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Abstract. One-way packet delay is an important network performance
metric. Recently, a new data structure called Lossy Difference Aggregator
(LDA) has been proposed to estimate this metric more efficiently than
with the classical approaches of sending individual packet timestamps or
probe traffic. This work presents an independent validation of the LDA
algorithm and provides an improved analysis that results in a 20% in-
crease in the number of packet delay samples collected by the algorithm.
We also extend the analysis by relating the number of collected samples
to the accuracy of the LDA and provide additional insight on how to
parametrize it. Finally, we extend the algorithm to overcome some of its
practical limitations and validate our analysis using real network traffic.

1 Introduction

Packet delay is one of the main indicators of network performance, together
with throughput, jitter and packet loss. This metric is becoming increasingly
important with the rise of applications like voice-over-IP, video conferencing or
online gaming. Moreover, in certain environments, it is an extremely critical
network performance metric; for example, in high-performance computing or
automated trading, networks are expected to provide latencies in the order of
few microseconds [1].

Two main approaches have been used to measure packet delays. Active
schemes send traffic probes between two nodes in the network and use inference
techniques to determine the state of the network (e.g., [2–5]). Passive schemes
are, instead, based on traffic analysis in two of the points of a network. They are,
in principle, less intrusive to the network under study, since they do not inject
probes. However, they have been often disregarded, since they require collecting,
transmitting and comparing packet timestamps at both network measurement
points, thus incurring large overheads in practice [6]. For example, [7] proposes
delaying computations to periods of low network utilization if measurement in-
formation has to be transmitted over the network under study.

The Lossy Difference Aggregator (LDA) is a data structure that has been re-
cently proposed in [1] to enable fine-grain measurement of one-way packet delays
using a passive measurement approach with low overhead. The data structure



is extremely lightweight in comparison with the traditional approaches, and can
collect a number of samples that easily outperforms active measurement tech-
niques, where traffic probes interfering with the normal operation of a network
can be a concern.

The main intuition behind this measurement technique is to sum all packet
timestamps in the first and second measurement nodes, and infer the average
packet delay by subtracting these values and dividing over the total number of
packets. The LDA, though, maintains several separate counters and uses coordi-
nated, hash-based traffic sampling [8] in order to protect against packet losses,
which would invalidate the intuitive approach. The complete scheme is presented
in Sect. 2.

This work constitutes an independent validation of the work presented in [1].
Section 3 revisits the analysis of the algorithm. In particular, Sect. 3.1 inves-
tigates the effective number of samples that the algorithm can collect under
certain packet loss ratios. This work improves the original analysis, and finds
that doubling the sampling rates suggested in [1] maximizes the expectation of
the number of samples collected by the algorithm. In Sect. 3.2, we contribute an
analysis that relates the effective sample size with the accuracy that the method
can obtain, while Sect. 3.3 compares the network overhead of the LDA with
pre-existing techniques.

For the case when packet loss ratios are unknown, the original work proposed
and compared three reference configurations of the LDA in multiple memory
banks to target a range of loss ratios. In Sects. 3.4 and 3.5 we extend our im-
proved analysis to the case of unknown packet loss, and we (i) find that such
reference configurations are almost equivalent in practice, and (ii) provide im-
proved guidelines on how to dimension the multi-bank LDA.

Sect. 4 validates our analysis through simulations, with similar parameters
to [1], for the sake of comparability. Finally, in Sect. 5 we deploy the LDA on
a real network scenario. The deployment of the LDA in a real setting presents
a series of challenges that stem from the assumptions behind the algorithm as
presented in [1]. We propose a simple extension of the algorithm that overcomes
some of the practical limitations of the original proposal.

At the time of this writing, another analysis of the Lossy Difference Aggrega-
tor already exists in the form of a public draft [9]. The authors provide a parallel
analysis of the expectation for the sample size collected by the LDA and, co-
herently with ours, suggest doubling the sampling rates compared to [1]. For
the case where packet loss ratios are unknown beforehand, their analysis stud-
ies how to dimension the multi-bank LDA to maximize the expectation for the
sample size. Optimal sampling rates are determined that maximize sample sizes
for tight ranges of expected packet loss ratios. Our analysis differs in that we
relate sample size with accuracy, and focus on maximizing accuracy rather than
sample size. Additionally, our study includes an analytic overhead comparison
with traditional techniques, presents the first real world deployment of the LDA
and proposes a simple extension to overcome some of its practical limitations.



