for any peak rate allocated to the ABR service category. In addition, the
allocation of a minimum bit rate for the ABR service category improves the performance for both the
LME/ECE and the PC-AAL with ABR. As the utilization of the ABR service category remains similar,
we conclude that the ECE/LME mechanism is able to bring equivalent performance as that achieved when
using ABR all the time, but with a lower cost. Thus, we succeed in providing cost-effective performance
to our network architecture for supporting parallel computing applications.

7.2 Future work

The network architecture and the mechanisms discussed along this thesis are an important component
to allow for the support of parallel computing applications over ATM-based networks, but they are not
sufficient to achieve a real operating environment. In particular, all the necessary procedures to configure
the environments have yet to be investigated. The virtual network schemes presented in Subsection 4.2.1
are an advance of a deeper study which should include the specification of the functions performed in
the so-called Parallel Computing Servers as well as the definition of the signaling procedures that will
be in charge of building the topologies for executing parallel applications, downloading the code and the
data to the appropriate computers, collecting the results, and deallocating the reserved resources once the
execution is finished.

7.2. FUTURE WORK 107

All the mechanisms in this thesis are assumed to operate on top of an all-ATM network. Although this
is the expected scenario for future communications, during a long time the communications panorama
will be dominated by the presence of separate ATM networks whose interconnection is performed via
non-ATM technologies such as FDDI, N-ISDN, Frame Relay or Ethernet. In the virtual networks for
supporting parallel computing applications will possibly have to include some nodes in order to allow
for the interworking of all these technologies through bridging and routing, where mechanisms like LAN
Emulation could be used. This research could then be extended to permit the execution of parallel tasks
on machined connected to a networking technology different from ATM.

The mechanism discussed in Chapter 6 relies on real-time latency monitoring through the LME module.
Although one possible implementation has been suggested, a better operation may be possible by taking
advantage of information on network status. This information could either be obtained from the feedback
information provided by ABR-based connections, or be explicitly supplied by the network management
plane. Working on alternative implementations for the LME will be possible when the standards become
more mature on those aspects.

Another issue that is necessary for enabling the operation of ATM-based environments is the provision
of a suitable interface between parallel computing applications and our network architecture. Traditional
message-passing libraries like PVM or MPI have been designed for operation on traditional protocol
stacks, where the trend is to build packets whose size is as long as possible. When using single PC-PDUs
as the transfer units instead of the large packets generated by message-passing libraries, a novel message-
passing library designed for supporting PC-PDU-based data transfers could pass by the step of building
and decomposing the message and, consequently, it could send data as soon as generated and process data
as soon as received.

Finally, a longer-term work can be the consideration of the Distributed Shared Memory (DSM) paradigm
for parallel computing applications. This would allow for ATM-based environments to execute all the base
of parallel computing applications using a shared-memory programming model. In addition, this could
provide distributed operating systems with a more efficient communication subsystem. The problems to
be solved are very different as those discussed in the message-passing programming model. For instance,
it is not clear that PC-PDUs as considered in this thesis are the fundamental data transfer units, and the
communication pattern is expected to be radically different. In addition, issues such as mutual exclusion,
cache coherency, and synchronization that are not relevant to message-passing systems like the discussed
network architecture will surely be crucial in DSM systems.

108 7. CONCLUSIONS AND FUTURE WORK

A
Benchmarks

This appendix summarizes the characteristics of the different real algorithms that have
been used in the simulations and measurements in the present work. In addition to the descrip-
tion, some statistics concerning the messages generated by each application are discussed,
since they have shown to have significant influence on the results.

A.1 Description

For the measurements in this thesis, we had to select real algorithms that could be executed on a wide
range of parallel computing environments. This requirement, together with the fact that among the
diverse environments we have distributed-memory architectures —in particular, the SP2 multiprocessor,
the Ethernet-based environments, as well as the ATM-based platform, all of them discussed in Chapter 2—
has led us to consider a message-passing environment as a common environment in order to enable direct
performance comparison. For this purpose, we adopted PVM (Parallel Virtual Machine) [G+94], as it is
available for all the concerned environments and we have an easy access to documentation on this library.
thus, we have selected those algorithms from the GENESIS release 3.0 (July 1994) [AGH+91] and NAS
1.0 [WÅS95] benchmark suites whose adaption to the studied environments were less difficult. From the
GENESIS suite we have used the following kernels:� PDE1. It solves the Poisson Equation on a three-dimensional grid by using red-black successive

over-relaxation (SOR) with Chebyshev acceleration. The Partial Differential Equations (PDE) are
represented by a large set of (non)linear equations, each of which couples values at neighboring grid
points with each other. The number of floating point operations per gridpoint is quite small, so the
ratio of computation to communication is rather low.� PDE2. This benchmark solves a two-dimensional Poisson equation using a multigrid method. A
mixture of fine and coarse grids are used to accelerate the solution process. The parallelization
is performed by grid splitting. A part of the computational grid is assigned to each processor.
After each computational step, values at the boundary of the subgrids are exchanged with nearest
neighbors.� SOLVER. It is part of an ongoing software development exercise. The full application generates
quark propagators from a background gauge configuration and a fermionic source. The benchmark
actually performs a cut-down version of this operation. Instead of performing all the required

109

110 A. BENCHMARKS

Table A.1: Distribution of message lengths (in bytes).
Parallel Number of Length of Length of
kernels messages messages (mean) messages (median)

PDE1 5608 8180.360 8192
PDE2 8068 116.827 40
SOLVER 4792 7107.595 6144
EP N/A N/A N/A
CG 7116 1963.389 8
FT 189 233200.75 262144
IS 599 71364.320 130016
MG 848 30226.525 2592

iterations, a fixed number of them (50) is actually carried out in order to generate accurate timing
information.

