
K-dimensional trees for continuous traffic
classification

Valent́ın Carela-Español1, Pere Barlet-Ros1, Marc Solé-Simó1, Alberto
Dainotti2, Walter de Donato2, and Antonio Pescapé2

1 Department of Computer Architecture, Universitat Politècnica de Catalunya (UPC)
vcarela,pbarlet,msole@ac.upc.edu

2 Department of Computer Engineering and Systems, Universitá di Napoli Federico II
alberto,walter.dedonato,pescape@unina.it

Abstract. The network measurement community has proposed multi-
ple machine learning (ML) methods for traffic classification during the
last years. Although several research works have reported accuracies over
90%, most network operators still use either obsolete (e.g., port-based)
or extremely expensive (e.g., pattern matching) methods for traffic clas-
sification. We argue that one of the barriers to the real deployment of
ML-based methods is their time-consuming training phase. In this paper,
we revisit the viability of using the Nearest Neighbor technique for traffic
classification. We present an efficient implementation of this well-known
technique based on multiple K-dimensional trees, which is characterized
by short training times and high classification speed.This allows us not
only to run the classifier online but also to continuously retrain it, with-
out requiring human intervention, as the training data become obsolete.
The proposed solution achieves very promising accuracy (> 95%) while
looking just at the size of the very first packets of a flow. We present an
implementation of this method based on the TIE classification engine as
a feasible and simple solution for network operators.

1 Introduction

Gaining information about the applications that generate traffic in an opera-
tional network is much more than mere curiosity for network operators. Traffic
engineering, capacity planning, traffic management or even usage-based pricing
are some examples of network management tasks for which this knowledge is
extremely important. Although this problem is still far from a definitive solu-
tion, the networking research community has proposed several machine learning
(ML) techniques for traffic classification that can achieve very promising results
in terms of accuracy. However, in practice, most network operators still use either
obsolete (e.g., port-based) or unpractical (e.g., pattern matching) methods for
traffic identification and classification. One of the reasons that explains this slow
adoption by network operators is the time-consuming training phase involving
most ML-based methods, which often requires human supervision and manual
inspection of network traffic flows.

In this paper, we revisit the viability of using the well-known Nearest Neigh-
bor (NN) machine learning technique for traffic classification. As we will discuss
throughout the paper, this method has a large number of features that make
it very appealing for traffic classification. However, it is often discarded given
its poor classification speed [11, 15]. In order to address this practical problem,
we present an efficient implementation of the NN search algorithm based on a
K-dimensional tree structure that allows us not only to classify network traffic
online with high accuracy, but also to retrain the classifier on-the-fly with min-
imum overhead, thus lowering the barriers that hinder the general adoption of
ML-based methods by network operators.

Our K-dimensional tree implementation only requires information about the
length of the very first packets of a flow. This solution provides network oper-
ators with the interesting feature of early classification [2, 3]. That is, it allows
them to rapidly classify a flow without having to wait until its end, which is a
requirement of most previous traffic classification methods [7,12,16]. In order to
further increase the accuracy of the method along with its classification speed,
we combine the information about the packet sizes with the relevant data still
provided by the port numbers [11].

We present an actual implementation of the method based on the Traffic
Identification Engine (TIE) [5]. TIE is a community-oriented tool for traffic
classification that allows multiple classifiers (implemented as plugins) to run
concurrently and produce a combined classification result.

Given the low overhead imposed by the training phase of the method and
the plugins already provided by TIE to set the ground truth (e.g., L7 plugin),
the implementation has the unique feature of continuous training. This feature
allows the system to automatically retrain itself as the training data becomes
obsolete. We hope that the large advantages of the method (i.e., accuracy (>
95%), classification speed, early classification and continuous training) can give
an incentive to network operators to progressively adopt new and more accurate
ML-based methods for traffic classification.

The remainder of this paper is organized as follows. Section II reviews the
related work. Section III describes the ML-based method based on TIE. Section
IV analyzes the performance of the method and presents preliminary results
of its continuous training feature. Finally, Section V concludes the paper and
outlines our future work.

2 Related Work

Traffic classification is a classical research area in network monitoring and several
previous works have proposed different solutions to the problem. This section
briefly reviews the progress in this research field, particularly focusing on those
works that used the Nearest Neighbor algorithm for traffic classification.