2 Background

The Lossy Difference Aggregator (LDA) [1] is a data structure that can be used
to calculate the average one-way packet delay between two network points, as
well as its standard deviation. We refer to these points as the sender and the
receiver, but they need not be the source or the destination of the packets being
transmitted, but merely two network viewpoints along their path.

The LDA operates under three assumptions. First, packets are transmitted
strictly in FIFO order. Second, the clocks of the sender and the receiver are
synchronized. Third, the set of packets observed by the receiver is identical to
the one observed by the sender, or a subset of it when there is packet loss. That
is, the original packets are not diverted, and no extra traffic is introduced that
reaches the receiver.

A classic algorithm to calculate the average packet delays in such a scenario
would proceed as follows. In both the sender and the receiver, the timestamps
of the packets are recorded. After a certain measurement interval, the recorded
packet delays (or, possibly, a subset of them) are transmitted from the sender to
the receiver, which can then compare the timestamps and compute the average
delay. Such an approach is impractical, since it involves storing and transmitting
large amounts of information.

The basic idea behind the LDA is to maintain a pair of accumulators that
sum all packet timestamps in the sender and the receiver separately, as well
as the total count of packets. When the measurement interval ends, the sender
transmits the value of its accumulator to the receiver, which can then compute
the average packet delay by subtracting the values and dividing over the total
number of packets.

The LDA requires the set of packets processed by the sender and the receiver
to be identical, since the total packet counts in the sender and the receiver must
agree. Thus, it is extremely sensitive to packet loss. In order to protect against
it, the LDA partitions the traffic into b separate streams, and aggregates times-
tamps for each one separately in both the sender and the receiver. Additionally,
for each of the sub-streams, it maintains a packet count. Thus, it can detect
packet losses and invalidate the data collected in the corresponding accumula-
tors. When the measurement interval ends, the sender transmits all of the values
of the accumulators and counters to the receiver. Then, the receiver discards the
accumulators where packet counts disagree, and computes an estimate for the
average sampling delay using the remainder.

Each of the accumulators must aggregate the timestamps from the same set of
packets in the sender and the receiver, i.e., both nodes must partition the traffic
using the same criteria. In order to achieve this effect, the same pre-arranged,
pseudo-random hash function is used in both nodes, and the hash of a packet
identifier is used to determine its associated position in the LDA.

As packet losses grow high, though, the number of accumulators that are
invalidated increases rapidly. As an additional measure against packet loss, the
LDA samples the incoming packet stream. In the most simple setting, all of the
accumulators apply an equal sampling rate p to the incoming packet stream.



Again, sender and receiver sample incoming packets coordinately using a pre-
arranged pseudo-random hash function [8].

As an added benefit, the LDA data structure can also be mined to estimate
the standard deviation of packet delays using a known mathematical trick [10].
We omit this aspect of the LDA in this work, but the improvements we propose
will also increase the accuracy in the estimation of the standard deviation of
packet delays.

3 Improved Analysis

The LDA is a randomized algorithm that depends on the correct setting of the
sampling rates to gather the largest possible number of packet delay samples.
The sampling rate p presents a classical tradeoff. The more packets are sampled,
the more data the LDA can collect, but the more it is affected by packet loss.
Conversely, lower sampling rates provide more protection against loss, but limit
the amount of information collected by the accumulators.

This section improves the original analysis of the Lossy Difference Aggrega-
tor (LDA) introduced in [1] in several ways. First, it improves the analysis of
the expected number of packet delay samples it can collect, which leads to the
conclusion that sampling rates should be twice the ones proposed in [1]. Second,
it relates the number of samples with the accuracy in an easy to understand way
that makes it obvious that undersampling is preferable to sampling too many
packets. Third, it compares its network overhead with pre-existing passive mea-
surement techniques. Fourth, it provides a better understanding and provides
guidelines to dimension multi-bank LDAs.

