
CoreCast: How Core/Edge Separation Can Help
Improving Inter-Domain Live Streaming

Loránd Jakaba,∗, Albert Cabellos-Aparicioa, Thomas Silverstonb, Marc Soléa,
Florin Coraşa, Jordi Domingo-Pascuala

aUniversitat Politècnica de Catalunya, Barcelona, Spain
bThe University of Tokyo, Tokyo, Japan

Abstract

The rapid growth of broadband access has popularized multimedia services,
which nowadays contribute to a large part of Internet traffic. Among this con-
tent, the broadcasting of live events requires streaming from a single source to a
large set of users. For such content, network layer multicast is the most efficient
solution, but it has not found wide-spread adoption due to its high deployment
cost. As a result, several application layer solutions have been proposed based
on large-scale P2P systems. These solutions however, are unable to provide a
satisfactory quality of experience to all users, mainly because of the variabil-
ity of the peers and their limited upload capacity. In this paper we advocate
for a network layer solution that circumvents the prohibitive deployment costs
of previous approaches, taking advantage of the rare window of opportunity
offered by the Locator/Identifier Separation Protocol (LISP). This new archi-
tecture, motivated by the alarming growth rate of the default-free zone (DFZ)
routing table, is developed within the IETF, and aims to upgrade the current
inter-domain routing system. We present CoreCast, an efficient inter-domain
live streaming architecture operating on top of LISP. LISP involves upgrading
some Internet routers and our proposal can be introduced along with these new
deployments. To evaluate its feasibility in terms of processing overhead in net-
working equipment we have implemented CoreCast in the Linux kernel. Further,
we compare the performance of CoreCast to the popular P2P streaming services
both analytically and experimentally. The results show that CoreCast reduces
inter-domain bandwidth consumption and that introduces negligible processing
overhead in network equipment.

Keywords: LISP; multicast; live streaming

∗Corresponding author
Email addresses: ljakab@ac.upc.edu (Loránd Jakab), acabello@ac.upc.edu (Albert

Cabellos-Aparicio), thomas@hongo.wide.ad.jp (Thomas Silverston), msole@ac.upc.edu
(Marc Solé), fcoras@ac.upc.edu (Florin Coraş), jordid@ac.upc.edu (Jordi
Domingo-Pascual)

Preprint submitted to Computer Networks May 21, 2010

1. Introduction

The rapid growth of broadband access speeds has popularized multimedia
services that nowadays contribute to a large part of the Internet traffic [1]. A
considerable amount of multimedia content, such as popular live events com-
monly conveyed through IPTV, require live streaming from a source to a large
set of users. For such content, network-layer multicast [2] is the most efficient
solution. However, its deployment remains confined to some selected domains.
Enabling inter-domain multicast requires upgrading a large subset of the exist-
ing routers and complex network management, tasks that amount to very high
capital and operational expenditure [3].

As a result, during the last years, the industry along with the research
community have designed several peer-to-peer (P2P) systems for streaming live
events [4, 5, 6, 7, 8] to an ever increasing audience. These systems operate at the
application layer, and create complex overlay networks to distribute multimedia
content. Some of the commonly used systems are PPLive [7], TVAnts [8] and
UUSee [9]. These applications are very popular and are being used daily by
millions of Internet users [10].

Unfortunately, it has been shown that in practice these live streaming sys-
tems are unable to provide a satisfactory quality of experience at all times. As
a consequence, the research community has thoroughly analyzed the streaming
quality of these large-scale P2P networks in search for explanations [10, 11, 12,
13, 14, 15, 16]. Surprisingly, one of the main findings is that the streaming qual-
ity degrades as the number of peers increases if peak hours are considered [17].
Further, server capacity still plays a key role in these systems, and its insuffi-
cient supply leads to low streaming quality [17]. The main reasons behind these
inefficiencies are: (i) limited upload capacity of the peers, who usually access
the Internet through asymmetric links, and (ii) churn, peers may join/leave the
system at any moment. Because of these reasons, application layer-based sys-
tems cannot guarantee a reliable streaming service, and cannot be considered as
the long-term solution for broadcasting live multimedia content over the Inter-
net. In this paper we advocate for a network-layer approach as the long-term
solution.

We present CoreCast, a network-layer reliable live streaming protocol that
avoids the high deployment cost of current approaches. In order to circumvent
their prohibitive costs, CoreCast exploits a rare window of opportunity offered
by the development and deployment of the Locator/ID Separation Protocol
(LISP) [18], on top of which it is built. LISP is a new network architecture
having an IETF working group devoted to its development and also enjoying
support from Cisco. Its aim is to upgrade the current inter-domain routing
system. The change is motivated by the alarming growth rate of the default-
free zone (DFZ) routing table, listed as the most important problem facing
the Internet [19]. In order to solve this critical issue, recent discussions within
this Internet standards body suggested splitting the current IP address space
into separate namespaces for identifiers and routing locators. The community
generally agrees that this separation is a basic component of the future Internet,

2

and that the current routing system must be upgraded. Among the proposals
rooted in this approach [18, 20, 21] LISP is the most advanced one and already
counts with an experimental testbed (lisp4.net and lisp6.net) in the Internet.
The deployment of LISP involves incrementally upgrading the border routers of
all the autonomous domains present in the Internet. CoreCast extends LISP,
providing live streaming capabilities, while only requiring explicit support at
these selected routers. This way, CoreCast can be deployed along with LISP,
avoiding the prohibitive deployment cost of IP multicast.

CoreCast has a push-based architecture, and its operations are based on
two demultiplexing points and a caching mechanism. The streaming server
transmits one header per subscriber and just one copy of the content for all
of them. The stream is first cached and subsequently demultiplexed towards
each client ISP. Then, each client ISP’s border router caches and demultiplexes
again the stream towards the subscribers. The main benefit of CoreCast is
that it considerably reduces inter-domain bandwidth, compared to existing P2P
or unicast mechanisms. Because of its architectural principles, CoreCast can
offer a guaranteed and reliable live streaming service, since ISPs and content
providers may easily establish Service Level Agreements. Furthermore, it is
an ISP-friendly solution, since subscribers belonging to different ISPs do not
exchange traffic as in P2P systems. This is a key benefit as ISPs have recently
shown their concerns because of the large amount of traffic generated by P2P
applications (e.g. BitTorrent) [22].

