

COST 290 :: Wi-QoST :: Traffic and QoS Management in Wireless Multimedia Networks

http://www.cost290.org

TD(08)006

The 11th COST 290 MC Meeting

 Tampere University of Technology (TUT), Finland, May 27 – 28, 2008

WAN Emulator Software Tool

Andrei Bogdan Rus, Virgil Dobrota

Technical University of Cluj-Napoca, Communications Department
26-28 Baritiu Street, 400027 Cluj-Napoca, Romania

Tel/Fax: +40-264-597083
E-mails: {bogdan.rus, virgil.dobrota}@com.utcluj.ro

René Serral Gracià, Jordi Domingo-Pascual

Universitat Politecnica de Catalunya, Barcelona, Dept. d'Arquitectura de Computadors,

Jordi Girona 1-3, E-08034 Barcelona, Spain,
Tel: +34-93-4016981,

E-mails: {rserral, jordi.domingo@ac.upc.edu}

Abstract

Testing in real life conditions is not as easy as it first seems, because often it is costly and
difficult to reproduce Internet behavior in controlled environment. WAN Emulator (WANE)
proposed herein is a software tool that helps controlling the IP traffic parameters of a network,
like delay, packet loss or packet duplication. The advantage of this software is that is using
free tools implemented in Linux kernels but offers a friendly graphical interface, so that the
researcher does not have to bother with time consuming operations like creating the tc tree,
marking the specific traffic and filtering it.

Keywords

WAN emulator, IP traffic parameters, iptables, tc, One-Way Active Measurement Protocol

 1

WAN Emulator Software Tool

Andrei Bogdan Rus, Virgil Dobrota, René Serral Gracià, Jordi Domingo-Pascual

Abstract

Testing in real life conditions is not as easy as it first seems, because often it is costly and difficult to
reproduce Internet behavior in controlled environment. WAN Emulator (WANE) proposed herein is a
software tool that helps controlling the IP traffic parameters of a network, like delay, packet loss or
packet duplication. The advantage of this software is that is using free tools implemented in Linux
kernels but offers a friendly graphical interface, so that the researcher does not have to bother with
time consuming operations like creating the tc tree, marking the specific traffic and filtering it.

1. Introduction

Testing in real life conditions is not as easy as it first seems, because often it is costly and difficult to
reproduce Internet behaviour in a controlled environment. The current tools available involve expensive
hardware or proprietary solutions. However there is a software tool called NetEm (Network Emulator)
which is an enhancement of the traffic control facilities provided by the Linux Kernel. The major
advantage of this open-source software is related to its good performances. On the other hand, it is rather
difficult to use NetEm, as it requests advanced knowledge in traffic control under Linux. The proposed
tool, called WANE (WAN Emulator), has a friendly user interface, while maintaining the good
performance in evaluations.

The rest of the paper is structured as follows: the next section presents the software tool developed in this
work, after this, we follow the discussion by explaining the basis of the core technologies used in this
work, namely iptables, tc (traffic control) and NetEm Qdisc Design. Later we present the tests and
results along with the limitations of the system. Finally we conclude and detail the further lines of
research.

2. Software Tools: iptables,tc and NetEm

WANE is a software tool for Linux platforms and it is integrated into NetMeter, developed by
Universitat Politecnica de Catalunya in Barcelona [1]. The software was designed to test the measuring
tools already developed in NetMeter.

Figure 1. Testbed architecture

In Figure 1 we have illustrated the way that WANE is used in the testbed. The parameters that can be
emulated with this tool are the following: delay, jitter, dropped packets and duplicate packets. Another
facility that WANE offers is the ability to emulate several scenarios in the same time for different data
differentiated by a series of parameters such as: source/destination address, mask and port; protocol (TCP,
UDP or ICMP); input network interface of the router controlled by WANE.

 2

The proposed emulator uses two tools implemented in Linux kernel: iptables and tc. In order to
implement a specific scenario, the steps covered by the tool are listed below.

1. Marking the specific traffic flow for which the tc parameters are configured using iptables.

2. Building the tc tree composed by queuing disciplines and enabling the changes of IP parameters for

the output data traffic. This step is implemented with the tc tool.

