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a b s t r a c t

In wavelength-routed optical networks, end-to-end connection demands are dynamically routed accord-
ing to the current network status. Naïve path selection schemes, the wavelength continuity constraint
and the limited or inaccurate information available can cause the virtual topology resulting from the cur-
rently allocated lightpaths to become sub-optimal. We propose an efficient re-optimization technique
based on a GRASP meta-heuristic. Our work is focused on a hybrid online–offline scenario: connections
are ordinarily routed dynamically using one of the available algorithms for online routing, but occasion-
ally, when reorganization of the current virtual topology is desirable, existing paths are re-routed in order
to improve load balancing and hence the ability to efficiently accept further connections. Because global
changes of the logical topology and/or routing scheme can be disruptive for the provided connection ser-
vices, we used iterative stepwise approaches based on a sequence of small actions (i.e., single connection
re-routing and on local search from a given configuration). Simulation results demonstrate that several
network performance metrics – including connection blocking ratios and bandwidth gains – are signifi-
cantly improved by such approach. In particular, we achieved to accept more connection requests in our
re-optimized networks with respect to the same networks without re-optimization, thus lowering the
blocking ratio. Besides, in all tests we measured a notable gain in the number of freed bandwidth OC-
units thanks to our re-optimization approach.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

While being attractive for their transparent and cost-efficient
operation, all-optical networks need complex routing practices
and accurate engineering of Wavelength Division Multiplexed
(WDM) paths, to match the constraints of the underlying photonic
technology with the requirements of the dynamic traffic flows that
should be transported. Dynamic routing and wavelength assign-
ment schemes commonly used within these infrastructures tend
to lead to network inefficiencies due to the limited or inaccurate
information available for online routing [1], to the simple path
selection algorithms often used and to the wavelength continuity
constraint [2]. Precisely, the paths for the arriving connection re-
quests are calculated starting from the current network state,
including all the already routed connections. As the network and
traffic evolve, such routing solutions may become sub-optimal
[2]. The evolution process may also lead to changes in network
topology due to the addition/deletion of new links and/or changes
resulting from customers varying demands for different services.
ll rights reserved.
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Some connection requests may be rejected due to lack of capacity,
while a more efficient routing scheme would have allowed suc-
cessful routing and path set-up. Furthermore, dynamic online rout-
ing practices typically tend to unbalance resource usage over time,
causing severe congestion on some ‘‘critical” links that are most
likely needed for satisfying future traffic demands [3]. When this
happens, routing optimality may be restored only by periodic off-
line re-optimization that re-routes some of the existing connec-
tions over alternative paths, recovering the stranded capacity and
re-balancing the load on the links [2]. Nevertheless, there is a cost
directly associated with re-optimization, both in terms of compu-
tational complexity and of disruption of active connections [4].
Thus, the re-optimization activity has to be prudently planned to
maximize the recovered stranded capacity and an integrated ap-
proach for periodic offline re-optimization of optical networks with
sub-wavelength traffic is desirable. The focus of this work has been
the best balancing of the reconfiguration cost, in terms of both
computational complexity and disturbance to the network, within
the context of a flexible and effective RWA/grooming solution. To
allow a joint consideration of routing and wavelength assignment
(RWA) with grooming and reconfiguration/optimization costs, we
modeled the problem as a multi-objective optimization problem
and solved it heuristically through a greedy randomized adaptive
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search procedure (GRASP) [5,6] in conjunction with a path-relink-
ing [7,8] solution refinement procedure. In our approach, the
implementation of the GRASP-based re-optimization works at the
control-plane layer on each involved network element and in-
cludes several novel greedy construction and local search strate-
gies, and a new simplified form of path-relinking. Overall, the
heuristic approach is streamlined through the incorporation of ad-
vanced network flow re-optimization techniques and is based on a
totally flexible network model, supporting heterogeneous WDM
equipment, in which the number and type of lambdas can be inde-
pendently specified for each link. We evaluate the effectiveness of
our approach by simulating the proposed re-optimization schema
and measuring the freed bandwidth and the percentage of the con-
nections that the network is able to route after the re-optimization
process. Results indicate that this implementation may lead to sig-
nificant improvements of the network in comparison with the
existing dynamic RWA solution with an acceptable performance
impact due to offline re-optimization. An especially appealing
characteristic of this GRASP-based approach–that makes it partic-
ularly suitable for the re-optimization of large networks and pref-
erable to other heuristics–is its straightforward implementation. A
limited number of parameters need to be assigned and tuned, and
consequently development can easily focus on implementing effi-
cient data structures to speed GRASP iterations up. Finally, the
GRASP solution-search strategy can be trivially implemented in
parallel between the available network nodes. Each processor node
has to be initialized with its own instance data and an independent
sequence of random numbers needed by the GRASP procedure. All
the GRASP iterations are then handled in parallel by using only a
single shared global variable, required to store the best solution
found over all processors, thus greatly reducing computational
complexity and signaling overhead.
2. Background

This section briefly introduces some of the concepts that will be
useful to better explain the proposed integrated dynamic RWA/re-
optimization paradigm, by presenting the underlying architectural
scenario, the basic building blocks, assumptions and modeling de-
tails together with the theory behind it.
2.1. Wavelength-routed optical networks

With WDM, a single optical fiber is shared by a number of inde-
pendent wavelengths (channels), each of which may transparently
carry signals in different formats and bit-rates, for example STM-
16 and 10G-Ethernet. Over the physical topology composed of
optical cross-connection (OXC) devices connected by fiber links, a
quasi-static virtual topologyis superimposed by interconnecting
pairs of edge nodes with lightpaths, all-optical channels that are
never converted into an electrical signal at intermediate nodes
across the optical backbone. Edge nodes transform the optical sig-
nal in electrical form and route it on client subnetworks. More
sophisticated, and costly, OXCs, besides switching specific wave-
lengths between ports, can also convert input wavelengths into
different output wavelengths. Ordinarily, therefore, a lightpath
uses the same wavelength on all the links along its route.
2.2. The routing and wavelength assignment problem

Every lightpath must be routed on the physical topology and as-
signed a wavelength: this process is called routing and wavelength
assignment (RWA). In general, the RWA problem is characterized
by two constraints specific of an optical network:
� the wavelength continuity constraint, i.e. a lightpath must use
the same wavelength on all the links along its route;
� the wavelength clash constraint, i.e. two or more lightpaths

using the same fiber link must be allocated distinct
wavelengths.

The wavelength continuity constraint may be relaxed if OXCs are
equipped with wavelength converters [13]. Different levels of
wavelength conversion capability (full or limited) are possible,
depending on the number of converter-equipped OXCs and to the
number of wavelengths that can be converted in each node. Note
that when using full wavelength conversion on each network node,
the RWA problem reduces to the classical routing problem in a cir-
cuit-switched network. This work is quite general in that we make
no assumption on the availability of wavelength converters.