In order to evaluate the feasibility of CoreCast we have implemented it in
the Linux kernel. Our experiments show that it introduces negligible process-
ing overhead when compared to traditional unicast forwarding. Further, the
state kept in the routers is in the order of a few kilobytes, and grows linearly
with the number of streamed channels, while it is independent of the amount of
subscribers. Using an analytical model, we show that the inter-domain traffic
generated by CoreCast is lower than that generated by P2P live streaming ap-
plications for typical traffic parameters. We support the model with an analysis
of the traffic generated by some of the most popular P2P live streaming appli-
cations, PPLive and TVAnts, during two very popular events. The traffic was
captured in four different countries: Japan, France, Spain and Romania.

CoreCast was first introduced in [23], and in short, the main new contri-
butions of this paper are: (i) the CoreCast architecture, (ii) analytical and
measurement based comparison between CoreCast and P2P bandwidth require-
ments, (iii) an implementation for the Linux kernel and (iv) processing overhead
analysis. The CoreCast implementation, along with a CoreCast packet dissector
patch for the popular open source WireShark network analyzer can be found at
http://www.cba.upc.edu/corecast.

2. LISP Background

This section presents a basic overview of LISP [24, 18]. The reader already
familiar with this protocol can safely skip it. As mentioned before, the main

3

Figure 1: LISP architecture

drivers of this proposal are the scalability issues of the current Internet’s rout-
ing infrastructure. The proposed solution lies in the separation of the address
space of end hosts (Destination Space) from that of the transit network (Transit
Space). Fig. 1 illustrates this separation. An additional plane, the Mapping
System is required in order to facilitate the “glue” between the two addressing
spaces.

In order to decouple the identifiers of nodes from their location, LISP intro-
duces Routing LOCators (RLOCs), and Endpoint IDentifiers (EIDs). RLOCs
are addresses used by network elements in the Transit Space, and define where
a destination node is to be found in the routing topology. EIDs represent the
identity of the node, regardless of its location, and are used as addresses in
the Destination Space. In order to be incrementally deployable, and with no
changes in end systems, RLOCs and EIDs are both using the IP address space.

When a packet is sent in the LISP-enabled Internet, it travels within the
autonomous system (AS) using currently deployed mechanisms, until it reaches
the border router. This router is called the ingress tunnel router (ITR) in LISP
terminology because it is the ingress point to the tunnel towards the border
router of the destination AS, the egress tunnel router (ETR). Since a border
router can implement both functions, we will use the term tunnel router (xTR)
for this kind of device. Consider Fig. 1 for example. A host with EIDA wants to
send a packet to EIDB . It reaches xTRA1, which takes the destination address
(EIDB), looks it up in the mapping system, which returns RLOCB . xTRA1

encapsulates the packet in a LISP header, sends it to xTRB , which decapsulates
it and then gets delivered to the destination.

4

Figure 2: CoreCast architecture

3. The CoreCast Protocol

3.1. Overview
CoreCast is a simple, one-to-many multicast protocol with low deployment

cost, incrementally deployable, exploiting features introduced by LISP in order
to reduce redundant traffic. To implement CoreCast, a only small number of
modifications to the current LISP specification are required.

Consider the following scenario: a broadcaster has a large number of clients
(denoted by k) for live streaming content or an IPTV channel. These clients
are dispersed over a number of j Autonomous Systems (ASes). When using
unicast, the same content has to be sent k times by the source node S to reach
all clients. Using CoreCast, the content is sent once to the ITR of the source
node (ITRS) along with a list of destinations, which in turn sends one copy
to each of the involved ETRs (ETR1 . . . ETRj), and these ETRs send out one
copy to each destination node inside of their respective ASes. See Fig. 2 for an
example of a small CoreCast streaming deployment with 7 clients distributed
in 3 ASes. On each inter-domain link, the multimedia data travels only once,
so in the example case from the figure, the core will see it only 3 times instead
of 7.

Note that authentication, authorization, and accounting (AAA) is not part of
the CoreCast protocol, the source node S should handle that at the application
layer, using a framework of its choice. CoreCast is only concerned with the
efficient transmission of the actual multimedia streams.

5

3.2. CoreCast Packet Types
CoreCast differentiates between two types of packets: payload packets, which

carry the multimedia payload and header packets:

Payload Packets Contain the hash of the payload, which is the identifier used
later by the caching and demultiplexing points, the length of the payload
and the payload data itself.

Header Packets The CoreCast protocol data unit (content after the IP header)
of this type of packets contains the destination EID of the client, and the
hash that identifies the payload that has to be sent to it.

3.3. Source Node
As previously mentioned, S implements AAA in a separate, out-of-band

framework (e.g., HTTPS web login, or a custom protocol over TCP), and per-
forms the appropriate mechanism for each connecting client. For each multi-
media stream (channel) that it is broadcasting, S maintains a data structure
called chanDstList which contains a list of EIDs that are currently receiving
that stream. After a successful connection, a new client is added to the re-
quested channel’s destination list. A client uses the same framework to signal
departure from the channel, triggering removal from chanDstList. Departure
may be caused by switching to a different channel, either on S or a different
source, or simply stopping to watch the stream. In order to account for clients
not signaling departure, but no longer using the stream (due to system crash,
network error, etc.), the AAA framework can implement a heartbeat protocol
as well. Clients would be required to send periodically a control packet to show
continued interest in the stream. A large interval of several minutes would take
care of removing dead clients, while addig very little overhead.

Each domain reserves an EID space with local scope only for CoreCast
streams, where an EID designates a channel. This is required because the first
demultiplexing point is located on a busy border router, which should forward
regular packets at line speed, and only work with CoreCast packets in the slow
path. Since the destination EID is always examined, the reserved EID range is
used to trigger examination of the CoreCast protocol fields, and leave all other
packets in the fast path.