3.1 Effective Sample Size

In order to protect against packet loss, the LDA uses packet hashes to dis-
tribute timestamps across several accumulators, so that losses only invalidate
the samples collected by the involved memory positions. Table 1 summarizes the
notation used in this section. Given n packets, b buckets (accumulator-counter
pairs) and packet loss probability r, the probability of a bucket of staying useful
corresponds to the probability that no lost packet hashes to the bucket in the
receiver node, which can be computed as (1− r/b)n ≈ e−n r/b (according to the
law of rare events).

Then, the expectation for the number of usable samples, which we call the

effective sample size, can be approximated to E [S] ≈ (1−r) n
en r/b . In order to provide

additional protection against packet losses, the LDA also samples the incoming
packets; we can adapt the previous formulation to account for packet sampling
as follows:

E [S] ≈
(1 − r) p n

en r p/b
(1)

Reference [9] shows that this approximation is extremely accurate for large
values of n. The approximation is best as n becomes larger and the probability of



Table 1. Notation

name variable

n #pkts
r packet loss ratio
p sampling rate

name variable

b #buckets
µ average packet delay
µ̂ estimate of the avg. delay

sampling a packet loss stays low. Note that this holds in practice; otherwise, the
buckets would too often be invalidated. For example, when the absolute number
of sampled packet losses is in the order of the number of buckets b, it obtains
relative errors around 5 × 10−4 for as few as n = 1000 packets. Note however
that this formula only accounts for a situation where all buckets use an equal
fixed sampling rate p, i.e., a single bank LDA. Section 3.5 extends this analysis
to the multi-bank LDA, while Sect. 4 provides an experimental validation of this
formula.

Reference [1] provides a less precise approximation for the expected effective
sample size. When operating under a sampling rate p = α b/(L + 1), a lower
bound E[S] >= α (1 − α)R b/(L + 1) is provided, where R corresponds to the
number of received packets and L to the number of lost packets; in our notation,
R = n (1 − r) and L = n r. Trivially, this bound is maximized when α = 0.5.
Therefore, it is concluded that the best sampling rate p that can be chosen is
p = 0.5 b

n r+1 .

However, our improved analysis leads to a different value for p by maximiz-
ing (1). The optimal sampling rate p that maximizes the effective sample size

for any known loss ratio r can be obtained by solving ∂E[S]
∂p = 0, which leads to

p = b
n r (in practice, we set p = min (b/n r, 1)). Thus, our analysis approximately

doubles the sampling rate compared to [1], i.e., sets α = 1 in their notation,
which yields an improvement in the effective sample size of around 20% at no
cost. The conclusions of this improved analysis are coherent with the parallel
analysis of [9], which also shows that the same conclusions are reached without
the approximation in (1).

Assuming a known loss ratio and the optimal setting of the sampling rate
p = b

n r , then, the expectation of the effective sample size is (by substitution of
p in (1)):

E[Sopt] =
1 − r

r e
b (2)

In other words, given a known number of incoming packets and a known
loss ratio, setting p optimally maximizes the expectation of the sample size at
1−r
r e samples per bucket. Figure 1 shows how the number of samples that can

be collected by the LDA quickly degrades when facing increasing packet loss
ratios. Therefore, in a high packet loss ratio scenario, the LDA will require large
amounts of memory to preserve the sample size. As an example, in order to
sustain the same sample size of a 0.1% loss scenario, the LDA must grow around
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Fig. 1. Expected number of samples collected per bucket under varying packet loss
ratios, assuming an ideal LDA that can apply, for each packet loss ratio, the optimal
sampling rate

50 times larger on 5% packet loss, and by a factor of around 250 in the case of
20% packet loss.

Recall that this analysis assumes that the packet loss ratios are known before-
hand, so that the sampling rate can be tuned optimally. When facing unknown
loss ratios, the problem becomes harder, since it is not possible to configure
p = b

n r , given that both parameters are unknown. However, this analysis does
provide an upper bound on the performance of this algorithm. In any configu-
ration of the LDA, including in multiple banks, the expectation of the effective
sample size will be at most 1−r

r e b.