With static traffic [9], the entire set of connection requests is
known in advance, and so the problem is reduced to setting up per-
manent lightpaths while minimizing the number of wavelengths
or the number of fibers. The RWA problem for static traffic can
be formulated as a mixed-integer linear program [10], which is
NP-complete [11]. The two sub-problems of routing and wave-
length assignment can also be separately faced. A review of these
approaches is given in [9]. Here, Incremental connection requests
arrive in sequence and the lightpaths established to handle these
requests remain in the network indefinitely. On the other hand,
for dynamic traffic, a lightpath is set-up to satisfy each request as
it arrives, and such lightpath is released after a finite amount of
time (connection lifetime). The objective in both the incremental
and dynamic traffic models is to minimize the blocking/rejection
probability of each connection (also known as blocking factor), or
equivalently maximize the number of connections that are estab-
lished in the network at any time. The dynamic case is more com-
plex and usually several properly crafted heuristics are used to
solve the routing and wavelength assignment sub-problems sepa-
rately [12]. Here, we have chosen to deal with incremental traffic,
as it is a simplified environment in which the effects or the pro-
posed strategy are less dependent on the statistical distribution
of connection requests and can therefore be better evaluated.
2.3. Integrating RWA with grooming: from the overlay model to a
unified control-plane architecture

Typically, the traffic demand is partitioned into multiple paral-
lel requests (between the same node pairs) with different band-
width requirements, varying from tens or hundreds of Mbps (e.g.
STM-1 or Fast Ethernet) up to the full-wavelength capacity (e.g.
10 Gigabit Ethernet). At the network edge, end-to-end connection
requests, sharing the same traffic flow characteristics in terms of
termination nodes and Quality of Service (QoS) requirements and
involving capacities significantly lower than those of the underly-
ing wavelength channels, can be efficiently multiplexed, or
‘‘groomed,” onto the same wavelength/lightpath channel. A typical
control-plane paradigm for traffic grooming operates on a two-
layer multiple model, i.e. an underlying pure optical wavelength-
routed network and an independent ‘‘opto-electronic” time-divi-
sion multiplexed layer built over it. At the optical layer, wave-
length routing traditionally sets up an almost static logical
topology that is then used at the IP layer for routing, with light-
paths handled as single IP hops. By integrated RWA we instead
mean a combined wavelength routing and grooming optimization
paradigm, taking into account the whole topology and resource
usage information at both layers. We assume that appropriate pro-
tocols exist for the unified control-plane, accurately disseminating
correct and up-to-date information about the network state to
each node, as well as taking care of resource reservation, allocation,
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and release. Reconfiguration of virtual topology may be carried out
for two reasons:

� to re-optimize the virtual topology under a changed traffic pat-
tern or even a different cost metric;
� to create a new topology capable of supporting the current traf-

fic pattern, without using failed or out-of-service network
components.

In this work, traffic grooming is accounted by considering each flow
as reallocatable. We focus on reconfiguration for re-optimization,
when the traffic pattern changes or some part of the network be-
comes congested. Some of the most relevant issues involved in opti-
cal network re-optimization are discussed below.

2.4. Network re-optimization

Sophisticated routing algorithms can keep achieve remarkably
low connection reject rates. However, these algorithms do not
scale well with the growth in network size. On the other hand,
many of the simple and scalable path selection algorithms may
cause routing inefficiencies, leading to ‘‘stranded” capacity [14].
Whatever the RWA algorithm, the resources dedicated to serve
each new connection request are selected according to the current
network state, which is, in turn, the result of routing the existing
connections. Keeping the network load balanced may lead to effec-
tive algorithms achieving good results in terms of blocking proba-
bility. This is necessarily the result of some estimation on the
distributions of forthcoming requests. That estimation may pre-
sume that future requests will adhere to a uniform or Poisson dis-
tribution, or that they will repeat the pattern delineated from the
currently provisioned demands. However, as the network and traf-
fic evolve, the actual distribution of requests and their sequence of
appearance may substantially drift from the estimates, and the
network load distribution may become unbalanced. Network re-
optimization is usually needed to increase the network utilization
and can be performed by re-scheduling the already available con-
nections requests in two ways: either by changing the associated
paths only or by changing both the paths and the starting times.
The latter solution is not very desirable as it implies re-negotiating
the connection set-up times with users, and for this reason we will
not consider it in this work. The idea of re-optimization is not new
in telecommunications: carriers routinely use reconfiguration to
better manage their network and increase utilization, which in
turn allows them to defer investments on new infrastructure.
Reconfiguration can also be used to provide better service perfor-
mance, for example, by re-routing services over shortest paths if
such paths become available.

2.5. GRASP

GRASP, which first appeared in [5] and was later formalized in
[6], is an iterative two-phase meta-heuristic. A meta-heuristic
may be defined as an iterative master process that guides and ad-
justs the operation of subordinate heuristics in order to produce
high-quality solutions. When exploring the solution space, some-
times one may get stuck into local optima, i.e. solutions that are
good locally but not globally. Meta-heuristics strive to escape such
local optima by different strategies: occasionally accept worse
solutions, as in simulated annealing [15] or tabu search [8]; com-
bine existing solutions through mutation and crossover following
the idea of genetic algorithms [16]; generate new solutions, as in
GRASP. Greedy choices are performed and measured by means of
an immediate or greedy gain possibly leading to sub-optimal solu-
tions. For overcoming this myopic behavior, a heuristic measure
can be introduced to evaluate this gain. At each iteration, the first
phase produces a solution through the use of a greedy randomized
adaptive construction scheme. In the second phase, local search is
applied to this solution, in order to obtain a local optimum in its
neighborhood. GRASP meta-heuristic may be customized to solve
any problem for which simple construction and local search algo-
rithms are available. Enhanced versions of the basic GRASP meta-
heuristic have been applied to a wide range of combinatorial opti-
mization problems [17]. Several new components and techniques
have extended the original GRASP scheme (reactive GRASP, param-
eter variations, bias functions, memory and learning, improved lo-
cal search, path-relinking, hybrids). These components are
presented and discussed in [17]. In particular, path relinking was
first introduced as a tool to compound intensification and diversi-
fication strategies in the context of tabu search [7,18]. The strategy
is formulated on the principles of evolutionary approaches but un-
like conventional evolutionary techniques (e.g., genetic algo-
rithms), it does not employ randomization to generate new
solutions. Instead, it constructs them through a methodical explo-
ration of trajectories that connect previously generated high-qual-
ity solutions. An in-depth description of path-relinking can be
found in [19,20]. The first application of GRASP and path-relinking
was undertaken by Laguna and Marti [21]. Since then, a few other
applications have appeared that combine the two methodologies.
Some applications use path-relinking as an intensification strategy
within the GRASP procedure [22]; others apply path-relinking as a
post-optimization step after the execution of GRASP [23]. Some
authors considered both utilizations of the path-relinking strategy
[24,25]. According to the survey work on GRASP by Resende and
Ribeiro [17], path relinking is more effective when used as an
intensification phase. In our implementation, we have chosen to
use it at the end of each GRASP iteration in order to intensify the
search around local optima.