For each channel, S divides multimedia data into chunks of payload in such
a way, that packet size is maximized, but the MTU is not exceeded on the path
to the destination. For each chunk, it first sends a packet with the payload,
setting the destination address in the IP header to the channel’s reserved EID.
After the payload packet is sent, S iterates through the chanDstList, and
sends a header packet for each of the destinations listed. The process is then
repeated at regular time intervals, determined by the bandwidth required for
the stream. For example, sending a 384 Kbps stream, broken down into fixed
sized payloads of 1200 bytes would require a payload packet to be sent every 25
ms. Optionally, the source could combine the list of destinations and instead of
a header packet for each destination, send up to MTU sized packets with the list

6

of destinations to the ITR. However, this would add complexity that is unlikely
to be implementable in hardware at line speed, thereby actually reducing the
number of clients supported by the router.

The above mechanism sets an upper limit of how many destinations CoreCast
can support. This limit is function of the transmission medium’s capacity, the
bandwidth required by the stream, and payload size:

MaxClientsCC '
C · T

8 ·HCC
=

C

BW
· P
H

(1)

where C is line rate in bits per second, T is time between payloads in seconds,
P is payload packet size in bytes, H is header packet size in bytes, and BW the
bandwidth required by the stream in bits per second. The same limit in case of
unicast transmission is:

MaxClientsUC =
C

BW
(2)

CoreCast’s gain in terms of maximum number of supported clients depends
on the ratio between the payload size and the header size: P/H. Using these
formulae the content provider can do capacity planning based on the expected
number of clients, and add network and/or server capacity as needed.

For our example in Fig. 2, the source would send one CoreCast payload
packet to the ITR followed by 7 CoreCast header packets for each PDU that
has to be transmitted, placing destination EIDs Dij into the header.

When requesting a channel, the client software informs S using the previ-
ously mentioned out-of-band AAA protocol if its domain supports CoreCast.
For domains without a CoreCast capable ETR, the source will send regular
unicast packets.

3.4. Ingress Tunnel Router
The ingress tunnel router is the first of the two CoreCast stream demultiplex-

ing points. In order to process CoreCast packets, it maintains a payloadBuffer
data structure, which reserves one record entry for each supported channel. The
entry contains the hash of the payload, the payload itself, and a pointer to a
servedRLOC buffer. This buffer is created for each payload on arrival, and tracks
the locators of the ETRs which already received payload data (see Fig. 3). When
all clients from the domain of the locator have been served with the current pay-
load, the buffer is freed. To avoid keeping too much state, the ITR keeps only
one payload for each channel in the payloadBuffer.

Algorithm 1 shows the packet processing mechanism in the ingress tunnel
router. When a payload packet is received, the ITR identifies the channel using
the reserved destination EID in the IP header, checks if the hash in the CoreCast
header matches the locally calculated hash of the payload, and then overwrites
the old payload record in the payloadBuffer, also destroying the associated
servedRLOC buffer and allocating a new one. No packet is sent upon receving
a payload packet.

7

payloadBuffer

hash(P) P

P

...

hash(P)

hash(P) P

Channel 1

Channel 2

Channel n

&servedRLOC

&servedRLOC

&servedRLOC

servedRLOC

RLOC 1

...

RLOC j

Figure 3: ITR Memory Structures. There is one payloadBuffer entry for each channel; a
servedRLOC buffer is allocated for each payload on arrival and released after all clients have
been served

For each CoreCast header packet, the ITR extracts the client EID and the
payload hash from the CoreCast header and checks for the existence of the
associated payload data in the payloadBuffer. Then, it looks up the locator
of the client EID, which is an operation already provided by LISP (see § 2).
If the locator is listed in the servedRLOC buffer associated to the payload, the
ITR forwards the header to the ETR, doing the usual LISP encapsulation. In
the case no payload was yet sent to a particular locator, a payload packet is
generated before forwarding the header packet.

Algorithm 1 ITR Demultiplexing
if type = Payload then

/* Payload packet */
if hash = hash(payload) then

Store to payloadBuffer

else
Drop

end if
else if type = Header then

/* Header only */
if hash ∈ payloadBuffer then

if RLOC ∈ servedRLOC then
Send header to RLOC

else
Send payload to RLOC
Send header to RLOC
Store RLOC in servedRLOC

end if
else

Drop
end if

end if

Take the example in Fig. 2. The ITR would store the payload, then send

8

one copy to ETR1 followed by headers for D11 and D12, another copy to ETR2

and headers to destinations in AS2, and finally a copy to ETR3 and headers to
destinations in AS3.

In the case when the AS of the source node does not offer CoreCast protocol
support in the ITR, but allows LISP encapsulated packets to be sent from the
inside, the functions of the ITR could be performed by S itself: it could send
one LISP encapsulated payload to each locator and LISP encapsulated headers
for the destinations. For this, it would need access to the LISP mapping system
used by tunnel routers, which is allowed by the LISP specification.

Note that CoreCast is a unidirectional live streaming protocol; as such there
is no feedback from the clients about lost packets and no retransmissions are
being made. The expected deployment of the source node close to the ITR
reduces the packet loss probability to a minimum. On the other hand, the path
between the ITR and ETRs is more prone to losses, and loss of single payload
packet will affect all users of the destination AS. To alleviete this problem, the
ITR can be configured to interleave an additional payload packet after every n
header packet going to the same ETR. That way the loss of a payload packet
affects a reduced set of clients.

3.5. Egress Tunnel Routers
The ETR is the second and last demultiplexing point, and it works simi-

lar to the ITR, storing the payload for each received stream. But instead of
forwarding headers, it has to expand them to regular unicast packets that get
delivered within the AS to their final destinations, by retrieving and adding the
corresponding payload data from the payloadBuffer. The packet processing
mechanism in the ETR is presented in Algorithm 2.

Algorithm 2 ETR Demultiplexing
if type = Payload then

/* Payload packet */
if hash = hash(payload) then

Store to payloadBuffer

else
Drop

end if
else if type = Header then

/* Header only */
if hash ∈ payloadBuffer then

Send reconstructed unicast packet to destination
else

Drop
end if

end if

To complete our example from Fig. 2, ETR2 stores its copy of the payload,
then for the following headers sends a unicast IP packet with the payload to
D21, D22, and D23.