The NAS Parallel benchmarks include a number of kernels and simulated applications whose operation
imitates the computation and data movement characteristics of large scale computational fluid dynamics
applications. Five of these kernels have been ported to PVM, and have been used in the present work:� EP. A large number of iterations is executed in which a pair of random numbers are generated and

tested for whether Gaussian random deviates can be made from them according to a specific scheme.
This kernel does not incur any data or functional dependencies and requires no communication
between processors. Thus, a reference point for peak performance can be established.� CG. It uses the power and conjugate gradient methods to approximate the smallest eigenvalue of a
symmetric, positive definite, sparse matrix with a random pattern of nonzeros. The communication
patterns in this kernel are long-distance and unstructured.� FT. It executes FFTs (Fast Fourier Transforms) on a complex array to solve a three-dimensional
partial differential equation. Communication patterns are structured and long-distance in nature.� MG. A few iterations of the V-cycle multigrid algorithm are executed to obtain an approximate
solution to the discrete Poisson problem on a three-dimensional grid with periodic boundary condi-
tions. This application rigorously exercises both short- and long-distance communications, and the
communication patterns are highly structured.� IS. 10 ranks of a large number of integer keys are performed. the keys are uniformly distributed
in the local memories of the parallel machine. Communication in this environment is frequent and
relatively low-volume, and the pattern of communications is a fully connected graph.

A.2 Characteristics of communications

Table A.1 illustrates the characteristics of the eight algorithms as far as communications are concerned.
For this purpose, the distributions of the length of messages are characterized with two parameters: the
mean value and the median. Similar values for both parameters indicate that the mean value is truly
representative of the distribution. A high mean value and a low median can be associated to a distribution
with many short messages and a few very long messages. A low mean value with a high median can be
obtained with many extremely short messages and a few not very long messages.

A.2. CHARACTERISTICS OF COMMUNICATIONS 111

Table A.2: Message temporal density.
Parallel kernels Density (msg./sec.) Av. throughput (Mb/sec.)

PDE1 228.9 14.96
PDE2 246.0 0.23
SOLVER 363.0 20.64
EP N/A N/A
CG 1218.5 19.14
FT 11.5 21.50
IS 166.4 95.00
MG 50.5 12.21

PDE1, FT and SOLVER are the most homogeneous message distributions, since most of messages
exhibit around 8100, 7000 and 230,000 bytes, respectively. The distribution is less balanced in PDE2,
CG, and MG, where short messages predominate (40, 8 and 2500 bytes, respectively) although some
significantly longer messages are also generated. Finally, in IS the average is shorter than the median, so
many short messages are expected (shorter than 71,000), while those messages longer then 130,000 bytes
will not actually fall much beyond this magnitude. Note than some kernels, particularly FT, IS, and MG,
generate very large messages. Thus, the burstiness experienced by the networks is expected to be very high
in those cases. The actual impact of burstiness depends on the temporal distribution of the instants when
messages are issued to the network. This magnitude depends on the networking technology. In the case of
an ideal ATM network, evaluated in Section 2.1, the density of communications is shown in Table A.2. For
similar throughput values, a lower message density indicates a more aggressive communications pattern.

112 A. BENCHMARKS

B
Emulation of an ATM network

This appendix describes the simulated environment used for the study of the potential
capabilities of ATM discussed in Chapter 2. This environment is not a simulator in the tradi-
tional sense of the term, but an emulator of an ATM-based environment. Thus, it is possible
to establish direct comparisons between real environments and ATM-based environments.
In particular, we discuss here the architecture of the simulated environment, as well as the
validation of the model of the ATM network.

B.1 Objectives and description

The emulated ATM network environment is addressed to those studies where performance is compared
to that of real environments, since the simulation study and the real measurements can be based upon
the same workload. Using such an emulated environment is also appropriate for those simulation studies
requiring so many data that trace-based simulation becomes infeasible. Thus, the emulation of an ATM
network includes an ATM simulator which allows for user-configurable topologies and traffic conditions,
and an interface with real applications so that they can use the simulated ATM network as if it were a real
network. Figure B.1 depicts the architecture of the emulated ATM network.

Task #1Task #0

Task #2 Task #3

Task #4 Task #5

User application tasks
(executing real codes)

ATM network simulation

manager
Dynamic task spawning

Simulated network

HOST #1 HOST #2

Figure B.1: ATM network emulation architecture.

113

114 B. EMULATION OF AN ATM NETWORK

NIC receiver

NIC sender

NIC receiver

NIC sender

NIC receiver

NIC sender

Figure B.2: ATM network simulator structure.