Originally, the most common and simplest technique to identify network ap-
plications was based on the port numbers (e.g., those registered by the IANA [9]).
This solution was very efficient and accurate with traditional applications. How-

ever, the arrival of new applications (e.g., P2P) that do not use a pre-defined set
of ports or even use registered ones from other applications made this solution
unreliable to classify current Internet traffic.

Deep packet inspection (DPI) constituted the first serious alternative to the
well-known ports technique. DPI methods are based on searching for typical sig-
natures of each application in the packet payloads. Although these techniques can
potentially be very accurate, the high resource requirements of pattern match-
ing algorithms and their limitations in the presence of encrypted traffic make
their use incompatible with the continuously growing amount of data in current
networks.

Machine learning techniques (ML) were later proposed as a promising so-
lution to the well-known limitations of port- and DPI-based techniques. ML
methods extract knowledge of the characteristic features of the traffic generated
by each application from a training set. This knowledge is then used to build a
classification model. We refer the interested reader to [13], where an extensive
comparative study of existing ML methods for traffic classification is presented.

Among the different ML-based techniques existing in literature, the NN
method rapidly became one of the most popular alternatives due to its sim-
plicity and high accuracy. In general, given an instance p, the NN algorithm
finds the nearest instance (usually using the Euclidean distance) from a train-
ing set of examples. NN is usually generalized to K-NN where K refers to the
number of nearest neighbors to take into account.

The NN method for traffic classification was firstly proposed in [14], where a
comparison of the NN technique with the Linear Discriminant Analysis method
was presented. They showed that NN was able to classify, among 7 different
classes of traffic, with an error rate below 10%.

However, the most interesting conclusions about the NN algorithm are found
in the works from Williams et al. [15] and Kim et al. [11]. Both works compared
different ML methods and showed the pros and cons of the NN algorithm for
traffic classification. In summary, NN was shown to be one of the most accu-
rate ML methods, with the additional feature of requiring zero time to build
the classification model. However, NN was the ML-based algorithm with the
worst results in terms of classification speed. This is the reason why NN is often
discarded for online classification.

The efficient implementation of the NN algorithm presented in this paper
is based instead on the K-dimensional tree, which solves its problems in terms
of classification speed, while keeping very high accuracy. Another important
feature of the method is its ability to early classify the network traffic. This idea
is exported from the work from Bernaille et al. [2, 3]. This early classification
feature allows the method to classify the network traffic by just using the first
packets of each flow. Bernaille et al. compared three different unsupervised ML
methods (K-Means, GMM and HMM), while in this work we apply this idea to
a supervised ML method (NN).

As ML-based methods for traffic classification become more popular, new
techniques appear in order to evade classification. These techniques, such as

protocol obfuscation, modify the value of the features commonly used by the
traffic classification methods (e.g., by simulating the behavior of other applica-
tions or padding packets). Several alternative techniques have been also proposed
to avoid some of these limitations. BLINC [10] is arguably the most well-known
exponent of this alternative branch. Most of these methods base their identifi-
cation in the behavior of the end-hosts and, therefore, their accuracy is strongly
dependent on the network viewpoint where the technique is deployed [11].

3 Methodology

This section describes the ML-based classification method based on multiple
K-dimensional trees, together with its continuous training system. We also in-
troduce TIE, the traffic classification system we use to implement our technique,
and the modifications made to it in order to allow the method to continuously
retrain itself.

3.1 Traffic Identification Engine

TIE [5] is a modular traffic classification engine developed by the Universitá
di Napoli Federico II. This tool is designed to allow multiple classifiers (imple-
mented as plugins) to run concurrently and produce a combined classification
result. In this work, we implement the traffic classification method as a TIE
plugin.