9

Note that the demultiplexing must not necessarily use unicast packets to-
wards the final destinations. The domain may decide to use IP multicast inter-
nally instead, especially if live streaming services prove popular. IP multicast is
not widely used in inter-domain scenarios, but it has been succesfully used for
distributing TV channels inside an ISP [25].

Both the ITR and the ETR have to keep some state for CoreCast opera-
tions. In the case of the ETR the only CoreCast specific data structure is the
payloadBuffer, the size of which depends only on the number supported chan-
nels. For example, supporting up to 1,000 channels, with a maximum payload
size of 1200 bytes requires just over 1 MB of memory. The ITR adds one more
data structure per channel, servedRLOC, to store the locator that received al-
ready the current payload. Each entry in this structure is either 4 bytes (IPv4
core) or 16 bytes (IPv6 core). For our example of 1,000 channels, clients dis-
tributed in up to 1,000 ASes and an IPv6 core would add an extra 16 MB to
the memory requirements. We believe this is an acceptable amount of memory
for a border router.

4. Analytical Evaluation

Along with architectural benefits, CoreCast lowers inter-domain bandwidth
requirements for ISPs providing live streaming services to their subscribers.
Existing methods to deliver these services include IP multicast, unicast and
application layer P2P systems. To evaluate our proposal, we take P2P systems
as base for comparison, because unicast is the most ineffiecient solution and
multicast is difficult to deploy in inter-domain scenarios [3]. In contrast, P2P
live streaming systems are in wide use today.

In order to compare the data rate of CoreCast with that of current P2P
applications we developed a formula for the former and an estimation method
for the latter. Furthermore, we focus the analysis on inter-domain traffic, mainly
because it is more expensive for ISPs. In fact this is a key issue and recently
ISPs have shown their concerns because of the large amount of inter-domain
traffic generated by P2P applications [22].

In the case of CoreCast, we consider inter-domain the traffic sent from the
ITR to the ETRs and intra-domain the one flowing from all ETRs to all indi-
vidual clients. In the following, the terms inter-domain traffic and transit traffic
will be used interchangeably; also, intra-domain traffic and local traffic is to be
interpreted as the same.

The total transit traffic generated by sending one payload is as follows:

TTCC = (HL + PCC) · j + (HL +HCC) · k, (3)

where HL is the size of a LISP header, PCC is the CoreCast PDU size for a
payload packet, HCC is the size of a header packet, and j and k are the number
of RLOCs and clients, respectively, as described in § 3. Thus the corresponding
bandwith is

BWtransit =
TTCC

T
(4)

10

On the other hand the total local traffic is given by:

LTCC = (HI +D) · k, (5)

where HI is the size of an IP header, and D is the size of one multimedia chunk.

BWlocal =
LTCC

T
(6)

Due to the way P2P streaming applications work, the total traffic can only
be determined if each participating node sends its statistics to a central server or
we can capture at each node. The first approach is only available to the owners
of the application software, while the second is unfeasible due to its scale.

Instead, we will show that CoreCast interdomain traffic is very close to the
theoretical minimum, thus it is unlikely that any P2P network configuration
produces less traffic of this type.

The expression for inter-domain traffic for a single payload in CoreCast has
been computed in Equation 3. We will compute the inter-domain traffic for a
single payload in a P2P network of the same size. Such a network will contain
k + 1 nodes (including the broadcaster) and j + 1 ASs, since the broadcaster is
assumed to be an independent AS.

If we model the P2P network as a graph, in order to cast the payload to
all nodes, the graph must be connected. Some of these connections between
nodes would be inter-domain connections. Let us denote by i the number of
inter-domain arcs in the graph. Since all ASs must be connected, the minimum
number of inter-domain arcs is j, so i > j.

The total transit traffic for a P2P (under LISP) can be written in terms of
the i arcs as

TTP2P = (HL + PCC) · i. (7)

As far as the transit traffic is concerned, CoreCast is more efficient than the
P2P network whenever TTCC 6 TTP2P . Substituting by the corresponding
expressions, we obtain the following equivalent formulation:

HL +HCC

HL + PCC
6
i− j
k

. (8)

The difference i − j is the total number of inter-domain arcs in the P2P that
are not really essential. To ease the interpretation of the results we rewrite this
difference in terms of k, so that i − j = α · k. The parameter α ∈ [0, k − 1]
has a straighforward interpretation: it is the average number of non-essential
inter-domain connections per node. Using α in Equation 8, CoreCast produces
less inter-domain traffic than a P2P when

α >
HL +HCC

HL + PCC
. (9)

The parameter α depends on the particular P2P system and is difficult to esti-
mate. However for reasonable values of header and payload sizes, only for very

11

small values of α is the inequality in Equation 9 not satisfied. For instance,
the LISP header is 20 bytes long (HL = 20), the CoreCast header has 60 bytes
(HCC = 60), and a popular payload size used by live streaming applications is
1200 bytes (PCC = 1200, see [10]). In this case we have that α > 0.0656. Any
P2P system having more than 0.0656 non-essential inter-domain arcs per node
would be less efficient than CoreCast in terms of bandwidth for a 1200 byte
payload size. Even if we decrease the payload size to, e.g., 400 bytes, we get a
very small α = 0.16 lower bound, from which CoreCast is more efficient.

In the next section we present a measurement-based analysis of popular P2P
applications from several vantage points, that help us providing plausible values
for the parameters of Equation 9.

5. Experimental Evaluation

In this section we first describe the datasets collected for our evaluation and
secondly we compare P2P live streaming bandwidth requirements to that of
CoreCast.

5.1. Experimental Datasets
To obtain the experimental datasets needed for the evaluation we performed

several measurement experiments using different P2P live streaming systems.
We passively measured the network traffic of the application and saved the data
for offline analysis. In particular, we collected three different datasets from a
wide variety of well-distributed vantage points at two different live events:

Set 1: This dataset consists of traces collected at multiple different capture
points situated in France and Japan, to obtain a global view of the P2P network.
We passively measured the network traffic of TVAnts, which is a very popular
P2P live streaming application.