B.1.1 ATM network simulation

The ATM network is implemented as an event-driven simulator, and is contained in a process in a separate
host from applications. As shown in Figure B.2, the simulated network elements include ATM switches
and Network Interfaces. The ATM network emulator allows to freely configure the network topology. The
network elements are modeled as follows:� The switches use output-queuing policy, but the buffer space is shared by all output ports. Routing

is implemented by means of a static, user-configurable table. At present, only virtual-channel
connections are supported. The scheduling policy is strictly FIFO. Only one service category, as
defined in the ATM Forum’s Traffic Management specification [ATM96c], is currently supported,
namely the UBR (Unspecified Bit Rate) service category. Buffers are assumed as infinite in the
current version, since there is no support for protocol testing. The delay introduced by the switch is
configurable by the user.� The sending part of the network interface is simply modeled with a FIFO queue that holds the cells
resulting from the segmentation process. Segmentation is done according to AAL5. Consistently
with the switch models, only the UBR service category is supported. The delay spent in the network
interface is user-configurable.� The receiving part of the network interface is significantly more complex than the sending part. In
addition to the reassembly buffers, message storage has also been implemented in order to simplify
the implementation of the interface library. This storage facility supports reassembly of messages
longer than the AAL5 payload. The final messages are classified according to their origin and
destination. The communication with the interface library takes place by means of a request list.
When the library requests a message, the network interface delivers it to the library in case it has been
already stored; otherwise, the request is queued. When a message is received and fully reassembled,
it is immediately delivered to the library if some request of this message is queued; otherwise, the
message is stored in the network interface.

The simulated network includes the emulation of traffic from other applications sharing the network
(cross-traffic), which is modeled by ON-OFF sources. ON-OFF models, as guessed from this term,
comprise two states: a high-load state (ON) and a low-load state (OFF). Each state is characterized with
two parameters: the traffic intensity —in fact, the time between cell arrivals— and the duration. The
values for both parameters are exponentially distributed around a specified mean.

If an ON-OFF model is implemented for each output in the switches, the emulation of an ATM network
can become very inefficient. For this reason, we have adopted an alternative approach, in which only one
ON-OFF model is implemented on each switch, regardless of the number of outputs that is present in the

B.1. OBJECTIVES AND DESCRIPTION 115

queueing cell: 50%
Probability of

Probability of

queueing cell: 50%

queueing cell: 50%

Probability of

Generation of cells

ATM cellON

OFF

ATM Switch

Figure B.3: Scheme for generating background traffic.

C
on

ne
ct

/d
is

co
nn

ec
t

Central Host
R

eceive

G
et_tim

e

S
en

d

Spawn child tasks

Endpoint Host

SpawnerSimulated ATM network

Library (PVM)

Application

Figure B.4: Implementation of the interface between the simulated network and the real applications.

switches. when a cell generated by one ON-OFF model, it is queued into several of the outputs in the
corresponding switch. Each output has a probability of 0.5 to hold a copy of the generated cell. With
this procedure, the correlation that would appear if the cell were queued into all outputs in the switch is
avoided. Figure B.3 illustrates this procedure.

B.1.2 Interface with real applications

Figure B.4 details the structure of the interface between the real applications and the simulated ATM
network. In the host executing the real applications, there is a library emulating the primitives of a
message-passing library which are more directly related to communications. In particular, we have
implemented a few primitives of the PVM message-passing library, particularly those involving the most
simple types of communication and task spawning —the real PVM-based applications we have available
only use a very basic subset of PVM primitives. The emulated primitives are listed in Table B.1. In addition
to standard PVM primitives, the library includes two primitives for obtaining the current simulated time,
which are listed in Table B.1 as well, namely timer and msecond, which are used by the programs in
the benchmark suites described in Appendix A.

Figure B.5 illustrates the operation of the PVM primitives by using the interface depicted in Figure B.4.
When a task enrolls in PVM –which is done in the first call of a PVM primitive, the application passes the

116 B. EMULATION OF AN ATM NETWORK

Table B.1: PVM Primitives implemented in the application/network interface.
Communications Packing data Unpacking data Control Time monitoring
pvm initsend pvm pkbyte pvm upkbyte pvm mytid timer
pvm send pvm pkshort pvm upkshort pvm spawn msecond
pvm recv pvm pkint pvm upkint pvm mytid
pvm mcast pvm pkfloat pvm upkfloat pvm exit

pvm pkcplx pvm upkcplx pvm perror
pvm pkdouble pvm upkdouble pvm bufinfo
pvm pkdcplx pvm upkdcplx
pvm pkstr pvm upkstr

RT

TT

(endpoint)
Real application

t = t +T4

t = t

t = t +T2

3t = t

TS

t recv

Event processingEvent generation

Simulated ATM Network

0

0 St = t +T1

1 R

recv

3 T

init (offset = t)0

send (offset = T)S

time (offset = T)T

recv (offset = T)R

Figure B.5: Example of the real application-emulated ATM network interface operation.

initial time to the ATM emulator through the connect/disconnect channel. Later on, when PVM attempts
to send a message, the whole packet is passed through the send channel to the ATM emulator, where it is
appropriately segmented into ATM cells. Together with the packet, the amount of time elapsed since the
last interaction with the ATM emulator is passed as well, without including the time used for processing
the send primitive itself. This amount of time is used by the emulator for updating the internal emulator
timer, and convenient events are generated. The operation is analogous when soliciting to receive data,
except that the receive channel is used. If the requested data are already available, they are passed to the
application. If not, as is the case illustrated in the figure, the application blocks until the receipt of the
expected data. In the latter case, the ATM emulator processes the pending events, until there is a delivery
of data to some application and, if one application has requested the received data, they are passed to
the application. In either case, prior to passing the data to the application, the internal timer is updated
according to the time when data were received. All the channels have been implemented by means of
Internet sockets.

