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Abstract

Two approaches to Connection Admission Control (CAC) in ATM
networks are presented and their relative performances are assessed. The
two CAC methods are, respectively, the enhanced convolution approach
(ECA), an optimised algorithm based on the deterministic convolution
method and the Fuzzy CAC (FCAC) approach, a heuristic method based
on a combination of fuzzy logic and genetic algorithms.

1. Introduction

Connection admission control (CAC) is a traffic control function which
decides whether or not to admit a new connection into an ATM network.
The decision is based on the current network load, on the values of the
characterisation parameters (e.g. mean and peak rates), on the available
network resources (link bandwidth capacity and output buffer size) and on
the required Quality of Service (QoS) of the existing connections and the
new connection. QoS requirements are often formulated in terms of the
constraints placed on the following network performance parameters:
queueing delay, delay variation and cell loss. In this paper, cell loss will be
the QoS parameter considered. It is assumed that cell delay requirements
can be satisfied by an appropriate buffer dimension method.

The CAC decision making process relies on an accurate knowledge on the
traffic behaviour of the connections multiplexed in an ATM link. The
specific properties of ATM (fixed size packets and bandwidth on demand)
require statistical source models different from those used for traffic in
existing circuit or packet switched networks. ATM source models need to
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be accurate, simple, and generally applicable. Considering this, the On-Off
traffic model [1] is the source model adopted in these studies for source
characterisation purposes.

The required time to perform the CAC decision has to be reasonable. This
requirement is particularly difficult to fulfil when the network is heavily
loaded in terms of the number of multiplexed  connections or when the
multiplexed connections have different characteristics in terms of bit rates
and burstiness. In this case the complexity of the calculations required to
predict a cell loss value increases enormously.

Various CAC approaches have been proposed in the literature: Hui [2]
presents a CAC approach based on a traffic model in three levels (cell,
burst and call level), Guerin et al [3] proposes a CAC approach based on
the notion of ‘equivalent capacity’, Iversen [4] studied the performance of
CAC algorithms based on the convolution approach. Given the before
mentioned, the authors have proposed two CAC approaches that satisfy the
requirements for CAC methods but are based on two different
methodologies. Hence, the CAC approach proposed by Marzo et al [5]
(ECA) is based on an analytical model, the convolution algorithm, and the
CAC approach proposed by Ramalho et al [6] (FCAC) is based on fuzzy
logic techniques. The main objective of this paper is not to present in detail
the above mentioned CAC methods but rather to compare them in terms of:
i) accuracy of the cell loss prediction, ii) facility of development of each of
the two CAC approaches, and iii) optimisation of the use of network
resources in terms of the number of admitted connections.

2. The proposed CAC methods

2.1 Enhanced Convolution CAC

CAC aims to maximise the statistical multiplexing gain, then cells could be
lost when the instantaneous rate is greater than the link bandwidth.
Stationary models are accurate enough for CAC traffic modelling
purposes. This is also the case for network environments with small output
buffer size and bursty traffic. The most accurate method based on
stationary models is the convolution approach, which determines the exact
distribution of the aggregated bit rate on an ATM link.

The convolution algorithm assumes that the traffic behaviour of each of
the multiplexed connections is independent of each other. The convolution
algorithm does not take into account the burst length of each connection,



though. Convolution methods allow to calculate the rate distribution of the
multiplexed traffic, and therefore, the probability of congestion (PC), the
average cell loss ratio (CLR) and the CLR per connection can be also
calculated.

This approach is based on the well known expression of the convolution
procedure denoted by: Q = Y * X

which is evaluated by the following expression:
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where Q is the bandwidth requirement of all established
connections including the new connection; Y is the bandwidth requirement
of the already established connections; X is the bandwidth requirement of
a new connection, and b denotes the instantaneous required bandwidth. In
fact, the convolution approach obtains a probability density function for
the offered link load, expressed as the probability that all traffic sources
together are emitting at a given rate b.

Clearly, we should carry out N-1 convolutions to obtain the global
distribution. In order to overcome this drawback, an Enhanced
Convolution Approach (ECA) has been proposed by Marzo et al [7] . In the
following a brief overview of the method is presented.