Our measurement testbed is divided into two parts: one in France, the other
in Japan. Since a large community of users employ P2P live streaming to watch
live soccer games, we performed our measurement experiment during such kind
of events that also exhibit a strong interest to be watched live. The measured
event was a qualifying soccer match for the Olympic tournament with China
vs. Vietnam on August 23, 2007.

During the experiment, all the PCs were running the TVAnts P2P live
streaming application and WinDump to collect the packets. All the seven traces
we collected have the same duration of 2:45h. This duration is slightly larger
than a soccer game (105 minutes) because we wanted to capture all the events
that may occur at the beginning or the end of the game. The traces show
very similar properties: their average size and number of packets are 2.5 GB
and 3 millions of packets respectively. All the traces count approximately 1,850
distinct IPs. More than 95% of the IPs of a trace are also present in the
other traces. This suggests that we captured the full population of peers in the
measured event. A detailed description of this dataset can be found in [26].
Throughout the paper we refer to the individual traces in this dataset as FR1,
FR2, FR3, FR4, JP1, JP2 and JP3.

12

Set 2: To obtain this dataset we performed a measurement experiment
using the PPLive application, developed and popular especially in China. The
event monitored was the memorial service of Michael Jackson, on July 7, 2009,
during which we passively measured the network traffic of the application and
saved the data for offline analysis in two different vantage points: our network
lab at the Technical University of Catalonia in Barcelona, Spain and a home
broadband network in Cluj-Napoca, Romania. The traces are denoted with ES
and RO respectively in the following. This was a very popular live event, to the
extent that the channel broadcasting it was advertized by the PPLive client to
the users with popups, and attracted a large number of users.

We identified 23,713 and 3,252 unique IP addresses in the RO and ES traces
respectively, during the 2:43h and 3:23h timeframe we captured traffic. The
RO trace is 40 minutes shorter, because traffic capture started later into the
event. We attribute the difference in population to the restrictive firewall of
the university, which caused a significant decrease in the number of different IP
addresses observed in the trace. Additionally, multimedia traffic in the former
is transported predomimantly over UDP, while the latter over TCP. This seems
to corroborate the assumption of the firewall, as TCP connection tracking is
more reliable on stateful firewalls.

5.2. AS Distribution Analysis
Recalling from Equation 9 CoreCast saves bandwidth compared to existing

solutions when these P2P applications use more than 0.16 (α) inter-domain links
per node on average. In order to better understand this parameter we study
the amount of IPs contacted by each monitored node, and how these IPs are
clustered among ASes. They are directly related to the amount inter-domain
links used by each node. Besides the α parameter, the efficiency of CoreCast
heavily depends on how clients viewing the stream are distributed into ASes.
The worst case scenario for CoreCast is when each AS contains a single client,
the best case being all the clients clustered in the same AS.

The 7 traces from Set 1 had very similar characteristics, contacting about
1,850 distinct IP addresses, distributed among approximately 200 ASes. This
results in almost 10 clients per AS on average, but the distribution of clients is
not uniform. Fig 4(a) plots the cumulative distribution of the number of clients
in ASes. We can see that for all data sets we have just over 50% of the ASes
with a single client. These ASes would neither benefit from Corecast, nor be
negatively impacted by its deployment. But there are a few domains containing
a large number of clients, the largest population exceeding 500 viewers. Using
CoreCast in these domains would result in a 500-fold decrease of expensive
inter-domain traffic.

For the RO trace in Set 2, the 23,713 clients were distributed in 1291 ASes
according to the CDF in Fig. 4(b). It is worth noting that the first three ASes
(all of them from China) captured 12,160 clients, which is more than half the
total number of clients. These autonomous systems would have benefited the
most from using CoreCast. In the ES trace, clients cluster even more in the top
ASes: the top two (which are the same as for RO) contain 72% of all viewers.

13

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of clients

C
D

F

FR1
FR2
FR3
FR4
JP1
JP2
JP3

(a) Dataset 1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of clients

C
D

F

ES
RO

(b) Dataset 2

Figure 4: Number of clients per autonomous system

According to these results, P2P clients use tens of inter-domain links on
average, suggesting that α � 0.16, a conservative lower bound for CoreCast’s
efficiency computed in § 4. Particularly the ASes that include a very large
amount of clients would strongly benefit from the use of CoreCast.

5.3. Bandwidth Comparison
In this subsection we aim to estimate the total amount of inter-domain traffic

saved with respect to P2P live streaming systems, based on actual measurement

14

data. We also provide a comparison to unicast, using today’s common parame-
ters.

Typical servers today are equipped with 1 Gbps network cards, with some
high end models supporting 10 Gbps interfaces. A common data rate for mul-
timedia streams is 384 kbps. The maximum number of supported clients by
CoreCast and unicast are given by Equations 1 and 2. A server with a 10 Gbps
capacity, broadcasting a single channel, considering P = HL +PCC = 20+1200,
H = HL +HCC = 20 + 60 = 80, will support 397, 135 clients when using Core-
Cast. Unicast would limit that number to only 26, 041, an order of magnitude
smaller. Note that large content providers could horizontally scale to millions
of viewers using several servers in a datacenter with 40 Gbps or 100 Gbps con-
nectivity.

When comparing CoreCast bandwidth consumption to that of P2P applica-
tions, we need the average payload size, inter-packet arrival times and length
of the broadcast to calculate the total CoreCast traffic. But to get the total
P2P traffic, we either have to capture at each participating node, or have the
client software on each node reporting statistics to a centralized measurement
host. Since the first method is unfeasible due to its scale, and the second is only
available to the owners of the P2P application, we need an alternative approach.
To this end, we considered the Set 1 data, captured using the TVAnts client
software, and estimated the total traffic of a hypothetical, but plausible P2P
system. To build this system, we assume that all peers (c1...k) have a similar
traffic profile. By traffic profile we refer to how the amount of bytes downloaded
from the peers is distributed among them. This assumption seems reasonable
when considering Fig. 5, because the cumulative distribution functions for the
7 capture points almost completely overlap.