TIE is divided in independent modules that are in charge of the different
classification tasks. The first module, Packet Filter, uses the Libpcap library to
collect the network traffic. This module can also filter the packets according to
BPF or user-level filters (e.g., skip the first n packets, check header integrity or
discard packets in a time range). The second module, Session Builder, aggre-
gates packets in flows (i.e., unidirectional flows identified by the classic 5-tuple),
biflows (i.e., both directions of the traffic) or host sessions (aggregation of all the
traffic of a host). The Feature Extractor module calculates the features needed
by the classification plugins. There is a single module for feature extraction in
order to avoid redundant calculations for different plugins. TIE provides a multi-
classifier engine divided in a Decision Combiner module and a set of classification
plugins. On the one hand, the Decision Combiner is in charge of calling several
classification plugins when their features are available. On the other hand, this
module merges the results obtained from the different classification plugins in
a definitive classification result. In order to allow comparisons between different
methods, the Output module provides the classification results from the Clas-
sification Combiner based on a set of applications and groups of applications
defined by the user.

TIE supports three different operating modes. The offline mode generates
the classification results at the end of the TIE execution. The real-time mode
outputs the classification results as soon as possible, while the cycling mode is
an hybrid mode that generates the information every n minutes.

3.2 KD-Tree plugin

In order to evaluate the traffic classification method, while providing a ready-to-
use tool for network operators, we implement the K-dimensional tree technique
as a TIE plugin. Before describing the details of this new plugin, we introduce the
K-dimensional tree technique. In particular, we focus on the major differences
with the original NN search algorithm.

The K-dimensional tree is a data structure to efficiently implement the Near-
est Neighbor search algorithm. It represents a set of N points in K-dimensional
spaces as described by Friedman et al. [8] and Bentley [1]. In the naive NN tech-
nique the set of points is represented as a set of vectors where each position of
a vector represents a coordinate from a point (i.e., feature). Besides these data,
the K-dimensional tree implementation also creates a binary tree that recursively
take the median point of the set of points, leaving half of points in each side.

The original NN algorithm searches iteratively the nearest point i, from a
set of points E, to a point p. In order to find the i point, it computes, for each
point in E, the distance (e.g., Euclidean or Manhattan distance) to the point
p. Likewise, if we are performing a K-NN search, the algorithm looks for the
K i points nearest to the point p. This search has O(N) time complexity and
becomes unpractical with the amount of traffic found in current networks.

On the contrary, the search in a K-dimensional tree allows to find in average
the nearest point in O(log N), with the additional cost of spending once O(N
log N) building the binary tree. Besides this notable improvement, the struc-
ture also supports approximate searches, which can substantially improve the
classification time at the cost of producing a very small error.

The K-dimensional tree plugin that we implement in TIE is a combination
of the K-dimensional tree implementation provided by the C++ ANN library
and a structure to represent the relevant information still provided by the port
numbers. In particular, we create an independent K-dimensional tree for each
relevant port. We refer as relevant ports as those that generate more traffic. Al-
though the list of relevant ports can be computed automatically, we also provide
the user with the option of manually configuring this list. Another configuration
parameter is the approximation value, which allows the method to improve its
classification speed by performing an approximate NN search. In the evaluation,
we set this parameter to 0, which means that this approximation feature is not
used. However, higher values of this parameter could substantially improve the
classification time in critical scenarios, while still obtaining a reasonable accu-
racy.

Unlike in the original NN algorithm, the proposed method requires a lightweight
training phase to build the K-dimensional tree structure. Before building the data
structure, a sanitation process is performed on the training data. This procedure
removes the instances labeled as unknown from the training dataset assuming
that they have similar characteristics to other known flows. This assumption is
similar to that of ML clustering methods, where unlabeled instances are classi-
fied according to their proximity in the feature space to those that are known.
The sanitation process also removes repeated or indistinguishable instances.

The traffic features used by our plugin are the destination port number and
the length of the first n packets of a flow (without considering the TCP hand-
shake). By using only the first n packets, the plugin can classify the flows very
fast, providing the network operator with the possibility of quickly reacting to
the classification results. In order to accurately classify short flows, the training
phase also accepts flows with less than n packets by filling the empty positions
with null coordinates.

3.3 Continuous training system

In this section, we show the interaction of our KD-Tree plugin with the rest of
the TIE architecture, and describe the modifications done in TIE to allow our
plugin to continuously retrain itself.

Figure 1 shows the data flow of our continuous training system based on
TIE. The first three modules are used without any modification as found in the
original version of TIE. Besides the implementation of the new KD-Tree plugin,
we significantly modified the Decision Combiner module and the L7 plugin.