2.6. Related work

Lightpath re-optimization techniques have been discussed in
several works available in literature. The problem of re-routing
existing lightpaths in a dynamic routing scenario was addressed
in [26,2] by invoking the re-optimization step only when new re-
quests are unable to find a feasible path and it becomes absolutely
necessary to re-route some of the existing paths to free up capacity
from the most crowded links. Alternatively, [4] models the effect of
the reconfiguration phase in terms of packet loss and bases its
reconfiguration policy on this penalty criterion. Some different ap-
proaches, such as [27,28] reconfigure the underlying virtual topol-
ogy of the optical network, respectively according to an ILP
optimization and a stepwise branch exchange process, to adapt it
to changing traffic patterns. Other authors have proposed solutions
suitable for static traffic demand and heuristics for long-term on-
demand traffic flows [29–32]. In [31] the authors study the prob-
lem of re-optimizing lightpaths in resilient mesh optical networks,
where connection requests are routed using a pair of disjoint pri-
mary and backup paths. In their re-optimization scheme, all paths
are re-routed, regardless of their being primary or backup. They
also considered the effects of re-routing only the backup paths.
An approach to combine dynamic online routing in a connection-
oriented network with an offline optimization module, which con-
stantly rebalances the load in the network whenever a certain
imbalance threshold is exceeded, has been examined in [32]. In
this scenario, the network operator determines a re-balancing ben-
efit indicating the amount of traffic that could additionally be rou-
ted if the current traffic were to be redistributed, by computing the
gain in ‘‘network efficiency” that a potential re-optimization would
yield. If a threshold is exceeded, i.e. the benefits of re-optimizing
the network exceed the incurred costs of the flow re-routing, then
re-optimization is performed. More recently, other formulations of
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the rearrangement problem have been proposed, differing in the
optimization objectives. Notably, in [33], the number of rejected
new demands and re-routed lightpaths is minimized through the
Lagrangean Relaxation and Subgradient Method, while Din [34]
investigated the use of a genetic algorithm and of simulated
annealing with the objective of minimizing the average weighted
propagation delay.
3. Integrated re-optimization scheme for wavelength-routed
networks

We propose a novel dynamic RWA strategy specifically con-
ceived to allow lightwave networks to carry more traffic without
adding capacity, through a two-stage scheme based on hybrid on-
line routing and offline re-optimization. Online dynamic routing is
used in the first phase: connection requests arriving to the edge
nodes over time are immediately routed by using a quick RWA
scheme such as min-hop or shortest/minimum-cost path with dy-
namic weights based on wavelength available capacity. If there are
enough resources to accommodate it, the required connection is
routed on an already existing lightpath with available capacity
and adequate QoS characteristics, or a new lightpath is properly
set-up; otherwise the request is rejected. Over time, requests for
teardown of existing connections may also arrive, causing the re-
lease of the involved resources. However, at a certain time, the
residual capacity between certain critical ingress–egress pairs
may be insufficient to accommodate new requests, but a different
allocation of connection routes would easily permit it. When this
happens, the blocking factor may increase indefinitely so that the
network seems to be completely saturated even if there are still
a lot of available resources. Thus, we continuously monitor the
blocking factor, that can be viewed as a good approximated mea-
sure of routing efficiency, and when it exceeds a specific threshold
b, we invoke re-optimization to restore routing optimality by re-
routing some of the already established connections. Alternatively,
we can also trigger the procedure when a specific number of con-
nection requests has been received or served starting from the last
occurrence of the re-optimization process. In both cases we ad-
dress the network re-optimization issue as a periodic maintenance
measure, activated when a tunable utilization threshold is ex-
ceeded, aiming at continuously keeping as much free network re-
sources as possible with minimum total disruptions to the
ongoing service. The objective of the second phase of our approach
is then to eliminate the blocking or unbalancing generated during
the previous quick-and-dirty connection set-up phase. Managing
the lightwave network during the reconfiguration phase is a very
complex issue, as re-optimization involves path reorganization,
which may originate disruption in some critical services carried
over the network, and therefore must be implemented carefully.
Hence, to keep re-optimization as efficient as possible, all the con-
nection requests arriving during the re-optimization process are
queued and served only after its completion. Furthermore, the cho-
sen re-optimization strategy must be conceived in order to com-
bine maximum gains in recovering stranded capacity with
minimal impacts on the overall network performance. Re-optimi-
zation must support the ability to provide guaranteed fault-toler-
ance to resilient connections. Finally, in order to preserve the
packet arrival sequencing, the re-optimization strategy should
not require traffic flow splitting on multiple paths. The sequence
of operations through which the virtual topology is reconfigured,
and the number of connections/lightpaths affected by such activ-
ity, can have a substantial impact on both the performance and
capacity that is needed in the process and on the optimality of
the obtained solution. The corresponding minimization problem,
known as the Reconfiguration Sequencing Problem is indeed
NP-hard [35]. Thus a re-optimization solution that re-routes all
the connections of the existing virtual topology (without disrup-
tion) while keeping the network well balanced, by redistributing
load thus freeing sufficient available capacity between all the in-
gress–egress node pairs, has to be found through the use of some
heuristic technique that must ensure an acceptable run-time com-
plexity. A key feature of such heuristic must be the ability of set-
ting up the new re-provisioned paths one-by-one before re-
routing traffic on them and only releasing the resources on the
old paths after the new ones are totally established, according to
the ‘‘make-before-break” principle. In other words, we do not
explicitly perform re-routing on predefined backup paths or sup-
port specific post-optimization restoration strategies but we pro-
pose a new heuristic-based strategy, to be triggered on a
maintenance basis, for finding approximate solutions to this prob-
lem, starting from a simple greedy approach and improving the
quality of the re-optimization performance by using local search,
through a combination of GRASP and path-relinking.

3.1. The network model

We denote the network by a graph G = (V,E) where V is the set
of nodes and E the set of links. We make no specific assumption on
the number of wavelengths per fiber, number of fiber on each link
and on the presence of wavelength conversion devices on the net-
work. All these parameters are fully and independently configura-
ble at the network topology definition time. Instead, we require
that all the network nodes operate under a unique control-plane
and share a common network view by relying on a common
link-state protocol that is used to distribute resource usage infor-
mation. Furthermore, we assume that every connection is bi-direc-
tional and consists in a specific set of traffic flows that cannot be
split between multiple paths. Each connection can be routed on
one or more (possibly chained) existing lightpaths between its
source and destination nodes, with sufficient available capacity
or on a new lightpath dynamically built on the network upon the
existing optical links. Grooming decisions are taken according to
adaptive strategy that dynamically tries to fulfill the algorithm’s
network resource utilization and connection serviceability objec-
tives by determining if the request can be routed on one of the
available lightpaths, by time-division multiplexing it together with
other already established connections, or, if there are no available
resources to satisfy the request, a new lightpath is needed on the
optical transport infrastructure. A network with m edge nodes sup-
ports bi-directional connection demands only between m(m � 1)/2
source-sink node pairs (u,v) where source and sink nodes u,v 2 V
are edge routers. These source-sink pairs can be numbered from
1 to M and for each source-sink pair (u,v) there may be an amount
d(u,v) of end-to-end bandwidth demand already provisioned in the
network, measured by the aggregate bandwidth of all the connec-
tion flows between the source and sink pair. To simplify our model
each connection request is only characterized by a QoS commit-
ment on bandwidth, although it can be routed basing the decision
on other QoS metrics such as limited latency, error rate, etc. that
can be incorporated into Service Level Agreements by converting
them into a bandwidth requirement as shown in [36]. In addition
we denote by D(u,v) the total desired demand for the source sink
pair (u,v). For each link e 2 E in the network rbe and mbe denote
respectively its current residual and total capacity.

Let P be the number of connection requests at re-optimization
time, ck = (uk,vk,bk), k = 1, . . .,P, the generic kth connection request,
where uk,vk 2 V are respectively the origin and destination and bk

the bandwidth required, and pk the path servicing the connection
ck. A feasible solution to our RWA re-optimization problem is then
the set X = {X1, . . .,XP}, where the generic element Xk is a pair (ck,pk)
describing the routing choice associated to each connection. The
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actual routing pk of a connection ck is determined by means of a
shortest-path computation, with a cost function that only depends
on the residual bandwidth on the links. Therefore, routing of a con-
nection only depends on the network state at the moment the con-
nection is considered for routing. Note that, if all the connection
requests are serviced sequentially starting from an empty network,
the order of arrival uniquely determines the solution.