10
0

10
2

10
4

10
6

10
8

10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic [bytes]

C
D

F

FR1
FR2
FR3
FR4
JP1
JP2
JP3

Figure 5: Cumulative distribution of the amount of traffic exchanged with peers from the 7
monitoring points of Set 1 : they are almost identical

15

To estimate the total traffic, we determine the video download traffic (in
bytes) of the monitored client in the trace from all contacted peers. We then
create a two-dimensional traffic matrix with both columns and rows represented
by peers ci, and fill the row for c1 with the data determined from the trace. Rows
c2 . . . ck are random permutations of the same values. Iterating through each
element cij of the matrix, knowing the IP addresses of clients we determine
if the communications was transit or local, and sum the amount of bytes to
corresponding counter.

Trace IPs ASes TT [GB] LT [GB]
FR1 1855 209 1940 252
FR2 1865 204 1472 195
FR3 1769 201 1761 228
FR4 1888 207 1974 268
JP1 1856 201 1754 226
JP2 1863 197 1645 215
JP3 1878 194 1840 248
CoreCast 1853 202 131 895

Table 1: Estimated transit (TT) and local (LT) traffic of CoreCast, and a hypothetical P2P
network, based on Set 1

Table 1 shows the results for dataset 1. Column one specifies the trace col-
lection point (except last row, representing CoreCast), while columns two and
three describe the number of unique IP addresses and ASes per trace respec-
tively. Columns TT and LT show the transit and local traffic, calculated with
the algorithm described in the previous paragraph. It is worth noting here that
we are not asserting that Table 1 presents an estimation of the total traffic
produced by the applications running on the monitored networks. Instead, the
values can be thought as the traffic generated by a representative P2P applica-
tion, which is reasonable according to Fig. 5. Using formulae 4 and 6 we also
calculated the equivalent CoreCast traffic (last row), the results suggesting re-
markable savings in terms of transit traffic with respect to P2P systems. On the
other hand, local traffic volume increases when CoreCast is used. Since local
traffic does not incur the same high costs as transit traffic, this should not be a
problem for the destination domain. Moreover, using multicast internally would
bring traffic to the same level as the transit traffic, resulting in an improvement
over P2P even for local traffic. Note that P2P cannot be optimized by using
network layer multicast, while it has been shown [25] that multicast works well
inside autonomous systems.

Fig. 6 shows the cumulative distribution of the previously estimated P2P and
CoreCast inter-domain traffic per autonomous system. As our analysis in § 5.2
showed, approximately 50% of domains have just one client. We can see in the
figure that for these domains the bandwidth requirements of the P2P application
and that of CoreCast are similar, the latter being slightly less efficient. Since
CoreCast sends a separate payload packet and then a separate header packet,

16

10
8

10
9

10
10

10
11

10
12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic [bytes]

C
D

F

CoreCast
FR1
FR2
FR3
FR4
JP1
JP2
JP3

Figure 6: Cumulative distribution of the video download traffic per AS. For the slightly over
50% of ASes with only one peer CoreCast has a small overhead, but performs better in all
other cases

this overhead is to be expected.
The rest of the domains however save considerable amounts of traffic with

CoreCast, and 10% of the them, in the case of this hypothetical P2P network,
consume over an order of magnitude less of bandwidth (best case scenario is a
300-fold deacrese). Considering that 10-fold increases in interconnect technolo-
gies are coming at a deacreasing rate (3 years from 100Mbps to 1Gbps, 4 years
for 1Gbps to 10Gbps and only draft standard 100Gbps in 8 years), this is a very
important improvement.

In summary, the reversal of preference for intra-domain traffic in the case of
CoreCast is beneficial for ISPs, because inter-domain traffic is more expensive.
Additionally, while not all domains would benefit from CoreCast, 10% of do-
mains could have reduced traffic with more than an order of magnitude for our
datasets.

6. Implementation

Because CoreCast introduces additional operations in the packet forwarding
path on supported routers, it is important to quantify the processing overhead
caused by these operations, as excessive overhead would discourage CoreCast
adoption. In the following we quantify the increase in CPU load caused by
CoreCast, compared to unicast forwarding.

6.1. Testbed
In order to test the processing overhead of the CoreCast protocol, we have

implemented it as a Linux 2.6 loadable kernel module. This kernel module

17

Figure 7: Testbed. S generates CoreCast traffic, ITR processes the packets, and CAP captures
the resulting traffic

creates a Netfilter hook, which receives all IP packets before they are routed
and applies Algorithm 1 to them.

Due to the hashing, hash lookup and EID-to-RLOC lookup, CoreCast incurs
an overhead compared to simple unicast packet forwarding. To quantify this
overhead, we set up a small testbed with 3 machines (see Fig. 7): one for gen-
erating packets (S), one for acting as a CoreCast capable ITR and one to count
received packets (CAP). All machines were the same hardware configuration:
3GHz Pentium 4 processor, 1GB of RAM and 2 on-board Intel Gigabit Network
controllers. On the software side, they were running Debian GNU/Linux, with
a 2.6.26 version of the Linux kernel. All machines were running only the bare
minimum of the services necessary to run the experiments.

The first machine, S, was running a CoreCast traffic generator, which we
implemented using raw sockets. For our experiments, we used the generator to
send a 384 Kbps CoreCast stream with 1200 byte payloads every 25 ms, each
payload packet being followed by header packets corresponding to a client list.
To have realistic load on the ITR, in terms of distribution of clients among ASes,
we used the client list from a trace with 1429 clients. The total duration of the
stream was set to 30 seconds. The traffic generator also implements a scaling
factor, which we use to gradually increase the load on the ITR. The scaling
factor is a multiplier, specifying the up-scaling ratio for the total number of
clients. The generator sends header packets to the number of clients present in
the client list, multiplied by the scaling factor, using the same AS distribution.

We performed tests with scaling factors ranging from 1 (simulating 1429
clients) to 7 (10003 clients), repeating each test 20 times and averaging the
results. To avoid artifacts that may be caused by caching or unexpected interface
buffering behavior, the tests were interleaved as follows: we did one test with
scaling factor 1 first, followed by 7, 2, 6, 3, 5, 4, then repeated this process 20
times.