3.2 Accuracy

It is apparent from the previous subsection that increasing packet loss ratios have
a severe impact on the effective sample size that the LDA can obtain. However,
the LDA is empirically shown to obtain reasonable accuracy up to 20% packet
loss in [1]. How can we accommodate these two facts? The resolution of this
apparent contradiction lies in the fact that the accuracy of the LDA does not
depend linearly on the sample size but, instead, the gains in terms of accuracy
of the larger sample sizes are small.

The LDA algorithm estimates the average delay µ from a sample of the
overall population of packet delays. According to the central limit theorem, the
sample mean is a random variable that converges to a normal distribution as
the sample size (S in our notation) grows [11]. The rate of convergence towards
normality depends on the distribution of the sampled random variable (in this
case, packet delays).

If the arbitrary distribution of the packet delays has mean µ and variance
σ2, assuming that the sample size S obtained by the LDA is large enough for
the normal approximation to be accurate, the sample mean can be considered
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Fig. 2. 99% confidence bound on the relative error of the estimation of the average
delay as a function of the obtained sample size (left) and as a function of the packet
loss ratio (right), assuming a 1024 bucket ideal LDA, 5 × 106 packets and Weibull
(α = 0.133, β = 0.6) distributed packet delays

to be normally distributed, with mean µ and variance σ2/S, which implies that,
with 99% confidence, the estimate of the average delay µ̂ as the sample average
will be within µ ± 2.576 σ

√

S
and, thus, the relative error will be below 2.576 σ

µ
√

S
.

An observation to be made is that the relative error of the LDA is pro-
portional to 1

√

S
, that is, halving the relative error requires 4 times as many

samples. A point is reached where the return of obtaining additional samples
has a negligible practical impact on the relative error.

As stated, the accuracy of the LDA depends on the distribution of the packet
delays, which are shown to be accurately modeled by a Weibull distribution
in [6], and this distribution is used in [1] to evaluate the LDA. Figure 2 plots,
as an example, the accuracy as a function of the sample size (left) and as a
function of the loss ratio (right) when packet delays are Weibull distributed
with scale parameter α = 0.133 and shape β = 0.6, and 5 × 106 packets per
measurement interval (these parameters have been chosen consistently with [1]
for comparability). It can be observed that, in practice, small sample sizes obtain
satisfactory accuracies. In this particular case, 2000 samples bound the relative
error to around 10%, 8000 lower the bound to 5%, and 25 times as many, to 1%.

3.3 Overhead

Ref. [1] presents an experimental comparison of the LDA with active probing.
In this section, we compare the overhead of the LDA with that of a passive
measurement approach based on trajectory sampling [8] that sends a packet
identifier and a timestamp for each sampled packet. As a basis for comparison,
we compute the network overhead for each method per collected sample. Note
that, for equal sample sizes, the accuracy of both methods is expected to match,
since samples are collected randomly.
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Fig. 3. Communication overhead of the LDA relative to a traditional trajectory sam-
pling approach, assuming 12 byte per bucket and per sample transmission costs

Traditional techniques incur an overhead directly proportional to the col-
lected number of samples. For example, an active probe will send a packet to
obtain each sample. The overhead of a trajectory sampling based technique is
also a constant α bytes/sample. For example, a 32 bit hash of a packet plus a
64 bit timestamp set α = 12.

However, as discussed in the previous section, the sample size collected by
the LDA depends on the packet loss ratio. Assuming a single-bank, optimally
dimensioned LDA, it requires sending b × β bytes (where β denotes the size
of a bucket) to gather 1−r

r e b samples. Thus, the overhead of the LDA is β r e
1−r

B/sample, and using 64 bit timestamp accumulators and 32 bit counters yields
β = 12.