3.2. Grasp-based re-optimization

In order to find good approximate solutions to the above multi-
objective optimization problem, we propose a methodology based
on the combined use of GRASP and path-relinking. When imple-
menting a GRASP procedure, several different issues need to be ad-
dressed and tailored to the structural characteristics of the
problem under study. First, an adaptive greedy function needs to
be defined to guide the iterative construction phase, which builds
the solution by adding one element at the time. The greedy func-
tion is adaptive in the sense that its value must be updated after
the insertion of each new element in the partial solution under
construction in order to reflect the choice made. Second, a restric-
tion mechanism must be defined to build the restricted candidate
list (RCL), that is the list from which to select the next element to
be added to the solution. A probabilistic selection strategy (random
component) must then be specified to select an element from the
RCL. Besides, the essential constituents of the local search proce-
dure (i.e. the neighborhood structure N, the search strategy and
the objective function) must be defined. Finally, the objective func-
tion for the optimization problem must be defined. The objective
function may be aimed at minimizing or maximizing some quanti-
ties in order to optimize the problem resolution. We use a mini-
mizing function, i.e. a function whose values must be kept as low
as possible while respecting the problem constraints. The whole
GRASP procedure is algorithmically sketched in Fig. 1.

Where f : F? R is the objective function of a specific problem
P, mapping the set F of feasible solutions to real values in R.
The neighborhood structure N relates a solution X of the problem
to a subset of solutions NðXÞ 2F. The procedure consists of Max-
Iter iterations (lines 2–8) in which a new solution is built (line 3),
its neighborhood is explored (line 4) and the objective function is
evaluated on it looking for an improvement of the current best
solution (lines 5–7). The construction phase (line 3) tries to build
a new solution X0 choosing randomly an element from the RCL.
The local search explore the neighborhood N(X0) of the construc-
tion phase solution X0 looking for a local optimum X00 such that
f(X00) 6 f(X0). At the end of each step we compare the value of the
objective functionf evaluated on the solution X” with X* which is
the best solution found till that moment and we eventually keep
the better one as the best solution found; if the algorithm has
Fig. 1. A generic GRASP algorithm.
achieved a local optimum X* such that f(X*) 6 f(X) for all X 2 N(X*),
the best solution is updated with the new value. Finally, the best
solution X* found in all iterations is returned as the overall GRASP
solution. GRASP may be also viewed as a repetitive sampling tech-
nique in which each iteration produces a sample solution taken
from an unknown distribution of admissible ones, whose mean
and variance depend on the restrictive nature of the RCL. Given
an effective greedy function, the mean solution value is expected
to be good, but probably sub-optimal. That is, if the RCL is re-
stricted to a single element only, then the same solution will be al-
ways produced on all the iterations. Clearly, in this case, the
variance will be zero and the mean will exactly match with the va-
lue of the greedy solution. If we impose a less restrictive limit on
solutions cardinality, i.e. more elements are allowed in the RCL,
then many different solutions will be produced, with a larger var-
iance. The size of the RCL controls, then, the tradeoff between the
randomness and greediness of the solution. Hence, the value of the
parameter a, which regulates the RCL size as explained in the sec-
tion below, has to be chosen carefully. The lesser the role of greed-
iness as compared to randomness, the worse should the optimality
of the average solution be. However, the best solution found out-
performs the average and very often is optimal.

3.3. The construction phase

In the construction phase, connections are routed one at a time,
thus building the solution. The pseudo-code of the Greedy (lines 2
and 4) randomized (line 5) adaptive (line 7) search procedure is
illustrated in Fig. 2. First, we sort the connection requests in non-
increasing greediness into a list L according to the greedy criterion
(line 2); then we start building the solution adding one connection
request at a time till the whole candidates are routed (lines 3–8).
At each iteration, the list L is restricted into the RCL containing only
the first k elements of L (line 4) and a new connection request is
randomly selected from the RCL (line 5) and routed in the network
(line 6). To drastically reduce the computation times, we combined
the strategies commonly used by GRASP and heuristic-biased sto-
chastic sampling [22]. At each iteration, the list is reordered taking
into account the choice made at the previous step and the RCL is
formed again (line 7). The greedy criterion consists in assigning a
highest greediness to the un-routed origin–destination pairs
whose source and destination nodes have the largest residual
bandwidths on their incident arcs together with a high value of
the bandwidth required for the connection. Such strategy allows
the requests between nodes that have most residual capacity and
that have higher bandwidth demands to be served first.

In detail, we start from an empty solution vector. The P connec-
tion requests c = (u,v, b) are ordered according to the greedy adap-
tive criterion C. For each node v, let us denote by d(v) the cut
separating v from the rest of the graph, i.e. the set of all incident
arcs to v

dðvÞ ¼ fu 2 V j½u; v� 2 Eg ð1Þ

where [u,v] denotes an un-directed arc in the graph G and by

cðvÞ ¼
X

a2dðvÞ
rba ð2Þ

the sum of the residual capacities rba over all the arcs a incident to
v. The ordering criterion for a connection c = (u,v,b) will be based on
the value:

CðcÞ ¼ cðuÞ þ cðvÞ þ b ð3Þ

The bandwidth term b has the purpose of prioritizing demands that
have higher bandwidth requirements and letting smaller ones to be
served later as they are easier to be routed. Note that the criterion is
adaptive: the sorted list L may be rearranged as a consequence of
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the successfully routing of the chosen connection requestc. In fact,
when the requestc is eventually routed – using the same cost func-
tion and routing algorithm of the previous phase – the residual
bandwidth will decrease by b on all the involved arcs and the values
computed by the greedy function will change reflecting the new
available bandwidth on each arc along the path. For each connec-
tion request that is chosen from the list and routed, the greedy va-
lue has to be recomputed only on the connections whose extremes
are involved in the routes of the previous connection. The Restricted
Candidate List RCL is then built, selecting only the first kelements in
the ordered list L, where k is determined by the value of a tuning
parameter a 2 [0,1], according to the following formula:

k ¼ ð1� aÞ þ a � jLj ð4Þ

where jLj is the (whole) candidate list size. Among all the elements
in the RCL, one is randomly chosen to become the next component
of the solution being constructed. This process is iterated until the
vector is complete. Note that, as a makes k vary proportionally in
{1, . . ., jLj}, it allows us to control the amount of greediness and
randomness in the choice of the next element to be added in the
solution under construction. In particular, when a = 0, k = 1 corre-
sponding to a completely greedy choice. On the other side, when
a = 1, k = jLj so that the whole list is selected and the choice is totally
random. The randomness factor allows widely different solutions to
be constructed at each GRASP iteration, helping us to avoid being
trapped into local maxima in the solution space. On the other side
such selection strategy does not necessarily compromise the effec-
tiveness of the adaptive greedy component of the method, as only
the best-rated elements (on top of the list) can be chosen. It may
happen that the construction phase fails, i.e., a state is reached
where the current connection cannot be routed. In this case, the
construction phase is restarted from scratch in the next iteration.
3.4. Performing local search on the solution space

Since the solutions generated by a GRASP process are not guar-
anteed to be locally optimal, it is almost always beneficial to at-
tempt at improving each constructed solution by means of a
local search in the solution space. A local search algorithm operates
according to an iterative scheme, sequentially replacing the cur-
rent solution with a better one found in the neighborhood of the
current solution. The algorithm terminates when no better solution
can be found in the neighborhood. A solution X is said to be locally
optimal if in its neighborhood NðXÞ there are no solutions better
than X. A significant limitation of local search is the risk of getting
trapped into local optima. To circumvent this limitation, local
search has to be driven by general-purpose heuristic strategies
aiming at avoiding this phenomenon. The key success factors for
such local search strategies are a good starting solution, the suit-
able choice of a neighborhood structure, and an efficient neighbor-
hood search technique. It should be noted that each solution built
in the previous phase might be viewed as a set of routes, one for
each end-to-end connection request, where a single lightpath on
the optical network must support one or more routes and a single
route must use one or more lightpaths. The operation of construct-
ing the solution neighborhood can be expressed as the construc-
tion of new ‘‘neighbor” network states resulting from the
removal and re-routing of a single connection request at a time.
For each neighbor, one connection ci is selected, the resources allo-
cated to ci are released, and ci is routed again, possibly along a dif-
ferent path (as the current network state is different from the one
at which ci was originally routed). This strategy ensures a low com-
plexity for the neighborhood generation operation.