Our continuous training system follows the original TIE operation mode
most part of the time. Every packet is aggregated in bidirectional flows while its
features are calculated. When the traffic features of a flow (i.e., first n packet
sizes) are available or upon its expiration, the flow is classified by the KD-Tree
plugin. Although the method was tested with bidirectional flows, the current
implementation also supports the classification of unidirectional flows.

In order to automatically retrain our plugin, as the training data becomes
obsolete, we need a technique to set the base-truth. TIE already provides the L7
plugin, which implements a DPI technique originally used by TIE for validation
purposes. We modified the implementation of this plugin to continuously produce
training data (which includes flow labels - that is, the base-truth - obtained by
L7) for future trainings. While every flow is sent to the KD-Tree plugin through
the main path, the Decision Combiner module applies flow sampling to the
traffic, which is sent through a secondary path to the L7 plugin. This secondary
path is used to (i) set the base truth for the continuous training system, (ii)
continuously check the accuracy of the KD-Tree plugin by comparing its output
with that of L7, and (iii) keep the required computational power low by using
flow sampling (performing DPI on every single flow will significantly decrease
the performance of TIE).

The Decision Combiner module is also in charge of automatically triggering
the training of the KD-Tree plugin according to three different events that can
be configured by the user: after p packets, after s seconds, or if the accuracy
of the plugin compared to the L7 output is below a certain threshold t. The
flows classified by the L7 plugin, together with their features (i.e., destination
port, n packet sizes, L7 label), are placed in a queue. This queue keeps the last
f classified flows or the flows classified during the last s seconds.

The training module of the KD-Tree plugin is executed in a separate thread.
This way, the KD-Tree plugin can continuously classify the incoming flows with-
out interruption, while it is periodically updated. The training module builds a

Fig. 1. Diagram of the Continuous Training Traffic Classification system based on TIE

completely new multi K-dimensional tree model using the information available
in the queue. We plan as future work to study the alternative solution of incre-
mentally updating the old model with the new information, instead of creating
a new model from scratch. In addition, it is possible to automatically update
the list of relevant ports by using the training data as a reference.

4 Results

This section presents a performance evaluation of the proposed technique. First,
Subsection 4.1 describes the dataset used in the evaluation. Subsection 4.2 com-
pares the original Nearest Neighbor algorithm with the K-dimensional tree im-
plementation. Subsection 4.3 presents a performance evaluation of the proposed
plugin described in Subsection 3.2 and, evaluates different aspects of the tech-
nique as the relevant ports or the number of packet sizes used for the classifica-
tion. Finally, Subsection 4.4 presents a preliminary study of the impact of the
continuous training system in the traffic classification.

4.1 Evaluation Datasets

The dataset used in our performance evaluation consists of 8 full-payload traces
collected at the Gigabit access link of the Universitat Politècnica de Catalunya
(UPC), which connects about 25 faculties and 40 departments (geographically
distributed in 10 campuses) to the Internet through the Spanish Research and
Education network (RedIRIS). This link provides Internet access to about 50000
users. The traces were collected at different days and hours trying to cover as
much diverse traffic from different applications as possible. Due to privacy issues,
we are not able to publish our traces. However, we made our traces accessible
using the CoMo-UPC model presented in [4].

Table 1 presents the details of the traces used in the evaluation. In order
to evaluate the proposed method, we used the first seven traces. Among those
traces, we selected a single trace (UPC-II) as training dataset, which is the trace
that contains the highest diversity in terms of instances from different applica-
tions. We limited our training set to one trace in order to leave a meaningful

Table 1. Characteristics of the traffic traces in our dataset

Name Date Day Start Time Duration Packets Bytes Valid Flows Avg. Util

UPC-I 11-12-08 Thu 10:00 15 min 95 M 53 G 1936 K 482 Mbps

UPC-II 11-12-08 Thu 12:00 15 min 114 M 63 G 2047 K 573 Mbps

UP-III 12-12-08 Fri 01:00 15 min 69 M 38 G 1419 K 345 Mbps

UPC-IV 12-12-08 Fri 16:00 15 min 102 M 55 G 2176 K 500 Mbps

UPC-V 14-12-08 Sun 00:00 15 min 53 M 29 G 1346 K 263 Mbps

UPC-VI 21-12-08 Sun 12:00 1 h 175 M 133 G 3793 K 302 Mbps

UPC-VII 22-12-08 Mon 12:30 1 h 345 M 256 G 6684 K 582 Mbps

UPC-VIII 10-03-09 Tue 03:00 1 h 114 M 78 G 3711 K 177 Mbps

number of traces for the evaluation that are not used to build the classification
model. Therefore, the remaining traces were used as the validation dataset. The
last trace, UPC-VIII, was recorded with a difference in time of four months with
the trace UPC-II. Given this time difference, we used this trace to perform a
preliminary experiment to evaluate the gain provided by our continuous training
solution.