The LDA is preferable as long as it has lower overhead, i.e., β r e
1−r < α and,

thus, r < α
β e+α . The values of α and β will vary in real deployments (e.g.,

timestamps can be compressed in both methods). In the example, where α =
β = 12, the LDA is preferable as long as r < 1

e+1 ≈ 0.27. Figure 3 compares the
overheads of both techniques in such a scenario, and shows the superiority of
the LDA for the lowest packet loss ratios and its undesirability for the highest.

3.4 Unknown Packet Loss Ratio

It has already been established that the optimal choice of the LDA sampling
rate is p = b

n r , which obtains 1−r
r e b samples. However, in practice, both n and

r are unknown a priori, since they depend on the network conditions, which are
generally unpredictable. Thus, setting p beforehand implies that, inevitably, its
choice will be suboptimal.

What is the impact of over and under-sampling, i.e., setting a conservatively
low or an optimistically high sampling rate on the LDA algorithm? We find that
undersampling is preferable to oversampling. As explained, the relative error of
the algorithm is proportional to 1/

√
S. Thus, oversampling leads to collecting
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Fig. 4. Impact on the sample size (left) and expected relative error (right) of selecting
a sub-optimal sampling rate

a high number of samples on low packet loss ratios, and slightly increases the
accuracy on such circumstances, but leads to a high percentage of buckets being
invalidated on high loss, thus incurring large errors. Conversely, undersampling
preserves the sample size on high loss, thus obtaining reasonable accuracy, at the
cost of missing the opportunity to collect a much larger sample on when losses
are low, which, however, has a comparatively lower impact on the accuracy.

Figure 4 provides a graphical example of this analysis. In this example we
consider, again analogously to [1], Weibull (α = 0.133, β = 0.6) distributed
packet delays. We compare the sample sizes and accuracy bounds obtained by
different configurations of the LDA using a value of p targeted at loss ratios of
5%, 20% and 80%. All LDA configurations use b = 1024 accumulators. It can
be observed that, in terms of sample size, the conservative setting of p for 80%
loss underperforms, in terms of sample size, under the lowest packet loss ratios,
but this loss does not imply an extreme degradation in terms of measurement
accuracy. On the contrary, the more optimistic sampling rate settings achieve
better accuracy under low loss, but incur extreme accuracy degradation as the
loss ratio grows.

3.5 The Multi-Bank LDA

So far, the analysis of the LDA has assumed all buckets have a common sampling
rate p. However, as exposed in [1], when packet loss ratios are unknown, it is
interesting to divide the LDA in multiple banks. A bank is a section of the LDA
for which all the buckets use the same sampling rate. Each of the banks can be
tuned to a particular sampling rate, so that, intuitively, the LDA is resistant to
a range of packet loss ratios.

Reference [1] tests three different configurations of the multi-bank LDA, al-
ways using equal (or almost) sized banks. No systematic analysis is performed on



the appropriate bank sizing nor on the appropriate sampling rate for each of the
banks; each LDA configuration is somewhat arbitrary and based on intuition.

We extend our analysis to the most general multi-bank LDA, where each
bucket i independently samples the full packet stream at rate pi (i.e., our anal-
ysis supports all combinations of bank configurations and sampling rates). We
adapt (1) accordingly:

E[S] ≈
b∑

i=1

(1 − r) pi n

en r pi
(3)

When every bucket uses the same sampling rate, the two equations are equiv-
alent with pi = p/b (each bucket receives 1/b of the traffic and samples packets
at rate p). As for the error bound, the analysis from Sect. 3.2 still holds.

We have evaluated the three alternative multi-bank LDA configurations pro-
posed in [1], using the same configuration parameters and distribution of packet
delays. Figure 5 compares the accuracy obtained by the three configurations.
The figure assumes, again, a Weibull distribution for packet losses, with shape
parameter β = 0.6 and scale α = 0.133, and a number of packets n = 5 × 106.
All configurations use b = 1024 buckets. The first uses two banks, each targeted
to 0.005 and 0.1 loss; the second, three banks that target 0.001, 0.01 and 0.1
loss; the third, four banks that target 0.001, 0.01, 0.05 and 0.1 loss. The figure
shows that, in practice, the three approaches (lda-2, lda-3 and lda-4 in the fig-
ure) proposed in [1] perform very similarly, which motivates further discussion
on how to dimension multi-bank LDAs. The figure also provides, as a reference,
the accuracy obtained by an ideal LDA that, for every packet loss ratio, obtains
the best possible accuracy (from (2)).