On the ITR we used the sar command to monitor the CPU usage during
each 30 second test. For the baseline unicast forwarding the CoreCast kernel
module was not loaded, and packets were routed without any kind of packet
mangling or filtering. The tests were repeated with the kernel module loaded,
to emulate the CoreCast forwarding model, for a total of 280 experiments. Since
LISP is still not implemented for Linux, we used a static EID-to-RLOC mapping

18

1 2 3 4 5 6 7

50

100

150

200

250

300

Scaling factor

A
ve

ra
ge

 g
en

er
at

ed
 p

ac
ke

t r
at

e
[K

pp
s]

Figure 8: Average generated packet rate on S

cache, which was built based on the AS distribution from the Veetle trace.
Finally, we captured all CoreCast packets on CAP, to determine packet loss.

6.2. Experimental results
Using the algorithm presented in the previous subsection, we obtained in-

creasingly larger values for the number of packets sent per second by S when
increasing the scaling factor (see Fig. 8). The increase was linear up to a scaling
factor of four (equivalent of 5716 clients), at which point the hardware limita-
tions of S caused a slowdown of the increase in packet rate. Figure 9 shows the
evolution of the CPU usage on the ITR for both Unicast and CoreCast forward-
ing, with progressively increasing the scaling factor. The CPU usage shows a
strong correlation with the packet rate in both cases.

As expected, CoreCast incurs higher CPU usage than simple unicast packet
forwarding. However, the increase is about 52% on average. To find out what
causes this significant increase, we selectively disabled the hashing, hash lookup
and EID-to-RLOC lookup functions of the ITR CoreCast kernel module. SHA1
hashing surprisingly did not incur any measurable overhead, compared to the
unicast forwarding. The Linux kernel includes several highly optimized cryp-
tographic functions, among them SHA1, which explaines why it performed so
well. Please not that other systems include similar optimizations, and on a pro-
duction CoreCast capable router this hash could be implemented in hardware,
basically eliminating the overhead caused by hashing.

We determined the increase in packet processing load was cased by EID-
to-RLOC lookups. Our module implements a naive linear search algorithm,

19

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Scaling factor

C
P

U
 u

sa
ge

 [%
]

0% CoreCast
33% CoreCast
66% CoreCast
100% CoreCast

Figure 9: CPU usage on ITR

which is inefficient for this task. However, a production router would use ei-
ther expensive Ternary Content-Accessable Memory memory for this purpose,
or implement highly optimized radix tries for lookups. Moreover, EID-to-RLOC
lookups are a mandatory function of any LISP router, independently of Core-
Cast, which means that our proposal adds virtually no measurable overhead to
packet processing.

7. Related Work

CoreCast is a network-layer protocol that offers reliable live streaming and
that works on top of LISP. In today’s Internet, live events are transmitted
over the Internet using either traditional unicast or large P2P networks such as
[4, 6, 8, 7, 9] (see a survey in [5]). These P2P systems use complex application-
layer overlay networks and their performance has been largely analyzed by the
research community [10, 11, 12, 13, 14, 15, 16, 17]. The main findings are that
they cannot offer an acceptable quality of experience to all the users all the time
[17]. This is mainly because the limited upload capacity of the peers and churn,
users joining/leaving the overlay at any time. Consequently, P2P streaming
systems cannot be considered as the long-term solution for the transmission of
live multimedia over the Internet. CoreCast is a pure network-layer approach
built of top of LISP that can offer reliable transmission of live multimedia con-
tent. Because of its architecture, CoreCast allows content providers and ISPs
to establish Service Level Agreements.

20

The second approach to transmit live content over the Internet is traditional
unicast. Since unicast suffers from severe scalability issues, it is often used in
combination with Content Delivery Networks (CDN) such as [27, 28, 29]. These
networks deploy geographically distributed servers in the Internet, replicating
the multimedia content. This content is usually distributed using P2P networks
[30]. Finally, the users receive the content from the closest copy. This approach
can be considered as a hybrid solution, where first the content is distributed
using an overlay (application-layer), and then the users access this content di-
rectly using unicast (network-layer). Within this context, CoreCast can also
operate in conjunction with CDNs, helping to distribute the content from the
central servers to the distributed delivery servers, significantly reducing the
overall bandwidth consumption, and hence, decreasing the CDN’s operational
costs.

CoreCast can also be seen as an explicit IP multicast solution [2]. The most
similar approach to CoreCast is Xcast [31]. This protocol operates as follows:
data is sent to a special destination address and all routers in the data path
have to know how to handle that special multicast address to reach subscribed
clients. Xcast explicitly specifies all destinations in its protocol header. This
significantly limits the use of Xcast to small groups, thus it cannot be used for
broadcasting popular events.

Finally, it is worth to mention that LISP also incorporates a multicast proto-
col [32], which extends traditional IP multicast [2] to LISP. It requires support
at the core routers as well, in addition to the border routers. As IP multi-
cast, this leads to very high deployment costs [3], and that’s the main reason
why IP multicast has not found wide-spread deployment. In contrast, CoreCast
is intended to be shipped with LISP (not LISP multicast), and LISP requires
upgrading only the domain’s border routers.

8. Conclusions and Future Work

In this paper we have presented CoreCast, a reliable network layer live
streaming protocol. The main improvements over existing solutions are archi-
tectural: it is a simple protocol that provides one-to-many multicast in a future
core/edge separated Internet. CoreCast circumvents the high deployment cost
of previous network layer approaches because it works on top of LISP. Note
that there is considerable consensus in the routing research community that
the current routing system must be upgraded, and splitting the current address
space is seen as the most scalable solution [19]. CoreCast has been implemented
to operate on LISP, however it could operate on other proposals [20, 21] with
minor modifications. Therefore, CoreCast’s low deployment cost is not limited
to LISP, but to any core/edge separation protocol deployed in the Internet.

The CoreCast architecture enables network planning for ISPs, because they
can estimate the resources necessary for supporting a given number of streams.
This further allows service level agreements between content providers and ser-
vice providers, ensuring proper delivery of the content for the former and open-
ing a new business opportunity to the latter.

21

Another contribution of the paper is the Linux implementation of CoreCast.
Using this implementation we saw a 52% increase in CPU usage when comparing
unicast and CoreCast forwarding. The increase was determined to be caused
by the EID-to-RLOC lookup function, which is part if the LISP protocol, and
will be offered by future LISP routers. This operation is easily optimizable in
hardware and will likely have negligible overhead in production equipment.