The network state is defined by the vector ~S ¼ ðrb1; . . . ; rbmÞ of
the residual bandwidth on each of the m links. We can represent
the route associated to a connection c = (u,v,b) in the network
state S

!
by the route function:

routeðc; S
!
Þ ¼ ðbðcÞ1 ; . . . ; bðcÞm Þ ð5Þ

where bðcÞi is the bandwidth requested by the connection request c
on the link i. Note that bðcÞi will be equal to the requested bandwidth
b on the links along the route assigned to c and 0 on the other links.
We then define a generic allocation function for a connection re-
quest c and a state S

!
,

allocateðc; S
!
Þ ¼ S

!
�routeðc; S

!
Þ ð6Þ

Let us consider a fixed order of arrival of the connection requests
c1 . . .,cj. The progressive routing of the succession of connections
leads to a sequence of states. The initial state S

!
0 corresponds to

the starting condition in which every link is unused (empty net-
work), so that:

S
!

0 :¼ ðmb1; � � � ;mbmÞ where mbi is the maximum ðinitialÞ
bandwidth for each link i ð7Þ

and the generic state S
!

i is given by

S
!

i :¼ S
!

i�1 � routeðci; S
!

i�1Þ ð8Þ

or, equivalently, by

S
!

i ¼ S
!

0 �
Xi

k¼1

routeðck; S
!

k�1Þ ð9Þ

The release function is the complementary operation to the allocate
function (6); let us first see what happens if we revert the last allo-
cation in the sequence:
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releaseðci; S
!

iÞ ¼ S
!

i�1 ¼ S
!

i þ routeðci; S
!

i�1Þ by Eq:ð8Þ ð10Þ

In the general case,

releaseðci; S
!

PÞ ¼ S
!

P þ routeðci; S
!

i�1Þ ð11Þ

Therefore, we generate a new state with the following sequence:

S
!

P ¼ allocateðci; releaseðci; S
!

PÞÞ

¼ releaseðci; S
!

PÞ � routeðci; releaseðci; S
!

PÞÞ ð12Þ

We propose two local search procedures: breadth and depth local
search. In order to build the solution neighborhood to be explored
by breadth local search, we work as follows:

� for each connection request ck, we start by removing the corre-
sponding units of flow from each edge in its current route pk;
� next, we calculate the resulting network status by determining

the new edge weights. A tentative new shortest path route for
the connection c is then computed by using the resulting weights.

Thus, the breadth local search process consists in releasing and real-
locating every connection in the network and evaluating the objec-
tive function on the new network configurations obtained, keeping
from time to time the best solution found. When every connection
has been processed, the local search process ends and the best solu-
tion found is returned. In the depth local search strategy, whenever
a better solution Xb is found in the neighborhood of the previous
solution X, the local search process is repeated starting from Xb in-
stead of X; the process is iterated for each connection request until
all the candidates have been processed. The local search procedure
pseudo-code is illustrated in Fig. 3. Each connection request c = (u,v,
b) (line 2) is extracted one at a time from the solution X (line 3) ob-
tained by the construction phase and eventually re-routed in the
network (line 4). Then, the objective function is evaluated on the
new solution X0 (line 5) and the best solution X* is eventually up-
dated with the new value (line 6). If the depth local search is cho-
sen, the next iteration will start its local search from the new
solution X0; otherwise, a breadth local search will be performed,
starting from X.

3.5. The objective function

The ultimate objective of the offline re-optimization problem is
to minimize the lightpath rejection or delayed creation (due to the
duration of the re-optimization process) while balancing the load
on the optical links (and hence maximizing network resources uti-
Fig. 3. The local search algorithm.
lization). A good balancing can be achieved by minimizing the load
on the most utilized fiber trunks. Of course, routing and wave-
length assignments with minimum delays may not attain the best
load balance within the network and, likewise, RWA algorithm
realizing the best load balance may not minimize creation delays
or connection rejection at all. We essentially aim at routing the
connections in such a way that a desired point in the tradeoff curve
between creation delays and network load balancing is achieved.
Hence, the objective function we use to compare the solutions
found in the previous phase should provide an extremely effective
metric for evaluating the degree of network resource load balanc-
ing together with an acceptable run-time performance, to avoid, as
much as possible, the excessive delay of queued requests that may
arrive during the re-optimization phase. The chosen objective
function value clearly determines how the virtual topology is best
suited for the given traffic demand. When the traffic pattern
changes the network state may not remain optimal and the virtual
topology needs to be changed to reflect the objective function
goals. This change requires reconfiguration of the network compo-
nents (OXCs and routers) to establish the lightpaths present in the
desired new virtual topology but absent in the current one. Simi-
larly, the lightpaths that are not present in the new virtual topol-
ogy must be torn down. Obviously, such reconfiguration has an
operational cost that cannot be ignored. Thus, the best reconfigura-
tion solution is a tradeoff between the improvement in the objec-
tive function value and the number of changes to the virtual
topology needed to achieve that improvement. A natural choice
for our objective function f is the variance of the load vs. capacity
ratios for each link (with the minus sign accounting for the fact
that we are trying to balance the load as evenly as possible):

f ðS
!
Þ ¼ Var 1� rbi

mbi

� �
; i 2 f1; . . . ; Ej jg ð13Þ

We can note that such choice reflects both effectiveness in describ-
ing load balancing and ease of computation so that it contributes to
keep the re-optimization delay for pending connections as low as
possible. The structure of the objective function is such that as
the load balance of the network increases, its maximum utilization
rate decreases, providing a useful strategy to achieve the QoS level
defined by a desired maximum utilization rate. Finally, once a target
solution has been chosen, the current allocation is transformed into
the desired one by parallelly signaling (with the RSVP-TE) only the
affected elements, so that minimal impact in terms of service dis-
ruption is achieved.
3.6. Path-relinking