We argue that, consistently with the discussion of subsection 3.4, in order
to support a range of packet loss ratios, the LDA should be primarily targeted
towards maintaining accuracy over the worst-case target packet loss ratio. Using
this conservative approach has two benefits. First, it guarantees that a target
accuracy can be maintained in the worst-case packet loss scenario. Second, it
is guaranteed that its accuracy over the smaller packet loss ratios is at least as
good.

However, this rather simplistic approach has an evident flaw in that it does
not provide significantly higher performance gains in the lowest packet loss sce-
narios, where a small number of high packet sampling ratio provisioned buckets
would easily gather a huge number of samples. Based on this intuition, as a
rule of thumb, 90% of the LDA could be targeted to a worst-case sampling ratio,
using the rest of the buckets to increase the accuracy in low packet loss scenarios.

A more sophisticated approach to dimensioning a multi-bank LDA is to de-
termine the vector of sampling rates < p1, p2, . . . , pb > that performs closest to
optimal across a range of sampling rates. We have used numerical optimization
to search for a vector of sampling rates such that it minimizes the maximum

difference between the accuracies of the multi-bank LDA and the ideal LDA
across a range of packet loss ratios. Additionally, we have restricted the search
space to sampling rates that are powers of two for performance reasons [1, 9].



Table 2. Per-bucket sampling rates respective to the full packet stream of the numer-
ically optimized LDA for the given scenario. Overall sampling rate is around 0.47%

sampling rate 2−14 2−15 2−16 2−17 2−18 2−19 2−20 2−21

#buckets 2 74 6 189 7 27 717 2
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Fig. 5. Error bounds for several configurations of multi-bank LDA in the 0-1 packet
loss ratio range (left) and in the 0-0.2 range (right)

We have obtained a multi-bank LDA that targets a range of loss rates be-
tween 0.1% and 20% for the given scenario: 5 million packets, Weibull distributed
delays, and 1024 buckets. The best solution that our numerical optimizator has
found is, coherently with the previous discussion, targeted primarily to the high-
est loss ratios. Table 2 summarizes the resulting multi-bank LDA. Most notably,
a majority (70%) of the buckets use pi = 2−20, i.e., are targeted to a packet loss
ratio of 20%, while fewer (around 20%) use pi = 2−17, i.e., are optimized for
around 2.6% loss. All buckets combined sample around 0.47% of the packets.

Figure 5 shows the result of this approach (line optimized) when targeting a
range of loss rates between 0.1% and 20% for 5 million packets with the men-
tioned Weibull distribution of delays. The solution our optimizer found has the
desirable property of always staying within below 3% higher relative error than
the best possible, for any given loss ratio within the target range. These re-
sults suggest that there is little room for improvement in the multi-bank LDA
parametrization problem.

In the parallel analysis of [9], numerical optimization is also mentioned as an
alternative to maximize the effective sample size when facing unknown packet
loss. Optimal configurations are derived using competitive analysis for some
particular cases of tight ranges of target packet loss ratios [l1, l2]. In particular,
it is found that both for l2/l1 ≤ 2, and for l2/l1 ≤ 5.5 and a maximum of 2
banks, the optimal configuration is a single bank LDA with p = ln l2−ln l1

l2−l1
. We

believe that our approach is more practical in that it supports arbitrary packet
loss ratios and it focuses on preserving the accuracy, rather than sample size.
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4 Validation

In the previous section, we derived formulas for the expected effective sample size
of the LDA when operating under various sampling rates, and provided bounds
for the expected relative error under typical distributions of the network delays.
In this section, we validate the analytical results through simulation.