The time primitives interact with the emulator as well. Through the get time channel, the application
requests the current time recorded by the emulator. For this purpose, the application passes the time
elapsed since the last interaction with the emulator, as before, and then the emulator immediately returns
the updated time. The time primitives allow to obtain the same measures as the benchmarks over real
environments, which is interesting for comparative studies like that in Chapter 2.

One of the features of PVM is the possibility of dynamically spawning tasks in parallel environments.

B.2. VALIDATION AND VERIFICATION 117

ChildChild
Spawner

Parent
Spawner

Slave
Task #1

Slave Slave
Task #2

Master
Task

Spawner

Task #3

Figure B.6: Dynamic spawning of tasks.

The simulated environment includes a mechanism that allows the simulation of the most common cases,
which is illustrated in Figure B.6. One of the hosts executes the “Parent Spawner” process, which
centralizes the management of spawn requests and task identifiers. The host executing the Parent Spawner
need not execute any of the real application’s; we have associated it to the same host executing the ATM
network emulator. Each host executing one or several tasks of the real application execute a “Child
Spawner” that is in charge of starting the tasks when instructed to by the Parent Spawner. The connections
between hosts are implemented with Internet sockets, like the interface between real application tasks and
the emulated ATM network.

When a task encounters a pvm spawn primitive, it connects to the Parent Spawner and passes the
parameters, namely the hosts and the tasks’ filenames. The Parent Spawner then assigns task identifiers
for each new task and passes them back to the soliciting task. Meanwhile, the Parent Spawner connects
to the Child Spawners in the target hosts, and passes the relevant parameters, including the respective
task identifier. On receipt of this information, the Child Spawner forks into a new process and prepares
it so that it gets the correct parameters when the task enrolls in PVM. This mechanisms is best suited for
applications where a master initializes all slaves when starting computation.

B.2 Validation and verification

In this section, we show the results from some tests carried out in order to assess the validity of the results
obtained form the ATM emulator. Some tests are addressed to determine the correctness of the emulator
implementation, while other tests determine if the measurements from the emulator are realistic.

B.2.1 Verification of message sequence & data integrity

The idea behind these trials is to execute the same application over the ATM emulator and over a real
PVM-based environment, so that we can compare the output generated in both cases. This output has to
be coincident in both environments; if not, we would know that the ATM emulator includes some error
to correct. For example, we have run one of the example programs provided with the PVM distribution,
namely the master-slave pair in the ATM emulator and an IBM SP2 multicomputer. Their respective
output is displayed in figure B.7.

In both tested cases, the output is equivalent —apart from the task identifiers, whose assignation

118 B. EMULATION OF AN ATM NETWORK

How many slave programs (1-32)?
4
tid 0 1
tid 1 2
tid 2 3
tid 3 4
I got 300.000000000000 from 0
I got 100.000000000000 from 1
I got 300.000000000000 from 2
I got 500.000000000000 from 3

(a) Output generated by the ATM emulator

How many slave programs (1-32)?
4
tid 0 268566529
tid 1 268632066
tid 2 268697603
tid 3 268763140
I got 100.000000000000000 from 1
I got 300.000000000000000 from 2
I got 500.000000000000000 from 3
I got 300.000000000000000 from 0

PVMD:
New epoch 1.

(b) Output generated by the IBM SP2

Figure B.7: Comparison of the output yielded by the master-slave programs.

Table B.2: Round-trip components for ATM, according to [TL93] (in �seconds).
Packet size: Packet size:

Component 53 bytes 1537 bytes

Time on the wire 6 176
Controller latency 16 161
Control/data transfer 17 458
Vectoring the interrupt 25 25
Interrupt service 9 20
Sum of components 73 840
Measured round-trip time 73 746

procedure is different, what means that the messages have been transferred in the correct sequence, and
also that no loss, duplication or disordering have appeared.

B.2.2 Validation of measurements

The validation has been done by referring to the results displayed in [TL93]. Table I in that paper shows
the results of the measurement of hardware-level round-trip packet exchange times. For each networking
technology —Ethernet over DEC, Ethernet over Sparc, FDDI, and ATM— two packet sizes are considered,
60 and 1514 bytes. In the ATM case, they considered 53 bytes and 1537 bytes, in order to consider integral
ATM cells (1 cell and 29 cells, respectively). The bandwidth of their ATM network is 140 Mb/s. Table B.2
shows the results. Time on the wire is the transmission time, where propagation delays are neglected.
Controller latency is the sum of the delays required for data to cross the controllers in the sending and
the receiving endpoints. Control/Data transfer captures the time required by the host to transfer the data
from/to the controller to/from the host memory. “Vectoring the interrupt” includes the time required by the
receiver to process incoming interruptions. Finally, Interrupt service covers controller-specific operations
related to interrupt processing.