4.2 Nearest Neighbor vs K-dimensional Tree

Section 3.2 already discussed the main advantages of the K-dimensional tree
technique compared to the original Nearest Neighbor algorithm. In order to
present numerical results showing this gain, we perform a comparison between
both methods. We evaluate the method presented in this paper with the original
NN search implemented for validation purposes by the ANN library. Given that
the ANN library implements both methods in the same structure we calculated
the theoretical minimum memory resources necessary for the naive NN technique
(i.e., # unique examples * # packet sizes * 4 bytes (C++ integer)). We tested
both methods with the trace UPC-II (i.e., ≈500.000 flows after the sanitation
process) using a 3GHz machine with 4GB of RAM. It is important to note that,
since we are performing an offline evaluation, we do not approximate the NN
search in the NN original algorithm or in the K-dimensional tree technique. For
this reason, the accuracy of both methods is the same.

Table 2 summarizes the improvements obtained with the combination of
the K-dimensional tree technique with the information from the port numbers.
Results are shown in terms of classifications per second depending on the number
of packets needed for the classification and the list of relevant ports. There
are three possible lists of relevant ports. The unique list, where there are no
relevant ports and all the instances belong to the same K-dimensional tree or
NN structure. The selected list, which is composed by the set of ports that
contains most traffic from the UPC-II trace (i.e., ports that receive more than
0.05% of the traffic (69 ports in the UPC-II trace)). We finally refer to all as the

Table 2. Speed Comparison (flows/s): Nearest Neighbor vs K-Dimensional Tree

Packet Size Naive Nearest Neighbor K-Dimensional Tree
Unique Selected Ports All Ports Unique Selected Ports All Ports

1 45578 104167 185874 423729 328947 276243

5 540 2392 4333 58617 77280 159744

7 194 1007 1450 22095 34674 122249

10 111 538 796 1928 4698 48828

Table 3. Memory Comparison: Nearest Neighbor vs K-Dimensional Tree

Packet Size Naive K-Dimensional Tree
Nearest Neighbor Unique Selected Ports All Ports

1 2.15 MB 40.65 MB 40.69 MB 40.72 MB

5 10.75 MB 52.44 MB 52.63 MB 53.04 MB

7 15.04 MB 56.00 MB 56.22 MB 57.39 MB

10 21.49 MB 68.29 MB 68.56 MB 70.50 MB

list where all ports found in the UPC-II trace are considered as relevant. The first
column corresponds to the original NN presented in previous works [11, 14, 15],
where all the information is maintained in a single structure. When only one
packet is required, the proposed method is ten times faster than the original
NN. However, the speed of the original method dramatically decreases when the
number of packets required increases, becoming even a hundred times slower than
the K-dimensional tree technique. In almost all the situations, the introduction
of the list of relevant ports substantially increases the classification speed in both
methods.

Tables 3 and 4 show the extremely low price that the K-dimensional tree
technique pays for a notable improvement in classification speed. The results
show that the memory resources required by the method, although being higher
than the naive NN technique, are few. The memory used in the K-dimensional
tree is almost independent from the relevant ports parameter and barely affected
by the number of packet sizes. Regarding time, we believe that the trade-off of
the training phase is well compensated by the ability to use the method as an
online classifier. In the worst case, the method only takes about 20 seconds for
the building phase.

Since both methods output the same classification results, the data presented
in this subsection show that the combination of the relevant ports and the K-
dimensional tree technique significantly improves the original NN search with
the only drawback of a (very fast) training phase. This improvement allows us
to use this method as an efficient online traffic classifier.