3. Filtering the flows with a specific mark previously set to the packet in the first step, and sending them

to a specific branch from the tc tree built in step two. To implement it we used the filtering option of
this tool.

iptables is the native packet filtering mechanism for the Linux 2.4 and above kernel series. We can
use it to filter packets, implement network address translation and mangle packets. There are three
default chains for filtering packets: INPUT, OUTPUT and FORWARD, and two default chains for
network address translation: PREROUTING and POSTROUTING, and three tables: filter, nat and
mangle.

Figure 2. iptables architecture.

In Figure 2 we can see the chains through which the packets are going, when the iptables service is
enabled in Linux kernels. In this paper we used the mangle table in order to mark packets from a
specific data flow. The marking rules were set into the PREROUTING chain from the mangle table. We
later used this mark in order to identify the flows and apply the desired changes in the network metrics.

 3

There are three targets into the mangle table: TOS, TTL and MARK. TOS is used to modify the Type
of Service field in the packet, TTL target can change the TTL (Time To Live) field from the header and
MARK associates special mark values to the data flows. When using the MARK target, the value is not
actually set into the packet but it is associated to the socket descriptor internally on the Linux kernel.

tc is an efficient and flexible software tool, implemented in Linux kernels, based on the concept of
queue, i.e. a stack where the binary data is stored, before sending it to the network interface. The
queues can have classes with different parameters and priorities. However the major issue is that it is
complex to work with and requires some experience. One of the major goals of WANE tool is to make
the user’s job easier so the researchers will not have to bother with how the settings will be
implemented, as long as they know exactly what parameters are needed and their exact values.

The position of Linux queuing disciplines into the TCP/IP stack is shown in to the Figure 3.

Figure 3. Layering of tc queuing disciplines.

A queuing discipline (qdisc) is a simple object with two key interfaces. The first one is putting the
packets that need to be sent to the network, into the queue, and the other one, releases packets to the
network device. tc supports two types of qdiscs: classless qdiscs (that can have multiple classes
attached) and classful qdiscs (that have only one class attached). Each type of qdisc can be useful in
different situations.

For instance, if we want to offer differentiated services to data flows, classful qdisc should be used.
First we link a number of classes having different priorities or behaviors to the parent qdisc, and then
we filter the packets by a set of parameters, and send them to one of these classes.

WAN Emulator uses a tc tree and builds it depending of the user needs, as in Figure 4. The root of the
tree is a HTB qdisc used to limit the maximum transfer rate for the data flow. This option is used when
the user wants to emulate a slower connection. By default, WANE will create a class with a maximum
rate set to the link speed. Attached to the HTB class there is NetEm qdisc. This provides the
functionality to emulate IP traffic parameters for testing several protocols. The current version emulates
variable delay, loss and packet duplication [4].

A NetEm qdisc can emulate only one type of IP parameter, so in order to create a more complex
behavior we have to cascade this type of qdiscs. If no qdisc is attached to the NetEm’s class, we call

 4

this a leaf class because is the last one through which the traffic goes before being send to the network
interface.

Figure 4. Traffic control tree build by WANE.

After creating the tree, the last step is to implement the filters used to discriminate the packets based on
a set of parameters and send them to a specific branch of the tree that emulates a specific scenario. In
this case, the packets are filtered according to their associated mark set by iptables.

NetEm is an enhancement of the tc tool and it can be used to emulate IP traffic parameters like: packet
delays, dropped packets or duplicate packets. It consists of two parts, a small kernel module for a
queuing discipline and a command line utility to configure it. The module has been integrated in Linux
2.6.8 kernels or later, and the command line utility is part of the traffic control package.
Communication between the command line and the kernel module is done via the Netlink socket
interface. Requests are encapsulated into a standard message format that is interpreted by the kernel.

3. OWAMP Testing Tool

OWAMP is one of the tools used to test the performance of WANE. It contains a command line client
application and a policy daemon, using the protocol defined by RFC 4656 (A One-way Active
Measurement Protocol) written by S. Shalunov, B. Teitelbaum, A. Karp, J. Boote, M. Zekauskas, in
September 2006.

OWAMP measures unidirectional characteristics such as one-way delay, one-way loss and one-way
duplications. High-precision measurement of these one-way IP performance metrics became possible
with wider availability of good time synchronization sources (such as GPS and CDMA).