For validating the ATM network emulator, we have built a PVM-based ‘echo’ program that performs N
iterations. A message is sent on each iteration and the time elapsed until its return is computed. The final
measure is the average of the N iterations. For this purpose, we set the network capacity to 140 Mb/s. As
the controller latency and the control/data transfer include the total delay experienced in one round-trip,
and in a round-trip a controller is crossed 4 times —a send and a receive in each end—, we consider the
fourth part of the values in Table B.2 in the validation study. As far as vectoring interrupt and interrupt
service are concerned, we consider half the value for vectoring interrupt in Table B.2 for the validation

B.2. VALIDATION AND VERIFICATION 119

Table B.3: Values considered for the validation study, in �seconds.
Component Value

Controller latency 4
Control/data transfer 4.25
Sum of per-cell components 8.25

Vectoring the interrupt 12.5
Sum of per-packet components 12.5

Table B.4: Results of validation study, in �seconds.
Measure Value (53 bytes) Value (1537 bytes)

Original round-trip time 73 746
RTT in the emulator

(average) 146 671
(most frequent value) 72 (92% of measures) 652 (96% of measures)

study since interrupt processing impacts specially the receiving end only. We do not consider interrupt
service because it is difficult to characterize whether it is a per-cell or a per-packet parameter, according
to the value in Table B.2. Thus, the values for the parameters will remain as shown in Table B.3.

Table B.4 displays the results of the validation study. We include the measured value for the round-
trip time according to [TL93], together with the average and the most frequent value experienced in the
measurements using the ATM network emulator. It is observed that the values measured in the emulator
lie in the same order of magnitude as as the original values, although for large packet sizes the emulator
tends to be optimistic. The latter in not a problem as the goal of the study where the emulator is used (see
Chapter 2) is not to obtain the exact measurement of an hypothetical system but to determine its potential
performance. The high discrepancy between the average and the most frequent values is due to a small
number of outliers that appeared in a few tests. These outliers do not follow a fixed pattern, and should be
attributed to variations in the load in either the measured workstation or the peer workstation.

120 B. EMULATION OF AN ATM NETWORK

Bibliography

[A+95] T. Agerwala et al. SP2 System Architecture. IBM Systems Journal, 34(2):152–184, 1995.

[AA93] G. J. Armitage and K. M. Adams. Packet Reassembly During Cell Loss. IEEE Network, 7(9):26–34,
September 1993.

[ACP+95] T. E. Anderson, D. E. Culler, D. A. Patterson, et al. A Case for NOW (Networks of Workstations). IEEE
Micro, 15(1):54–64, February 1995.

[AGH+91] C. A. Addison, V. S. Getov, A. J. G. Hey, R. W. Hockney, and I. C. Wolton. The GENESIS Distributed-
Memory Benchmarks. Advances in Parallel Computing, 8 (Computer Benchmarks):257–271, 1991.

[All95] A. Alles. ATM Internetworking. Technical report, Cisco Systems, Inc., May 1995.

[Amd67] G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing Capa-
bilities. In Proceedings of AFIPS Spring Joint Computer Conference 30, pages 483–485, 1967.

[ATM95] ATM Forum Technical Committee. LAN Emulation Over ATM, Version 1.0, January 1995.

[ATM96a] ATM Forum Technical Committee. ATM User-Network Interface (UNI) SignallingSpecification, Version
4.0. Document ATM Forum/95-1434R11, February 1996.

[ATM96b] ATM Forum Technical Committee. Native ATM Services: Semantic Description (Version 1.0), January
1996.

[ATM96c] ATM Forum Technical Committee. Traffic Management Specification, Version 4.0. Document
ATM Forum/95-0013R10, February 1996.

[ATTD94] S. Ahn, R. P. Tsang, S.-R. Tong, and D. H. C. Du. Virtual Path Layout Design on ATM Networks. In
Proceedings of IEEE INFOCOM, pages 192–200, 1994.

[B+95] N. J. Boden et al. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro, 15(1):29–36,
February 1995.

[BCS93] E. Biagioni, E. Cooper, and R. Sansom. Designing a Practical ATM LAN. IEEE Network, 7(3):32–39,
March 1993.

[Bie93] E. W. Biersack. Performance Evaluation of Forward Error Correction in an ATM Environment. IEEE
Journal on Selected Areas in Communications, 11(4):631–640, May 1993.

[C+94] K. Castagnera et al. NAS Experiences with a Prototype Cluster of Workstations. In Proceedings of
Supercomputing’94, pages 410–419, 1994.

[Cav97] K. Caves. An AAL Type 2 SSCS Proposal for the Support of Synchronous Low Bit Rate Services. ATM
Forum, Contribution ATM Forum/97-0060, February 1997.

[CCJ95] A. Charny, D. D. Clark, and R. Jain. Congestion Control With Explicit Rate Indication. In Proceedings
of ICC’95, 1995.

[CDH+94] S-L Chang, D. H. C. Du, J. Hsieh, M. Lin, and R. P. Tsang. Parallel Computing over a Cluster of
Workstations Interconnected via a Local ATM Network. Technical report, University of Minnesota,
1994.

121

122 BIBLIOGRAPHY

[CF96] P. Crocetti and L. Fratta. Video on Demand Service Based on ATM Virtual Private Networks. In Proceed-
ings of the European Conference on Multimedia Applications, Services and Techniques (ECMAST’96),
pages 209–221, 1996.

[CJRS89] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen. An Analysis of TCP Processing Overhead. IEEE
Communications Magazine, 27(6):23–29, June 1989.

[CLZ87] D. D. Clark, M. Lambert, and L. Zhang. NETBLT: A Bulk Data Transfer Protocol. In Proceedings of
the SIGCOMM’87 Conference, 1987.

[CS94] R. Cohen and A. Segall. Connection Management and Rerouting in ATM Networks. In Proceedings of
IEEE INFOCOM, pages 184–191, 1994.