Path-relinking may be viewed as an elite selection strategy aim-
ing at adding in new solutions only high quality attributes, by priv-
ileging these attributes in the determination of other solution that
best improve (or least deteriorate) the initial one. It works on a
population of already good solutions by properly combining them
to obtain new (better) ones. Such new solutions are then generated
by exploring the trajectories connecting high-quality solutions and
the name path relinking is used because the involved solutions are
linked by a series of transformations, performed during the search
process, relinking previous points in ways not already obtained in
previous search history. Both a source and a guide solution have to
be selected in order to generate these paths in the solution space.
We can also start from a set of guiding solutions (multiple parents)
generating combinations of elite solutions that link the points in
the solution space in several ways. During the process of linking
a solution X (initial reference point) to a solution Y (desired or
guiding point), a path is constructed by the greedy selection of
re-routing actions with respect to the evaluation of the objective
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function. Simply stated, a transformation is selected if it locally
maximizes the objective function value. The main objective of
path-relinking is the incorporation of attributes belonging to the
guiding solution (or solutions) while recording values of the objec-
tive function. The purpose of these actions is to obtain several im-
proved solutions within the neighborhood of the already visited
ones. The trajectory from X to Y is generated iteratively, by select-
ing the greedy X neighbor solution (we will call this solution by Z),
from a set of all neighbors that decrease the distance from X to Y.
This distance may be determined by calculating the number of dif-
ferences between the solutions (X and Y). The procedure is re-
started, making X  Z, until the target solution Y is obtained.
Path-relinking is applied to pairs of solutions (X1,X2), where X1 is
the locally optimal solution, obtained through local search, and
X2 is randomly chosen from a pool of at most MaxElite elite solu-
tions found along the search process. Such pool is originally empty.
Each locally optimal solution obtained during the local search can
be considered as a candidate to be inserted into the above pool
only if it is different (by at least one link utilization in one route)
from every other solution already present in the pool. If the pool
already contains MaxElite solutions and the candidate is better
than the worst of them, then the former replaces the latter. Other-
wise, if the pool is not full, the candidate solution is simply inserted
into it. This procedure is iterated until no further change in the
pool occurs. Such type of intensification can be done in a post-opti-
mization phase (by using the final elite solutions pool), or period-
ically, during the optimization process (by using the current elite
solutions set). When path-relinking is used in a post-optimization
phase, the local search procedure is applied to each elite solution
when no further occurs change in the elite set, since the solutions
produced by path-relinking are not always local optima. All the lo-
cal optima found during local search are candidates for insertion
into the elite set. The entire post-optimization process is repeated
until changes occur within the elite set. In detail, our path-relink-
ing algorithm starts by computing the symmetric difference
d(X1,X2) between X1 (the initial solution) and X2 (the guiding solu-
tion), resulting in the set of re-routing actions, which should be ap-
plied to the first one to reach the other. Then, by starting from the
initial solution, the best topology change still not performed is ap-
plied to the actual solution, until the guiding one is reached. The
best solution found along this trajectory is also considered as a
candidate for insertion in the elite pool. Since the neighborhood
of the initial solution is more carefully explored than that of the
guiding one, starting from the best of them gives to the algorithm
a much better chance of investigating in more details the neighbor-
hood of the most promising solution [22]. Path-relinking can be ap-
plied to a pure GRASP procedure in a straightforward manner, as it
can be seen in the integrated GRASP/Path Relinking algorithm re-
ported in Fig. 4.

First, the set of elite solutions E and the best solution X* are ini-
tialized to the empty sets (lines 1–2) and E is built by including the
solutions from the first MaxElite iterations (lines 9–10). After that a
standard GRASP iteration produces a local optimal solution X00

(lines 3–5), the PathRelinking procedure is called (line 7). Then, a
function UpdateElite is called (line 8) in which the elite pool is pos-
sibly updated. The solution returned from path-relinking is in-
cluded in the elite pool if it is better than the best solution in E

or if it better than the worst and is sufficiently different from all
elite solutions [37]. Finally, the optimal solution is updated if nec-
essary (lines 12–14).
4. Complexity analysis

Let’s now examine the computational complexity of the above
GRASP-based optimization framework. We consider a network
with n nodes and up to kmax wavelengths on each of the m fiber
links in which P connection requests have already been routed
on the existing lightpaths. First, we remark that the computational
complexity associated to the re-routing of a single connection in
the construction phase of each solution is given by the routing
algorithm used, in our case the traditional Shortest Path First
(SPF) algorithm (O(m � kmax � logn) by using a priority queue with
a Fibonacci heap in the implementation of the Dijkstra algorithm).

The computational complexity of the GRASP procedure can be
calculated by summing, for each iteration, the complexity of all
its component procedures (in the following indicated as hProce-
durenameiC) and is given by

GraspProcedureC ¼ O MaxIter � ðBuildSolutionC þ LocalSearchCð
þ ObjectiveFunctionCÞÞ ð14Þ

In the BuildSolution procedure, the initial sorting of the list L costs
O(PlogP), the while cycle repeats P times its body that consists of
MakeRCL and RandomSelect that are constant time operations O(1),
a SPF routing O(m � kmax � logn) and a partial reordering that may
be reduced to a simple optimized update with a worst case cost
of O(n � logn), because we know exactly what are the elements
whose value may only decrease. So, the complexity of the BuildSo-
lution procedure is given by

BuildSolutionC ¼ OðSortingC þ P � ðMakeRCLC

þ RandomSelectC þ RoutingC þ UpdateCÞÞ
¼ OðP � log P þ P � ð2kþm � kmax þ n � log n

þ n � log nÞÞ
¼ OðP � log P þ P � ðm � kmax þ n � log nÞÞ ð15Þ

The LocalSearch procedure repeats P times its cycle that consists of a
release operation, a route SPF algorithm O(m � kmax + n � logn) and
one evaluation of the objective function. The release operation has
to free the bandwidth on all the links crossed by the connection,
that may be n � 1 in the worst case for a network without cycle
paths, so it costs O(n). The objective function has to evaluate the
bandwidths on the network’s edge, thus it costs O(m � kmax) in the
worst case. Thus, the computational cost of the LocalSearch proce-
dure is



F. Palmieri et al. / Computer Communications 33 (2010) 1809–1822 1817
LocalSearchC ¼ OðP � ðReleaseC þ RouteC

þ ObjectiveFunctionCÞÞ
¼ OðP � ðnþm � kmax þ n � log nþm � kmaxÞÞ
¼ OðP � ðm � kmax þ n � log nÞÞ ð16Þ

Consequently, the overall GRASP procedure costs:

GraspProcedureC ¼ OðMaxIter � ðBuildSolutionC

þ LocalSearchC þ ObjectiveFunctionCÞÞ
¼ OðMaxIter � ðP � log P þ P � ðm � kmax þ n

� log nÞ þ P � ðm � kmax þ n � log nÞ þm

� kmaxÞÞ
¼ OðMaxIter � ðP � log P þ 2P � ðm � kmax þ n

� log nÞ þm � kmaxÞÞ
¼ OðMaxIter � ðP � log P þ P �m � kmax þ P

� n � log nÞÞ ð17Þ

For typical topologies and traffic values (e.g. n = 30, P = 3000),
n � logn is the dominant factor with respect to log P as, even in
the case in which P is much greater than n, the logarithm function
will weight very little its argument while the dominant factor will
be the multiplicative n (in the example, 30 � log30 = 44.3,
log3000 = 3.5). Thus the worst case complexity of the whole opti-
mization process may be simplified as