Table 4. Building Time Comparative: Nearest Neighbor vs K-Dimensional Tree

Packet Size Naive K-Dimensional Tree
Nearest Neighbor Unique Selected Ports All Ports

1 0 s 13.01 s 12.72 s 12.52 s

5 0 s 16.45 s 16.73 s 15.62 s

7 0 s 17.34 s 16.74 s 16.07 s

10 0 s 19.81 s 19.59 s 18.82 s

1 2 3 4 5 6 7 8 9 10
50%

60%

70%

80%

90%

100%

UPC−I
UPC−II
UPC−III
UPC−IV
UPC−V
UPC−VI
UPC−VII

Number of Packet Sizes

A
cc

ur
ac

y

(a) K-dimensional tree accuracy (by flow)
without relevant ports support

#
#

#

#
#

#

#

#

#

###

#

#

#

#

#

#

#

#

#

#

##

#

######

#

###

#

#

#

##

#

#

#

#

#

−

−−

−

−

−−

−

−−

−

−−
−−

−

− −−−−

−

−

−

−

−

−

−−

−

−

−
−
−

−−−

−

−

−−− −− − − − − − − −−

−
−
−

−
−−−
−−−−
−−−−
−−
−−−−−−−−−−−−−−−−

−
−−
−−−−
−−
−−
−−−−−
−−−−−−−−
−
−
−
−
−−
−

−

−−

−

−−−

−

−−

−

−−

−

−−

−−

−

−

−−−

−

−−−−−−−−−

−

− −−−

−

− − −

−

−−−

−

−

−

− − −

−

−
−

−300 0 300 600 900 1200 1500

1

3
5

10

100

1000

10000

100000

Packet Size

F
lo

w
s

#
−

WEB
MAIL
BULK
CONFERENCE
MULTIMEDIA
SERVICES

INTERACTIVE
GAME
P2P
FILE−SYSTEM
ENCRYPTED
TUNNELING

(b) First packet size distribution in the
training trace UPC-II

Fig. 2. K-dimensional tree evaluation without the support of the relevant ports

4.3 K-dimensional tree plugin evaluation

In this section we study the accuracy of the method depending on the different
parameters of the KD-Tree plugin. Figure 2(a) presents the accuracy according
to the number of packet sizes for the different traces of the dataset. In this case,
no information from the relevant ports is taken into account producing a single
K-dimensional tree. With this variation, using only the first two packets, we
achieve an accuracy of almost 90%. The accuracy increases with the number of
packet sizes until a stable accuracy > 95% is reached with seven packet sizes.

In order to show the impact of using the list of relevant ports in the clas-
sification, in Figure 2(b) we show the distribution of the first packet sizes for
the training trace UPC-II. Although there are some portions of the distribution
dominated by a group of applications, most of the applications have their first
packet sizes between the 0 and the 300 bytes ticks. This collision explains the
poor accuracy presented in the previous figure with only one packet.

The second parameter of the method, the relevant ports, besides improving
the classification speed appears to alleviate that situation. Figure 3(a) presents
the accuracy of the method by number of packets using the set of relevant ports
that contains most of the traffic in UPC-II. With the help of the relevant ports,
the method achieves an accuracy > 90% using only the first packet size and
achieving a stable accuracy of 97% with seven packets.

Figure 3(b) presents the accuracy of the method depending on the set of
relevant ports with seven packet sizes. We choose seven because as it can be seen

1 2 3 4 5 6 7 8 9 10
50%

60%

70%

80%

90%

100%

UPC−I
UPC−II
UPC−III
UPC−IV
UPC−V
UPC−VI
UPC−VII

Number of Packet Sizes

A
cc

ur
ac

y

(a) K-dimensional tree accuracy (by flow)
with relevant ports support

UPC−I UPC−II UPC−III UPC−IV UPC−V UPC−VI UPC−VII
50%

60%

70%

80%

90%

100%

All
Single
Selected

Traces

A
cc

ur
ac

y

(b) K-dimensional tree accuracy (by flow,
n=7) by set of relevant ports

Fig. 3. K-dimensional tree evaluation with the support of the relevant ports

in Figures 2(a) and 3(a), increasing the number of packet sizes beyond seven does
not improve its accuracy but decrease, its classification speed. Using all the ports
of the training trace UPC-II, the method achieves the highest accuracy with
the same trace. However, with the rest of the traces the accuracy substantially
decreases but being always higher than 85%. The reason of this decrease is that
using all the ports as relevant ports is very dependent to the scenario and could
present classification inaccuracies with new instances belonging to ports not
represented in the training data. Furthermore, the classification accuracy also
decreases because it produces fragmentation in the classification model for those
applications that use multiple or dynamic ports (i.e., their information is spread
among different K-dimensional trees). However, the figure shows that using a
set of relevant ports - in our case the ports that receive more than 0.05% of the
traffic - besides increasing the classification speed also improves accuracy.