[CW89] D. R. Cheriton and C. L. Williamson. VMTP as the Transport Layer for High-Performance Distributed
Systems. IEEE Communications Magazine, 27(6):37–44, June 1989.

[Dav93] B. S. Davie. The Architecture and Implementation of a High-Speed Host Interface. IEEE Journal on
Selected Areas in Communications, 11(2):228–239, February 1993.

[DDK+90] W. A. Doeringer, D. Dykeman, M. Kaiserswerth, B. W. Meister, H. Rudin, and R. Williamson. A Survey
of Light-Weight Transport Protocols for High-Speed Networks. IEEE Transactions on Communications,
38(11):2025–2039, November 1990.

[DDP94] P. Druschel, B. S. Davie, and L. L. Peterson. Experiences with a High-Speed Network Adaptor: A
Software Perspective. Technical Report TR 94-5, Department of Computer Science, The University of
Arizona, 1994.

[DLW94] B. J. Dempsey, J. Liebeherr, and A. C. Weaver. On Retransmission-Based Error Control for Contin-
uous Media Traffic in Packet-Switching Networks. Technical report, Computer Science Department,
University of Virginia, 1994.

[dM95] M. d’Ambrossio and R. Melen. Evaluating the Limit Behavior of the ATM Traffic Within a Network.
IEEE/ACM Transactions on Networking, 3(6):832–841, December 1995.

[DOSW96] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A Message Passing Standard for MPP and
Workstations. Communications of the ACM, 39(7):84–90, July 1996.

[DSBC95] P. W. Dowd, S. M. Srinidhi, E. Blade, and R. Claus. Issues in ATM Support of High Performance
Geographically Distributed Computing. In Proceedings of IPPS’95 Workshop on High Speed Networks,
pages 352–358, 1995.

[ECD+95] H. Esaki, G. Carle, T. Dwight, A. Guha, K. Tsunoda, and K. Kanai. Necessity of an FEC Scheme for
ATM Networks. ATM Forum, Contribution ATM Forum/95-0325R2, October 1995.

[ECG+95] H. Esaki, G. Carle, A. Guha, K. Tsunoda, and K. Kanai. Draft Proposal for Specification of FEC-SSCS
for AAL Type 5. ATM Forum, Contribution ATM Forum/95-0326R2, October 1995.

[Fel93] D. C. Feldmeier. A Framework of Architectural Concepts for High-Speed Communication Systems.
IEEE Journal on Selected Areas in Communications, 11(4):480–488, May 1993.

[FGCF95] S. Fotedar, M. Gerla, P. Crocetti, and L. Fratta. ATM Virtual Private Networks. Communications of the
ACM, 38(2):101–109, February 1995.

[FHW96] V. J. Friesen, J. J. Harms, and J. W. Wong. Resource Management with Virtual Paths in ATM Networks.
IEEE Network, 10(5):10–19, September/October 1996.

[FM89] A. Fraser and W. Marshall. Data Transport in a Byte-Stream Network. IEEE Journal on Selected Areas
in Communications, SAC-7:1020–1033, September 1989.

[For94] Fore Systems. Devices and Network Interfaces (man pages), 1994.

[For96] Fore Systems, Inc. ForeThought Bandwidth Management, Version 1.0, 1996.

[Fos95] I. Foster. Designing and Building Parallel Programs. Addison-Wesley, Inc., Reading, 1995.

BIBLIOGRAPHY 123

[FW94] R. Fatoohi and S. Weeratunga. Performance Evaluation of Three Distributed Computing Environments
for Scientific Applications. In Proceedings of Supercomputing’94, pages 400–409, 1994.

[G+94] A. Geist et al. PVM 3 Users’ Guide and Reference Manual. Oak Ridge National Laboratory, 1994.

[Gar96] M. W. Garret. A Service Architecture for ATM: From Applications to Scheduling. IEEE Network,
10(3):6–14, May/June 1996.

[Gil96] R. B. Gillett. Memory Cannel Network for PCI. IEEE Micro, 16(1):12–18, February 1996.

[GVH96] X. Garcia Adanez, O. Verscheure, and J.-P. Hubaux. New Network and ATM Adaptation Layers for
Real-Time Multimedia Applications: A Performance Study Based on Psychophysics. In Proceedings of
the 3rd International COST 237 Workshop, pages 216–231, 1996.

[Hen95] T. R. Henderson. Design principles and performance analysis of SSCOP: a new ATM Adaptation Layer
protocol. ACM Computer Communication Review, 25(2):47–59, April 1995.

[HHM95] C. Huang, Y. Huang, and P. K. McKinley. A Thread-Based Interface for Collective Communication
on ATM Networks. In Proceedings of the 1995 International Conference on Distributed Computing
Systems, 1995.

[HP96] J. L. Hennessy and D. A. Patterson. Computer Architecture. A Quantitative Approach. Morgan Kaufmann,
2nd edition, 1996.

[HPPF94] S. Hariri, JB Park, M. Parashar, and G. C. Fox. A Communication System for High-Performance
Distributed Computing. Concurrency, Practice and Experience. Special Issue: High Performance
Distributed Computing, June 1994.

[Int96] Intel corp. and other companies. Windows Sockets 2 Protocol Specific Annex. Revision 2.0.2, January
1996.

[ITU92] ITU-T, Recommendation X.213. Information Technology — Network Service Definition for Open Systems
Interconnection. Geneva, November 1992.