 5

Figure 5. OWAMP Architecture

As it can be seen in Figure 5, OWAMP is a client-server application. The owping client contacts the
owampd daemon on the peer host to request a specific test. This includes a series of traffic test
parameters like: transmission rate, packet size in bytes and direction (from server to client or vice-
versa).

owampd is responsible for accepting or denying the test requests. It was developed as a classic
accept/fork daemon that listens for new network connections and also manages the resources for all
child processes. Once a connection request is received, owampd forks a child process to handle it. As
soon as a test session is accepted, the client and server both fork the OWD (One-Way Delay) Test
Endpoint that actually sends and receives the packets used in the tests. These processes are
implemented using identical code on both the server and the client.

When measuring the delay between a source and a destination, OWAMP tool writes into the data
packets a timestamp and calculates the difference between the time when the packet was received and
the time when the packet was sent. This is the reason why the NTP (Network Time Protocol) service
must run on both source and destination computers, as their system clocks must be synchronized for
meaningful measurement results. In this testbed we used Palisade GPS synchronization kit to
synchronize the source and destination computers with the router PC which was the NTP server. The
testbed including the synchronization kit can be seen in Figure 6:

Figure 6. Testbed with Synchronization Kit

 6

4. Tests And Results

We tested if the parameters (such as delay, percentages of dropped or duplicate packets and throughput)
applied to WAN Emulator properly influenced the traffic flows.

Figure 7. Experimental results: delay tests 1-4

First, we used the OWAMP tool in order to measured packet delay from a specific source to a
destination. Within the first test in WANE we considered a fixed delay of 100 ms, whilst in the second
test each packet was delayed randomly within a range of values 180 ms and 220 ms. Test 3 took into
consideration the fact that the delay variation (jitter) is not purely random in real networks. So we
specified a correlation between two consecutive values. This represented how much of the current delay
applied to the packet depended on the previous one. This correlation is described analytically in the
following equation:

1 1
100 100n n
Corr CorrDelay Delay RandDelay−

⎛ ⎞= ⋅ ± ⋅ −⎜ ⎟
⎝ ⎠

 (1)

where Delayn refers to the current packet and Delayn-1 to the previous packet. Corr is the correlation
and RandDelay is a random delay value. Within the third test the delay was in the range 280 ms up to
320 ms, with a correlation of 80%. Finally, the fourth test took the delay between 380 ms and 420 ms,
with a normal distribution. Note that the normal distribution, also known as Gaussian, is a family of
continuous probability distributions, defined by two parameters: the mean ("average") ,μ and the
variance ("variability") σ2, respectively. WANE implemented a mean of zero and a variance of one (the
green curve in Figure 8).

Figure 8. Normal (Gaussian) distribution

 7

The density of probability function for the normal distribution is given by the equation:

2

2
()

21(; ,)
2

x

f x e
μ
σμ σ

σ π

−
−

= (2)

Figure 9. Normal distribution implemented by WANE

In Figure 8 we represented the percentages of packets delayed versus the delay (in milliseconds). This
result proved that the emulator managed to impose a normal distribution.

Later on a Pareto distribution was analyzed too, in order to demonstrate that WANE is able to implement
it. The graphical representation of the PDF (Probability Density Function) can be seen in Figure 10 and
its definition is given by the formula:

1(; ,)
k
m

m mk

xf x k x k for x x
x += ≥ (3)

for all x ≥ xm, where xm is the minimum possible value of x (necessarily positive) and k represents a
positive parameter.

Figure 10. Pareto distribution

 8

According to Figure 11, WANE can successfully emulate delays that have a Pareto distribution.

Figure 11. Pareto distribution

NetEm implements a specific discipline by taking a table to specify the distribution. The actual tables
(normal, Pareto) are generated as part of the tc compilation and placed in /usr/lib/tc on the Linux
machine. With additional effort it is even possible to make your own distribution based on experimental
data and to store it in the same location as for the others [4].

The second group of experiments was devoted to check how accurate WANE can emulate packet
dropping. Before doing a measurement we configured the emulator to discard a specific percentage of
packets. For each set we performed three tests, taking the average as a final result. We also repeated the
tests to see if the performance is the same if we vary the throughput. Observe from Table 1 that the
difference between imposed values of dropped packets and the measured ones was less than 1%. This
performance is good enough for emulating a certain connection as in a real network. The same procedure
was applied for duplicate packets, the results being presented in the Table 2. Again the WANE emulation
errors were less than 1%.