Erman et al. pointed out in [6] a common situation found among the ML
techniques: the accuracy when measured by flows is much higher than when
measured by bytes or packets. This usually happens because some elephant-
flows are not correctly classified. Figures 4(a) and 4(b) present the classification
results of the method considering also the accuracy by bytes and packets. They
show that, unlike other ML solutions, the method is able to keep high accuracy
values even with such metrics.This is because the method is very accurate with
the group of applications P2P and WEB, which represent in terms of bytes most
of the traffic in our traces.

Finally, we also study the accuracy of the method broken down by appli-
cation group. In our evaluation we use the same application groups as in TIE.
Figure 5 shows that the method is able to classify with excellent accuracy the
most popular groups of applications. However, the accuracy of the applications
groups that are not very common substantially decreases. These accuracies have
a very low impact on the final accuracy of the method given that the represen-
tation of these groups in the used traces is almost negligible. A possible solution
to improve the accuracy for these groups of applications could be the addition
of artificial instances of these groups in the training data. Another potential
problem is the disguised use of ports by some applications. Although we do not

UPC−I UPC−II UPC−III UPC−IV UPC−V UPC−VI UPC−VII
50%

60%

70%

80%

90%

100%

All
Single
Selected

Traces

A
cc

ur
ac

y

(a) K-dimensional tree accuracy (by
packet, n=7) by set of relevant ports

UPC−I UPC−II UPC−III UPC−IV UPC−V UPC−VI UPC−VII
50%

60%

70%

80%

90%

100%

All
Single
Selected

Traces

A
cc

ur
ac

y

(b) K-dimensional tree accuracy (by byte,
n=7) by set of relevant ports

Fig. 4. K-dimensional tree evaluation with the support of the relevant ports

CONFERENCING P2P WEB SERVICES ENCRYPTION GAMES MAIL MULTIMEDIA BULK FILE_SYSTEM TUNNEL INTERACTIVE
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
UPC−I
UPC−III
UPC−IV
UPC−V
UPC−VI
UPC−VII
AVERAGE

Application Groups

A
cc

ur
ac

y

Fig. 5. Accuracy by application group (n=7 and selected list of ports as parameters)

have evaluated this impact in detail, the results show that currently we can still
achieve an additional gain in accuracy by considering the port numbers. We have
also checked the accuracy by application group with a single K-dimensional tree
and we found that it was always below the results shown in Figure 5. We omit
the figure in the interest of brevity.

In conclusion, we presented a set of results showing how the K-dimensional
tree technique, combined with the still useful information provided by the ports,
improves almost all the aspects of previous methods based in the NN search.
With the unique drawback of a short training phase, the method is able to
perform online classification with very high accuracy, > 90% with only one
packet or > 97% with seven packets.

4.4 Continuous training system evaluation

This section presents a preliminary study of the impact of our continuous training
traffic classifier. Due to lack of traces comprising a very long period of time and
because of the intrinsic difficulties in processing such large traces, we simulate a
scenario in which the features of the traffic evolve by concatenating the UPC-II

Table 5. Evaluation of the Continuous Training system by training trace and set of
relevant ports

Training Trace UPC-II First 15 min. UPC-VIII
Relevant Port List UPC-II UPC-VIII UPC-II UPC-VIII

Accuracy 84.20 % 76.10 % 98.17 % 98.33 %

and UPC-VIII traces. The trace UPC-VIII, besides belonging to a difference
day-time, was recorded four months later than UPC-II, this suggests a different
traffic mix with different properties. Using seven as the fixed number of packets
sizes, the results in Table 5 confirm our intuition. On one hand, using the trace
UPC-II as training data to classify the trace UPC-VIII we obtain an accuracy
of almost 85%. On the other hand, after detecting such decrease in accuracy
and retraining the system, we obtain and impressive accuracy of 98,17%. This
result shows the importance of the continuous training feature to maintain a high
classification accuracy. Since this preliminary study was performed with traffic
traces, instead of a live traffic stream, we decided to use the first fifteen minutes of
the UPC-VIII trace as the queue length parameter (s) of the retraining process.