We have chosen the same configuration parameters as in the evaluation of [1].
Thus, this section not only validates our analysis of the LDA algorithm, but also
shows consistency with the previous results of [1]. The simulation parameters are
as follows: we assume 5 million packets per measurement interval, and Weibull
(α = 0.133, β = 0.6) distributed packet delays. In our simulation, losses are
uniformly distributed. Note however that, as stated in [1], the LDA is completely
agnostic to the packet loss distribution, but only sensitive to the overall packet
loss ratio. Thus, other packet loss models (e.g., in bursts [12]) are supported by
the algorithm without requiring any changes.

Figure 6 (left) compares the expected sample sizes with the actual results
from the simulations. The figure includes the three multi-bank LDA configura-
tions introduced in [1], with expected sample size calculated using (3), and the
ideal LDA that achieves the best possible accuracy under each packet loss ratio,
obtained from (2). This figure validates our analysis of the algorithm, since ef-
fective sample sizes are always around their expected value (while in [1], only a
noticeably pessimistic lower bound is presented).

On the other hand, Figure 6 (right) plots the 99 percentile of the relative error
obtained after 500 simulations for each loss ratio, and compares it to the 99%
bound on the error derived from the analysis of Sect. 3.2. The figures confirm
the correctness of our analysis for both the effective sample size and the 99%
confidence bound on the relative error.



5 Experiments

5.1 Scenario

In the previous section, a simulation based validation of our analysis of the LDA
has been presented that reproduces that of [1]. In this section we evaluate the
algorithm using real network traffic. To the best of our knowledge, this is the
first work to evaluate the algorithm in a real scenario.

Our scenario consists of two measurement points: one of the links that con-
nect the Catalan academic network (also known as Scientific Ring) to the rest of
the Internet, and the access link of the Technical University of Catalonia (UPC).
In the first measurement point, a commodity PC equipped with a 10 Gb/s En-
dace DAG card [13] obtains a copy the of the inbound traffic via an optical
splitter, and filters for incoming packets with destination address belonging to
the UPC network. In the second measurement point, a commodity PC equipped
with a 1 Gb/s Endace DAG card [13] analyzes a copy of the traffic that enters
UPC, obtained from a port mirror from a switch.

5.2 Deployment Challenges

The deployment of the LDA in a real world scenario presents important chal-
lenges. The design of the LDA is built upon several assumptions. First, as stated
in [1], the clocks in the two measurement points must be synchronized. We
achieve this effect by synchronizing the internal DAG clocks prior to trace col-
lection. Second, packets in the network follow strict FIFO ordering, and the
monitors can inject control packets in the network (by running in the routers
themselves) which also observe this strict FIFO ordering, and are used to sig-
nal measurement intervals. In our setting, packets are not forwarded in a strict
FIFO ordering due to different queueing policies being applied to certain traffic.
Moreover, injecting traffic to signal the intervals is unfeasible, since the monitors
are isolated from the network under study.

Third, in the original proposal, the complete set of packets observed in the
second monitor (receiver) must have also been observed in the first (sender).
In [1], the LDA algorithm is proposed to be applied in network hardware in a
hop-by-hop fashion. However, this assumption severely limits the applicability of
the proposal; for example, as is, it cannot be used in our scenario, since receiver
observes packets that have been routed through a link to a commercial network
that sender does not monitor (we refer to these packets as third party traffic).
This limitation could be addressed by using appropriate traffic filters to discern
whether each packet comes from receiver (e.g., source MAC address, or source
IP address), but in the most general case, this is not possible. In particular, in
our network, we lack routing information, and traffic engineering policies make
it likely that the same IP networks are routed differently.

The problem lies in that the LDA counters might match by chance when, in
receiver, packet losses are compensated by extra packets from the third party



traffic. The LDA would assume that the affected buckets are usable, and intro-
duce severe error. We work around this by introducing a simple extension to the
data structure: we attach to each LDA bucket an additional memory position
that stores an XOR of all the hashes of the packets aggregated in the correspond-
ing accumulator. Thus, receiver can trivially confirm that the set of packets of
each position matches the set of packets aggregated in sender by checking this
XOR. From a practical standpoint, using this approach makes third party traffic
count as losses. We use 64 bit hashes and, thus, the probability of the XORs
matching by chance is negligible1.