OðMaxIter � P � ðm � kmax þ n � log nÞÞ: ð18Þ

As we have illustrated, the GRASP re-optimization is based on an
iterative improvement process (represented essentially by the Max-
Iter factor) whose computational complexity may be high for large-
scale RWA/grooming networks [38]. Parallel local search algo-
rithms, when applicable, are an effective way to cope with this
problem. According to an iteration decomposition principle, the
search iterations can be partitioned into several threads and the
main procedure run in each of them in parallel. In our GRASP-based
approach, the MaxIter iterations may be easily distributed among
the network nodes and run in parallel, thus cooperating to imple-
ment the integrated RWA mechanism within the network control-
plane logic (following the so called multiple-walk independent-
thread strategy, based on distributing the GRASP iterations over
the available processors, that in our case are the switching nodes).
Each processor works on an independent copy of the problem data,
and has an independent seed to generate its own pseudorandom se-
quence number. Clearly, each processor must base its work on a dif-
ferent pseudorandom sequence, to avoid the same solutions to be
found by each of them. A single global variable, whose value can
be kept synchronized between all the processors through proper
message passing, is required for storing the best solution found
by all the participating processors. Here, the communication among
the different processors running the GRASP iterations in parallel is
limited to the random seed and to the current best solution found.
One of the processors acts as the master, by generating the random
seeds to be used on each processor, reading and distributing the
problem data and the iterations, and finally collecting the best solu-
tion found by each computing node. Since all the iterations are com-
pletely independent and very little information is exchanged
between the participants, linear speedups can be easily obtained
provided that no major load imbalance problems occur. To further
improve load balancing, the iterations may be uniformly distributed
over the processors according to their demands. From extensive
simulations, it has been observed that a typical value is MaxIt-
er = 30, that is in line with the mean number of network nodes in
MAN/WAN network. In general, if we assume that each processor
core runs one search thread, the computational complexity of the
parallel GRASP procedure is decreased to

OðP � ðm � kmax þ n � log nÞÞ ð19Þ

The time evaluation tests we conducted have showed that it is an
affordable time complexity for a single processor thus confirming
the feasibility of such approach. Parallel implementations of GRASP
may also be used in conjunction with path-relinking. In the multi-
ple-walk independent-thread implementation described by Aiex
et al. [24], each processor applies path-relinking to pairs of elite
solutions stored in a local pool. The OSPF opaque Link-State Adver-
tisement (LSA) mechanism can be easily used to transport synchro-
nization information between the cooperating nodes.
5. Performance evaluation and considerations

In this section, we examine the performance of our new algo-
rithm with an extensive simulation study, by working on several
real network topologies, with and without the continuity con-
straint (i.e. wavelength converters supported or not). The simula-
tion details together with the most interesting results and
observations emerged from the experiments have been reported
in the following paragraphs.
5.1. The simulation environment

In order to evaluate the performance of the proposed hybrid on-
line/offline routing framework we realized a simple and very flex-
ible ad hoc optical network simulation environment written in Java
in order to take advantage of its extensibility, ease of modifiability,
portability and strict math and type definitions [39]. To allow us to
perform a simple comparative analysis the above environment
supports discrete-event simulations in fiber/lambda switched net-
works for several well-known RWA algorithms, both Dijkstra
based, such as Minimum Hop Algorithm (MHA) and Shortest-Wid-
est Paths (SWP), or interference-based, such as Maximum Open
Capacity Algorithm (MOCA). It supports flexible definition and
modification of simulation parameters and configuration files to
define complex simulation test cases, allowing the creation of
new network topologies. Simulations have been performed on an
HP� DL380 Dual Processor (Intel� Xeon� 2.5 GHz) server running
FreeBSD� 4.11 operating system and Sun� Java� 1.4.2 Runtime
Environment by using several optical network topologies modeled
as un-directed graphs in which each link has a non-negative capac-
ity. In all the experiments, we used an incremental traffic model in
which connection requests, defined by a Poisson process, arrive
with a rate of d requests/s and are distributed on the available net-
work node according to a random-generated or predefined traffic
matrix. Thus, the session holding time has been set to be infinite
to enhance the effect of connection’s load on the network, that is,
each connection lasts through the entire simulation, letting the
network resources saturating more rapidly. This can be done since
dynamic connection releases do not adversely affect both the per-
formance and behavior of the whole RWA framework whose peri-
odic re-optimization steps are managed offline. The above choice
allowed us to make our tests under the worst-case conditions.
5.2. Results analysis

The results presented are taken from many simulation runs on
several network topologies with various GRASP parameter values
and an increasing number of connection requests varying from 0
to 1000. The GRASP parameters and bandwidth unit request values
used in our simulations are reported in Table 1.



Table 1
Simulations performed and parameters used.

Parameters NSFNET/GEANT2

Number of connections Varying from 0 to 1000 (step 100) 50%
before and 50% after re-optimization

Random generated bandwidths
(OC-unit)

{1,3,12} with different distribution
probability

MaxIter 30
a {0.2, 0.5, 0.8}
Local search Breadth and depth local searches
Number of simulations 20 simulations run per topology; each

simulation repeated 10 times
Measurements Blocked connections with and without

re-optimization Objective function gain
Freed OC-units
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As can be seen from the previous table, 20 simulations per
topology were run. Each run has been repeated 10 times and the
average performance metric values have been calculated. We con-
sidered several values for the a parameter chosen from the set re-
ported in the previous table and tried out both the breadth and
depth search options in local search. Since the main objective of
our work is to efficiently address the problem of re-optimization
by maximizing the overall network resource usage and hence the
medium and long-term carriers’ revenues, we were interested in
demonstrating the efficiency of the proposed approach on a signif-
icant variety of real network topologies through a comparative
assessment between our hybrid framework based on Dijkstra SPF
for online routing associated to our GRASP-based re-optimization
algorithm, and an environment in which no re-optimization was
realized. Such assessment focused on their overall effectiveness
in term of request rejection ratio/blocking factor, network resource
usage optimization and time performances. We did not compare
our solution with other re-optimization proposals available in lit-
erature due to the peculiarity of our hybrid approach and hence
to the lack of comparable results obtained on the same network
topologies and traffic distributions. Accordingly, we studied the
re-optimization benefits for varying traffic demands and different
network layouts. We tried out different static, predefined, or ran-
domly generated traffic demand matrices on several network
topologies, both randomly generated and well-known, such as
NSFNET and GEANT2 (see Fig. 5) with the bandwidths for the links
ranging from OC-1 to OC-768 bandwidth units.
Fig. 5. Sample network topol
In our tests, each connection request was characterized by a
bandwidth demand ranging from OC-1 to OC-12 (622 Mbps) units.
We routed these connections using SPF routing. As the network
load grows, we continuously monitor the network efficiency ex-
pressed by the rejection ratio/blocking factor. When the connec-
tions demand exceeds the value of a fixed load threshold we
invoke the GRASP re-optimization. We then evaluate the re-opti-
mization gain, comparing the network loads that could be sus-
tained with or without re-optimization. We measured this gain,
at varying optimization thresholds, in terms of several quantities.
We computed the overall bandwidth gains as the difference (in
OC-units) between the total bandwidth available on the network
before and after re-optimization and we analyzed the objective
function behavior. We also observed the gains in terms of differ-
ence between the maximum number of additional end-to-end con-
nections that could be accommodated in the network with and
without performing re-optimization. For space limitations and re-
sults consistency, we show only the most remarkable results ob-
tained with the well-known NSFNET and GEANT2 networks. In
all the presented charts, to make the results more readable and
better highlight the evolution trends and properties of the ob-
served performance metrics, the plotted curves have been obtained
through polynomial interpolation on the sample observations ta-
ken before the beginning and at the end of each GRASP re-optimi-
zation step. For the first set of simulations we generated a random
demand matrix from all the available source-sink pairs. Next, the
network has been loaded by adding end-to-end connections,
whose arrival rate is proportional to the values reported for the
corresponding pairs in the demand matrix. In Figs. 6 and 7 we
show the results in terms of request rejection rate and number
of end-to-end connections gain obtained with the first set of sim-
ulations on NSFNET in which we used the breadth local search
and varying values of a = {0.5,0.2,0.8} respectively for tests T1,
T2 and T3. The simulation without re-optimization is simply indi-
cated with SPF in the figure.