The results of a second experiment are also presented in Table 5. Instead of
retraining the system with a new training data we study if the modification of
the list of relevant ports is enough to obtain the original accuracy. The results
show that this solution does not bring any improvement when applied alone.
However the optimum solution is obtained when both the training data and the
list of relevant ports are updated and the system is then retrained.

5 Conclusions and future work

In this paper, we revisited the viability of using the Nearest Neighbor algorithm
(NN) for online traffic classification, which has been often discarded in previous
studies due to its poor classification speed. In order to address this well-known
limitation, we presented an efficient implementation of the NN algorithm based
on a K-dimensional tree data structure, which can be used for online traffic
classification with high accuracy and low overhead. In addition, we combined
this technique with the relevant information still provided by the port numbers,
which further increases its classification speed and accuracy.

Our results show that the method can achieve very high accuracy (> 90%) by
looking only at the first packet of a flow. When the number of analyzed packets
is increased to seven, the accuracy of the method increases beyond 95%. This
early classification feature is very important, since it allows network operators
to quickly react to the classification results.

We presented an actual implementation of the traffic classification method
based on the TIE classification engine. The main novelty of the implementation
is its continuous training feature, which allows the system to be automatically

retrained by itself as the training data becomes obsolete. Our preliminary eval-
uation of this unique feature presents very encouraging results.

As future work, we plan to perform a more extensive performance evaluation
of our continuous training system with long-term executions in order to show the
large advantages of maintaining the classification method continuously updated
without requiring human supervision.

Acknowledgments

This paper was done under the framework of the COST Action IC0703 “Data
Traffic Monitoring and Analysis (TMA)” and with the support of the Comis-
sionat per a Universitats i Recerca del DIUE from the Generalitat de Catalunya.
The authors thank UPCnet for the traffic traces provided for this study and the
anonymous reviewers for their useful comments.

References

1. Bentley, J.L.: K-d trees for semidynamic point sets pp. 187–197 (1990)
2. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In:

Proc. of ACM CoNEXT (2006)
3. Bernaille, L., et al.: Traffic classification on the fly. ACM SIGCOMM Comput.

Commun. Rev. 36(2) (2006)
4. CoMo-UPC data sharing model: http://monitoring.ccaba.upc.edu/como-upc/
5. Dainotti, A., et al.: TIE: a community-oriented traffic classification platform. In:

Proceedings of the First International Workshop on Traffic Monitoring and Anal-
ysis. p. 74 (2009)

6. Erman, J., Mahanti, A., Arlitt, M.: Byte me: a case for byte accuracy in traffic
classification. In: Proc. of ACM SIGMETRICS MineNet (2007)

7. Erman, J., et al.: Identifying and discriminating between web and peer-to-peer
traffic in the network core. In: Proc. of WWW Conf. (2007)

8. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

9. Internet Assigned Numbers Authority (IANA):
http://www.iana.org/assignments/port-numbers, as of August 12, 2008

10. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic clas-
sification in the dark. In: Proc. of ACM SIGCOMM (2005)

11. Kim, H., et al.: Internet traffic classification demystified: myths, caveats, and the
best practices. In: Proc. of ACM CoNEXT (2008)

12. Moore, A., Zuev, D.: Internet traffic classification using bayesian analysis tech-
niques. In: Proc. of ACM SIGMETRICS (2005)

13. Nguyen, T., Armitage, G.: A survey of techniques for internet traffic classification
using machine learning. IEEE Communications Surveys and Tutorials 10(4) (2008)

14. Roughan, M., et al.: Class-of-service mapping for qos: a statistical signature-based
approach to ip traffic classification. In: Proc. of ACM SIGCOMM IMC (2004)

15. Williams, N., Zander, S., Armitage, G.: Evaluating machine learning algorithms
for automated network application identification. CAIA Tech. Rep. (2006)

16. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and appli-
cation identification using machine learning. In: Proc. of IEEE LCN Conf. (2005)