5.3 Experimental Results

We have simultaneously collected a trace in each of the measurement points
in the described scenario, and wrote two CoMo [14] modules to process the
traces offline: one that implements the LDA, and another that computes the
average packet delays exactly. The traces have a duration of 30 minutes. We
have configured 10 seconds measurement intervals, so that the average number
of packets per measurement interval is in the order of 6 × 105.

We have tested 16 different single-bank configurations of the LDA with b =
1024 buckets and sampling rates ranging from 20 to 2−15. Also, we have used our
numerical optimizator to obtain a multi-bank LDA configuration that tolerates
up to 80% loss in our scenario. Figure 7 summarizes our results.

As noted in the previous discussion, third party traffic that is not seen in
sender is viewed as packet losses in receiver. Therefore, our LDAs operate at
an average loss rate of around 10%, which roughly corresponds to the fraction of
packets arriving from a commercial network link that sender does not monitor.

Hence, the highest packet sampling ratios are over-optimistic and collect too
much traffic. It can be observed in Fig. 7 (right) that sampling ratios from 20

to 2−4 lose an intolerable amount of measurement intervals because all LDA
buckets become unusable. Lower sampling rates, though, are totally resistant to
the third party traffic.

Figure 7 (left) plots the results in terms of accuracy, but only including
measurement intervals not lost. It can be observed that 2−6 and 2−7 are the
best settings. This is consistent with the analysis of Sect. 3, that suggests using
p = b

n r ≈ 0.17 ≈ 2−6. The figure also includes the performance of our numer-
ically optimized LDA, portrayed as a horizontal line (the multi-bank LDA is a
hybrid of the other sampling rates). It performs very similarly to the best static
sampling rates. However, it is important to note that this configuration will
consistently perform close to optimal when losses (or third party traffic) grow
to 80%, obtaining errors below 50%, while the error bound for the less flexible
single bank LDA reaches 400%.

1 The XORs of the hashes have to be transmitted from sender to receiver, causing
extra network overhead. Choosing the smallest hash size that still guarantees high
accuracy is left for future work.
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Fig. 7. Experimental results

On average, for each measurement interval, the optimized LDA collected
around 3478 samples, while transmitting 1024 × 20 bytes (8 for the timestamp
accumulators and the XOR field plus 4 for the counter for each bucket), resulting
in 5.8 B/sample of network overhead. A traditional technique based on sampling
and transmitting packet timestamps would cause a higher overhead, e.g., if using
8 byte timestamps and 4 byte packet IDs, it would transmit 12 B/sample. Thus,
in this scenario, the LDA reduced the communication overhead in over 50%.

6 Conclusions

We have performed a validation on the Lossy Difference Aggregator (LDA) al-
gorithm originally presented in [1]. We have improved the theoretical analysis of
the algorithm by providing a formula for the expected sample size collected by
the LDA, while in [1] only a pessimistic lower bound was presented. Our analysis
finds that the sampling rates originally proposed must be doubled.

Only three configurations of the more complex multi-bank LDA were eval-
uated in [1]. We have extended our analysis to multi-bank configurations, and
explored how to properly parametrize them, obtaining a procedure to numeri-
cally search for multi-bank LDA configurations that maximize accuracy over an
arbitrary range of packet losses. Our results show that there is little room for
additional improvement in the problem of multi-bank LDA configuration.

We have validated our analysis through simulation and using traffic from
a monitoring system deployed over a large academic network. The deployment
of the LDA on a real network presented a number of challenges related to the
assumptions behind the original proposal of the LDA algorithm, that does not
tolerate packet insertion/diversion and depends on strict FIFO packet forward-
ing. We propose a simple extension that overcomes such limitations.

We have compared the network overhead of the LDA with pre-existing tech-
niques, and observed that it is preferable under zero to moderate loss or addi-
tion/diversion of packets (up to ∼25% combined). However, the extra overhead



of pre-existing techniques can be justified in some scenarios, since they can pro-
vide further information on the packet delay distribution (e.g., percentiles), than
just the average and standard deviation that are provided by the LDA.
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