[ITU93a] ITU-T, Draft Recommendation Q.2100. B-ISDN Signalling ATM Adaptation Layer Overview Descrip-
tion. Geneva, December 1993.

[ITU93b] ITU-T, Recommendation I.311. B-ISDN General Network Aspects. Helsinki, March 1993.

[ITU93c] ITU-T, Recommendation I.361. B-ISDN ATM Layer Specification. Helsinki, March 1993.

[ITU93d] ITU-T, Recommendation I.362. B-ISDN ATM AdaptationLayer (AAL) Functional Description. Helsinki,
March 1993.

[ITU93e] ITU-T, Recommendation I.363. B-ISDN ATM Adaptation Layer (AAL) Specification. Helsinki, March
1993.

[ITU93f] ITU-T, Recommendation I.364. Support of Broadband Connectionless Data Service on B-ISDN. Helsinki,
March 1993.

[ITU93g] ITU-T, Recommendation I.365.1. Frame Relaying Service Specific Convergence Sublayer (FR-SSCS).
Geneva, November 1993.

[ITU93h] ITU-T, Recommendation X.214. Information Technology — Open Systems Interconnection — Transport
Service Definition. Geneva, November 1993.

[ITU94a] ITU-T, Draft Recommendation I.365.2. Service Specific CoordinationFunction to Provide CONS (SSCF-
CONS). Geneva, September 1994.

[ITU94b] ITU-T, Draft Recommendation Q.2110. B-ISDN ATM Adaptation Layer - Service Specific Connection
Oriented Protocol (SSCOP). Geneva, March 1994.

[ITU95a] ITU-T, Draft Recommendation I.371. Traffic Control and Congestion Control in B-ISDN. Geneva, July
1995.

124 BIBLIOGRAPHY

[ITU95b] ITU-T, Recommendation I.365.3. B-ISDN ATM Adaptation Layer Service Specific Coordination Function
to Provide COTS (SSCF-COTS). Geneva, November 1995.

[ITU96] ITU-T, Draft new Recommendation I.363.2. B-ISDN ATM Adaptation Layer Type 2 Specification.
Madrid, November 1996.

[Jai91] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc., New York, 1991.

[Jai95] R. Jain. Congestion Control and Traffic Management in ATM Networks: Recent Advances and A Survey.
Submitted to Computer Networks and ISDN Systems, February 1995.

[JKG+96] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and R. Viswanathan. The ERICA Switch Algorithm: A
Complete Description. ATM Forum, Contribution ATM Forum/96-1172, August 1996.

[JKGF96] R. Jain, S. Kalyanaraman, R. Goyal, and S. Fahmy. Source Behavior for ATM ABR Traffic Management:
An Explanation. Submitted to IEEE Communications Magazine, July 1996.

[JKVG95] R. Jain, S. Kalyanaraman, R. Viswanathan, and R. Goyal. A Sample Switch Algorithm. ATM Forum,
Contribution ATM Forum/95-0178R1, February 1995.

[KAP95] K. K. Keeton, T. E. Anderson, and D. A. Patterson. LogP Quantified: The Case for Low-Overhead Local
Area Networks. In Proceedings of Hot Interconnects III, 1995.

[LDTM95] M. Lin, D. H. C. Du, J. P. Thomas, and J. A. MacDonald. Distributed Network Computing over Local
ATM Networks. IEEE Journal on Selected Areas in Communications, 13(4):733–748, May 1995.

[LST+95] H. Li, K.-Y. Siu, H.-Y. Tzeng, C. Ikeda, and H. Suzuki. TCP Performance over ABR and UBR Services
in ATM. In Proceedings of the International Phoenix Conference on Computers and Communications
(IPCCC’96), 1995.

[LT94] G. M. Lundy and H. A. Tipici. Specification and Analysis of the SNR High-Speed Transport Protocol.
IEEE/ACM Transactions on Networking, 2(5):483–496, October 1994.

[MABG96] J. Miguel, A. Arruabarrena, R. Beivide, and J. A. Gregorio. Assessing the Performance of the New IBM
SP2 Communication Subsystem. IEEE Parallel and Distributed Technology, 4(4):12–22, Winter 1996.

[MPBO96] D. Mosberger, L. L. Peterson, P. G. Bridges, and S. O’Malley. Analysis of Techniques to Improve
Protocol Processing Latency. In Proceedings of the SIGCOMM’96 Conference, 1996.

[MSD94] M. Medin, S. M. Srinidhi, and P. W. Dowd. Issues in ATM API Support for Distributed Computing. ATM
Forum, Contribution ATM Forum/94-1153R1, November 1994.

[MYW94] A. Mainwaring, C. Yoshikawa, and K. Wright. NOW White Paper: Network RAM Prototype. U.C.
Berkeley, White Paper, November 1994.

[New94a] P. Newman. ATM Local Area Networks. IEEE Communications Magazine, 32(3):86–98, March 1994.

[New94b] P. Newman. Traffic Management for ATM Local Area Networks. IEEE Communications Magazine,
32(8):44–50, August 1994.

[NRS90] A. N. Netravali, W. D. Roome, and K. Sabnani. Design and Implementation of a High-Speed Transport
Protocol. IEEE Transactions on Communications, 38(11):2010–2024, November 1990.

[PHK+96] S.-Y. Park, S. Hariri, Y. Kim, J. S. Harris, and R. Yadav. NYNET Communication System (NCS): A
Multithreaded Message Passing Tool over ATM Network. In Proceedings of the 5th IEEE International
Symposium on High Performance Distributed Computing (HPDC-5), pages 460–469, 1996.