Additionally, our analytical model, combined with measurement data, sug-
gests that compared to reasonable P2P live streaming systems, CoreCast pro-
duces significantly less inter-domain traffic. The gains depend on the distribu-
tion of clients among autonomous systems, with as much as 300-fold decrease
observed in our datasets.

As future work we plan implementing CoreCast in Cisco’s existing LISP
testbed (lisp4.net and lisp6.net).

Acknowledgements

This work has been partially supported by the Department of Innovation,
Universities and Enterprise of the Generalitat of Catalonia under scholarship
number 2006FI-00935 and under grant 2009SGR-1140.

References

[1] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, S. Tewari, Will IPTV ride
the peer-to-peer stream?, IEEE Communications Magazine 45 (6) (2007)
86–92.

[2] S. Deering, Host extensions for IP multicasting, RFC 1112 (Standard)
(Aug. 1989).

[3] C. Diot, B. N. Levine, B. Lyles, H. Kassem, D. Balensiefen, Deployment
issues for the IP multicast service and architecture, IEEE Network 14 (1)
(2000) 78–88.

[4] X. Zhang, J. Liu, B. Li, T.-S. P. Yum, CoolStreaming/DONet: A data-
driven overlay network for peer-to-peer live media streaming, in: Proceed-
ings of the 24th Conference on Computer Communications (IEEE INFO-
COM ’05), 2005.

[5] J. Liu, B. Li, J.-Q. Zhang, Adaptive video multicast over the Internet,
IEEE Multimedia 10 (1) (2003) 22–33.

[6] Sopcast.
URL http://www.sopcast.com/

[7] PPLive.
URL http://www.pplive.com/

22

[8] TVAnts.
URL http://www.tvants.com/

[9] UUSee.
URL http://www.uusee.com/

[10] X. Hei, C. Liang, J. Liang, Y. Liu, K. W. Ross, A measurement study of
a large-scale P2P IPTV system, IEEE Transactions on Multimedia 9 (8)
(2007) 1672–1687. doi:10.1109/TMM.2007.907451.

[11] X. Hei, Y. Liu, K. W. Ross, Inferring network-wide quality in p2p live
streaming systems, IEEE Journal on Selected Areas in Communications
25 (9) (2007) 1640–1654.

[12] S. Ali, A. Mathur, H. Zhang, Measurement of commercial peer-to-peer live
video streaming, in: Proceedings of Workshop in Recent Advances in Peer-
to-Peer Streaming, 2006.

[13] T. Silverston, O. Fourmaux, Measuring P2P IPTV systems, in: Proceed-
ings of NOSSDAV ’07, 2007.

[14] B. Li, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, X. Zhang, An
empirical study of the Coolstreaming+ system, IEEE Journal on Selected
Areas in Communications 25 (9) (2007) 1627–1639.

[15] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, X. Zhang, Inside the new
coolstreaming: Principles, measurements and performance implications, in:
Proceedings of the 27th Conference on Computer Communications (IEEE
INFOCOM ’08), 2008, pp. 1031–1039.

[16] T. Silverston, O. Fourmaux, A. Botta, A. Dainotti, A. Pescapé,
G. Ventre, K. Salamatian, Traffic analysis of peer-to-peer IPTV
communities, Elsevier Computer Networks 53 (4) (2009) 470–484.
doi:http://dx.doi.org/10.1016/j.comnet.2008.09.024.

[17] C. Wu, B. Li, S. Zhao, Diagnosing network-wide P2P live streaming ineffi-
ciencies, in: Proceedings of IEEE INFOCOM ’09 Mini-conference, 2009.

[18] D. Farinacci, V. Fuller, D. Meyer, D. Lewis, Locator/ID Separation Proto-
col (LISP), draft-ietf-lisp-05, work in progress (Sep. 2009).

[19] D. Meyer, L. Zhang, K. Fall, Report from the IAB Workshop on Routing
and Addressing, RFC 4984 (Informational) (Sep. 2007).

[20] C. Vogt, Six/one router: A scalable and backwards compatible solution for
provider-independent addressing, in: Proceedings of the 3rd International
Workshop on Mobility in the Evolving Internet Architecture (MobiArch
’08), 2008.

23

[21] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang, L. Zhang,
Towards a new Internet routing architecture: Arguments for separating
edges from transit core, in: 7th ACM Workshop on Hot Topics in Networks
(HotNets ’08), 2008.

[22] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. Liu, A. Silberschatz, P4P:
Provider portal for applications, in: Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, 2008.

[23] L. Jakab, A. Cabellos-Aparicio, J. Domingo-Pascual, CoreCast: Efficient
live streaming in the core-edge separated Internet, in: ACM SIGCOMM
’09 poster session, 2009.

[24] D. Meyer, The locator identifier separation protocol (LISP), The Internet
Protocol Journal 11 (1) (2008) 23–36.

[25] M. Cha, P. Rodriguez, S. Moon, J. Crawcroft, On next-generation telco
managed P2P TV architectures, in: Proceedings of the 7th International
Workshop on Peer-to-Peer Systems (IPTPS ’08), 2008.

[26] T. Silverston, Peer-to-peer video live streaming: Measurement experiments
and traffic analysis, Ph.D. thesis, Université Pierre et Marie Curie (Sep.
2009).

[27] Akamai Technologies.
URL http://www.akamai.com/

[28] EdgeCast Networks.
URL http://www.edgecast.com/

[29] LimeLight Networks.
URL http://www.limelightnetworks.com/

[30] S. Androutsellis-Theotokis, D. Spinellis, A survey of peer-to-peer content
distribution technologies, ACM Computing Surveys 36 (4) (2004) 335–371.

[31] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, Explicit Multicast
(Xcast) Concepts and Options, RFC 5058 (Experimental) (Nov. 2007).

[32] D. Farinacci, D. Meyer, J. Zwiebel, S. Venaas, LISP for Multicast Environ-
ments, draft-ietf-lisp-multicast-02, work in progress (Sep. 2009).

24