Here, the number of rejected/accepted requests (Y axis) is re-
ported against the number of total generated connection requests
(X axis). By looking at the variations in rejection rate as the net-
work was loaded with an increasing number of connections, we
can note that, without re-optimization, the network starts reject-
ing connections much earlier (while the re-optimization approach
starts rejecting at about 400 connections) and a substantial and
slightly increasing gain can be constantly observed throughout
ogies used in simulation.



Fig. 6. NSFNET simulation results: blocked connections and re-optimization accepted requests gains.
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the experiment also when the load and hence rejection rate in-
crease toward the total network saturation.

Fig. 7 shows the variation in bandwidth gain with increasing
network load. The gain starts with a rapid growth and diminishes
(dramatically for some a values) after around 50% of the load re-
Fig. 7. NSFNET simulation results:
gion; it then restarts increasing and then it progressively de-
creases, once a local maximum around the 75% of the load is
reached, according to an alternate/elastic behavior very common
in traffic-related phenomena [40]. The same swinging behavior
can also be observed, even if much smoothed, in the above Fig. 6
bandwidth gains in OC-units.
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connection gain curves. The reason for this can be attributed to the
reduced flexibility in moving existing paths to other routes be-
cause of the periodical reduction in links’ spare capacities. This
observation suggests that, in a dynamic lightpath routing scenario,
the re-optimization procedure should be invoked before the net-
work load reaches 50% (or some other value, dependent on the net-
work specific characteristics). Waiting for the first request to be
blocked before attempting re-routing might be too late and reduce
the overall efficiency of the re-optimization process. The second set
of simulations experiments analyzes the sensitivity of the re-opti-
mization scheme with respect to variations in network topology
(and hence link bandwidth) for a fixed demand matrix. Here, the
connection requests are distributed on all the network nodes
according to the probability distribution obtained from the traffic
matrices given in [41] for NSFNET and in [42] for GEANT2, where
traffic volumes have been scaled proportionally to the traffic distri-
bution. In Figs. 8 and 9 we show the results obtained with the sec-
ond set of simulations on GEANT2 in which we used the depth
local search and varying values of a = {0.5,0.2,0.8} respectively
for tests T4, T5 and T6. The simulation without re-optimization is
simply indicated with SPF in the figure.

When observing the variations in both connections and avail-
able bandwidth gain as the network topology changes towards a
more connected mesh with higher capacity links (for this sake
we can compare the NSFNET and GEANT2 behaviors respectively
shown in Figs. 6–9) we can evidence a certain progressive decline
in the gain increasing with the network size. This effect highlights
that re-optimization algorithms are more efficient in finding good
solutions in narrower networks with fewer resources available,
since networks with a larger number of links and more capacity
have in general less potential for offline reconfiguration gain, as
even simple online routing schemes can easily produce acceptable
solutions under a physiological load. In fact, in a lightly loaded net-
work, with a lot of available links and capacities, the re-optimiza-
tion effect allows the admission of only a few additional
Fig. 8. GEANT2 simulation results: blocked connectio
connection requests while, in an overloaded network, where re-
source become scarce, the number of additional connections that
can be routed on a re-optimized logical topology greatly increases.
This behavior is due to the fact that when there is plenty of connec-
tivity resources the number of connections rejected by traditional
routing algorithms such as SPF greatly increases, so that any re-
optimization strategy – assumed to work on the same traffic ma-
trix – has a much larger potential to satisfy the requests that were
previously rejected.

We observe from both Figs. 6 and 9 that the best results in
terms of bandwidth and connection gains have been obtained
by working with a good balance between greediness and random-
ness (T1, T4 with a = 0.5), in which gains follow a more linear
trend, whereas an almost greedy or random selection process
(respectively T2, T5 with a = 0.2 and T3, T6 with a = 0.8) exhibits
a sinusoidal-like behavior due to the myopic choices done by the
use of a too small or too large RCL. Obviously, a linear trend is
much preferable with respect to a non-linear one as it achieves
better average results in terms of higher bandwidth gains and
lower blocking probability. Similar results have been obtained
in breadth and depth local searches, showing that local optima
may be reached in both procedures thanks to the robust approach
of the Greedy meta-heuristic. Finally, in Fig. 10 we plotted the
average re-optimization times for the execution of the illustrated
tests referred to the parallel implementation of the Grasp proce-
dure. The results have been obtained by running one search
thread on each network node and measuring the starting and
ending times. Resulting times have been averaged by the number
of nodes and reported in Fig. 10 against the number of connection
requests. Communication times among nodes have not been con-
sidered in the measurement. As we can see, even in GEANT2,
which is a more complex network than NSFNET, the computa-
tional times are all below the 1 s threshold which is an affordable
delay time for a network [2]. Consequently, the proposed
re-optimization strategy is suitable to be implemented on a
ns and re-optimization accepted requests gains.



Fig. 9. GEANT2 simulation results: bandwidth gains in OC-units.

Fig. 10. GEANT2 and NSFNET simulation results: re-optimization times.
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frequent basis, also in a production network, before the network
gets totally saturated, so that an acceptable degree of efficiency
and service continuity is ensured until it is possible, also at higher
loads.
6. Conclusions

Dynamic demands and topology changes caused by the addi-
tion/deletion of new links and/or capacity, together with online



1822 F. Palmieri et al. / Computer Communications 33 (2010) 1809–1822
routing decisions made on a best-of-now basis, without knowledge
of the lightpaths to be set-up in the future, cause the wavelength
routing logic to behave sub-optimally, thereby creating opportuni-
ties for improvements in network bandwidth efficiency. Lightpath
topology re-optimization seizes on these opportunities and offers
network operators the ability to better adapt to the network and
user requests dynamics. This is achieved by regularly (or upon a
particular event) re-routing the existing demands, temporarily
eliminating the drift between the current solution and the optimal
one that is achievable under the same conditions. Starting from the
above premises, we formulated a hybrid approach for integrated
online routing and offline reconfiguration of optical networks with
sub-wavelength traffic. The key feature of such a scheme is the
ability to maintain the network balanced through adaptive on-de-
mand re-optimization by ensuring that a sufficient capacity is kept
available between any ingress–egress pair so that the maximum
number of connections arriving to the network can be satisfied.
The overall focus of this work has been the balancing between
the reconfiguration cost (in terms of disturbance to the users’ con-
nections already deployed over the network) and a good and sim-
ple RWA and grooming solution. We defined a set suitable goals
and strategies for an integrated approach, and provided a formula-
tion of the re-optimization procedure based on an iterative refine-
ment process of multiple local search steps structured as a GRASP
meta-heuristic procedure. We also developed a heuristic strategy
that attempts to achieve minimal disturbance reconfiguration by
performing local reconfiguration and delaying as possible the need
for global reconfiguration. Furthermore, re-optimization would
only occur when needed (when the rejection ratio become unac-
ceptable and the potential savings from re-optimization exceeds
some threshold) or upon certain events such as when new links
are added or torn down. Simulation results show the notable mar-
gins of re-optimization achievable with our approach as well as the
time complexity feasibility in real networks such as NSFNET and
GEANT2. Rejection ratios of connection set-up requests decreased,
allowing more connections to be successfully routed, and band-
width gains have been observed in all the simulation runs. Besides,
we proposed an efficient parallel implementation of GRASP with
path-relinking that showed quite linear speedups in the number
of processors and such a strategy has been successfully applied
to greatly accelerate the proposed re-optimization scheme. In con-
clusion, the proposed re-optimization schema achieves prominent
improvements in network efficiency, with the consequent cost
savings.
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