Measured value at: Value
imposed

by WANE
[%]

1kB/s
[%]

10kB/s
[%]

100kB/
s [%]

1MB/s
[%]

10 9.8 10.1 9.8 10.1
20 20.3 20.2 19.9 19.9
30 29.5 30.4 30.2 30.2
40 39.1 40.8 40.1 39.8
50 50.2 49.2 49.8 50.1
60 59.7 59.6 60.2 60.3
70 70.4 69.9 70.3 69.8
80 80.1 79.6 79.7 80.4
90 90.3 90.1 89.8 90

Table 1. Packets dropped

 9

Measured value at: Value
imposed

by WANE
[%]

1kB/s
[%]

10kB/s
[%]

100kB/s
[%]

1MB/s
[%]

10 10.3 10.1 9.7 10.1
20 19.6 20 19.8 20.2
30 29.5 30.2 30.1 29.9
40 40.6 39.9 40.3 39.8
50 50.1 49.8 49.8 50.2
60 60.2 60.3 60.1 60.1
70 69.8 69.7 69.9 69.9
80 80.2 79.8 80.2 79.9
90 90.1 90.2 90.1 90.2

Table 2. Duplicate packets

Maximum
throughput
imposed by

WANE

Average
throughput
measured

Error [%]

10 [kbps] 9.59 [kbps] 4.10
50 [kbps] 48.06 [kbps] 3.89
100 [kbps] 97.33 [kbps] 2.67
500 [kbps] 479.17 [kbps] 4.17
1 [Mbps] 0.95 [Mbps] 5.00
5 [Mbps] 4.79 [Mbps] 4.20
10 [Mbps] 9.58 [Mbps] 4.20
50 [Mbps] 47.89 [Mbps] 4.22
100 [Mbps] 95.95 [Mbps] 4.05

Table 3. Maximum throughput

Next we investigated the maximum transfer rate using a tool called NetPerf [5]. Thus we started from 10
kbps up to 100 Mbps. For each maximum rate imposed by WANE several tests were performed, the
average throughput been presented in the Table 3. Observe that in this case the emulation error was less
than 5%. There are several reasons for this. First is the fact that the measuring tool worked at the
Application Layer and it did not count the headers added to the packets. Moreover TCP automatically
adjusted the transmission window, usually underestimating the available throughput. The formula for the
error value was the following:

 _[%] 100

_
Val imposed averageer

Val imposed
−

= ⋅ (4)

Regarding the limitations of WAN Emulator tool, these are due to the disadvantages inherited from
NetEm qdisc. So, NetEm does its best to a single flow. However, real world networks are quite complex
and the emulation inevitably breaks down in some circumstances. Linux version used was not a real-time
operating system and this generates some constraints on the performance of a real-time simulator such as
NetEm. Kernel timers are limited by the system time tick rate of 1000 Hz (1 ms) on Linux 2.6. The Linux
2.4 kernel uses a slower 100 Hz clock (10 ms). Therefore NetEm can not be used to emulate relatively
short delay networks of less than 1 ms [6].

 10

6. Conclusions

NetEm (Network Emulator) proved to be a useful tool for testing protocol behaviour. It provided the
necessary statistical options to emulate real world network response. The author of NetEm developed this
tool, in order to validate BIC TCP and TCP Vegas protocols for the Linux 2.6 kernel. But since then,
many other developers used NetEm to test protocols and applications. The proposed tool WANE (WAN
Emulator) made the job easier for the researchers because they will not have to bother with creating the
tc tree, marking the specific traffic and filtering it. All these operations are made by WANE in a decent
time with the same accuracy as NetEm. As future work, we want to improve WANE in order to support
IPv6 traffic. Additionally we envisage an extra feature of the emulator to be able to corrupt packets and
to test how this could influence the quality of the tested flow

References

[1] ***, http://www.ccaba.upc.edu/netmeter
[2] http://www.ks.uni-freiburg.de/download/inetworkSS04/practical/iptables-intro-short.pdf
[3] MA.Brown, Traffic Control HOWTO, http://linux-ip.net/articles/Traffic-Control-HOWTO/classful-qdiscs.html, 2006
[4] ***,http://linux-net.osdl.org/index.php/Netem
[5] ***,http://www.netperf.org/netperf/training/Netperf.html
[6] S.Hemminger, Network Emulation with NetEm, 2005
[7] J.Boxman, A Practical Guide to Linux Traffic Control, Chapter 6.3 Using the Netfilter MARK Target,

http://trekweb.com/~jasonb/articles/traffic_shaping/ classlows.html
[8] B.Hubert, Linux Advanced Routing & Traffic Control HOWTO, http://lartc.org/howto/