[RF94] A. Romanow and S. Floyd. Dynamics of TCP Traffic over ATM Networks. In Proceedings of the
SIGCOMM’94 Conference, pages 79–88, 1994.

[RFC93] RFC 1483. Multiprotocol Encapsulation over ATM Adaptation Layer 5. IETF, July 1993.

[RFC94] RFC 1577. Classical IP and ARP over ATM. IETF, January 1994.

[Ros95] T. L. Ross. ATM APIs: The Missing Links. Data Communications, pages 119–124, September 1995.

BIBLIOGRAPHY 125

[RV91] J. W. Roberts and J. T. Virtamo. The Supoerposition of Periodic Cell Arrival Streams in an ATM
Multiplexer. IEEE Transactions on Communications, 39(2):298–303, February 1991.

[S+95] C. B. Stunkel et al. The SP2 High-Performance Switch. IBM Systems Journal, 34(2):185–204, 1995.

[SBT96] D. J. Scales, M. Burrows, and C. A. Thekkath. Experience with Parallel Computingon the AN2 Network.
In Proceedings of the 10th International Parallel Processing Symposium (IPPS’96), 1996.

[SDW92] W. T. Strayer, B. J. Dempsey, and A. C. Weaver. XTP: The Xpress Transfer Protocol. Addison-Wesley,
1992.

[SGI96] SGI Supercomputing Team. Tuning and Optimization Seminar. Seminar given by Silicon Graphics,
February 1996.

[SPSLA95] J. Solé-Pareta, D. Sarkar, J. Liebeherr, and I. F. Akyildiz. An Adaptive Multipath Routing Scheme for
Connectionless Traffic in an ATM Network. In Proceedings of ICC’95, pages 1626–1630, 1995.

[SPVS96] J. Solé-Pareta and J. Vila-Sallent. Network-Based Parallel Computingover ATM Using Improved SSCOP
Protocol. Computer Communications, 19(11):915–926, September 1996.

[SV96] M. W. Sachs and A. Varma. Fibre Channel and Related Standards. IEEE Communications Magazine,
34(8):40–50, August 1996.

[TL93] C. A. Thekkath and H. M. Levy. Limits to Low-Latency Communication on High-Speed Networks.
ACM Transactions on Computer Systems, 11(2):179–203, May 1993.

[TS93] C. B. S. Traw and J. M. Smith. Hardware/Software Organization of a High Performance ATM Host
Interface. IEEE Journal on Selected Areas in Communications, 11(2):240–253, February 1993.

[vEBB94] T. von Eicken, A. Basu, and V. Buch. Low-Latency Communication Over ATM Networks Using Active
Messages. Proceedings of Hot Interconnects II, 1994.

[vEBBV95] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Network Interface for Parallel and
Distributed Computing. In Proceedings of the 15th ACM Symposium on Operating Systems Principles,
1995.

[vECGS92] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages: A Mechanism for Inte-
grated Communication and Computation. In Proceedings of the 19th ACM International Symposium on
Computer Architecture, pages 256–266, 1992.

[VSSP96a] J. Vila-Sallent and J. Solé-Pareta. High Performance Distributed Computing over ATM Networks:
A Survey of Strategies. In Proceedings of the 2nd International Conference on Massively Parallel
Computing Systems (MPCS’96), pages 153–160, 1996.

[VSSP96b] J. Vila-Sallent and J. Solé-Pareta. Supporting HPDC Applications over ATM Networks with Cell-Based
Transport Mechanisms. In Proceedings of the 5th IEEE International Symposium on High Performance
Distributed Computing (HPDC-5), pages 595–604, 1996.

[VSSP97] J. Vila-Sallent and J. Solé-Pareta. Providing Low-Latency Communications for ATM-Based Parallel
Computing Environments. Submitted to Infocom’98, 1997.

[VSSPJT97] J. Vila-Sallent, J. Solé-Pareta, T. Jové, and J. Torres. Potential Capability of ATM to Support Network-
Based Parallel Computing. Submitted to Globecom’97, 1997.

[VSSPTJ97] J. Vila-Sallent, J. Solé-Pareta, J. Torres, and T. Jové. Performance Comparison of Parallel Algorithms
on Different Communication Architectures. In Proceedings of the 9th International Conference on
Parallel and Distributed Computing and Systems (PDCS’97), 1997. Accepted to appear.

[WÅS95] S. White, A. Ålund, and V. S. Sunderam. Performance of the NAS Parallel Benchmarks on PVM-Based
Networks. Journal of Parallel and Distributed Computing, 26:61–71, 1995.

[WHJ+95] D. A. Wallach, W. C. Hsieh, K. L. Johnson, M. F. Kaashoek, and W. E. Weihl. Optimistic Active
Messages: A Mechanism for Scheduling Communication with Computation. In Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’95), 1995.

126 BIBLIOGRAPHY

[YRHF95] R. Yadav, R. Reddy, S. Hariri, and G. C. Fox. A Multithreaded Message Passing Environment for ATM
LAN/WAN. In Proceedings of the 4th IEEE International Symposium on High Performance Distributed
Computing (HPDC-4), 1995.

[ZG95] H. Zhou and A. Geist. Faster Message Passing in PVM. In Proceedings of IPPS’95 Workshop on High
Speed Networks, 1995.