First, only one class of traffic is assumed, which are emitting in T possible
states. P( state s0 occurs n0 times, ... , state sT-1  occurs nT-1 times) is
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this is the probability corresponding to the Multinomial Distribution
Function. This expression allows the direct evaluation of the
corresponding probability to each possible state of the link. When there are
different classes of sources j (heterogeneous traffic), it is necessary to
convolute between all source classes. The evaluation of CLR based on
ECA can compute the corresponding CLR for each class (as it is explained
in [8]).

Using ECA for CAC implementations additional reduction of the
evaluation complexity can be achieved. The complete calculation of PC is
not always necessary and those link states corresponding to a non-
congestion situation may be skipped. Moreover, an upper bound for the



admissible PC in the link may be pre-set based on the CLR requirement. If
the cumulative PC value reaches the admissible PC value, the evaluation
process stops and the new connection is rejected. Complementary
programming techniques may be also applied to improve the
implementation performance. All the previously referred mechanisms to
improve the performance of ECA can be used simultaneously.

2.2 Fuzzy Logic CAC

CAC requires a simple but accurate traffic model that can easily adapt to
new traffic patterns generated by ATM services introduced in the future.
Considering this, CAC approaches such as the neural network based CAC
[9], neuro-fuzzy CAC [10] and the fuzzy logic based CAC (FCAC) further
presented are based on data (knowledge) modelling techniques rather than
on analytical traffic models. The subjacent technique (neural network,
fuzzy logic) provides a mechanism for clustering data obtained from ATM
traffic measurements in a structure that constitutes the traffic model by
itself, that is: i) a net structure composed of a set of neurones and
respective connections for neural networks, and ii) a rule structure
composed of a set of “if-then” variable associations in the case of fuzzy
logic systems.

Worster [11] points out the training requirements imposed by a neural
network approach do not map conveniently the CAC fast response
requirement due to the time consuming training phase. A fuzzy logic based
system requires a less lenghty set up (training) phase than a neural network
and the data is expressed in “if-then” rules, easy to understand by a human
operator.

The application of fuzzy logic to CAC envisages to predict the maximum
cell loss ratio per connection when a candidate connection is added to a
background traffic scenario. The fuzzy logic based CAC (FCAC) uses the
mean and peak bit rates and mean burst length to describe the traffic
behaviour of each of the multiplexed connections on a node-to-node basis.

The fuzzy rule base in FCAC is automatically designed using a method of
learning from examples based on the work done by Herrera et al [12]. This
learning method has been explained in detail in previous studies (see also
Ramalho et al.[13] and [14]) and it allows to define (a) the fuzzy sets for
the fuzzy variables in the antecedent and consequent of each fuzzy rule and
(b) a finite set of fuzzy rules able to reproduce the input-output system
behaviour. The learning method can also be used on-line, every time a new



set of traffic examples is available, so allowing FCAC to adapt to changes
in the traffic patterns.

3. Experiments

3.1 Homogeneous scenarios

In the following, a set of experiments is presented for traffic scenarios with
identical traffic sources (homogeneous traffic) and for different link
configurations expressed in terms of the link capacity, C. The output buffer
size, K, is equal to 50 cells. Data traffic has a peak rate equal to 10 Mbit/s,
the mean rate is equal to 1 Mbit/s and the mean burst length equal 339
cells. For Voice traffic the corresponding values are 64 Bbits/s, 22 Kbits
and 58 cells.

ECA and FCAC are going to be compared with an analytical method
proposed by Yang and Tsang [15] to estimate the cell loss probability in an
ATM multiplexer loaded with homogeneous traffic. This method, in the
following referred as the (M+1)-MMDP approximation, uses the Markov
Modulated Deterministic Process (MMDP) to approximate the actual
arrival process and models the ATM multiplexer as an MMDP/D/1/k
queuing system. The results obtained were also checked using an ATM
cell rate simulator, LINKSIM, developed by Pitts [16].

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Number ATM100 sources

C
L

R

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

15 17 19 21 23 25
Number ATM100 sources

C
L

R

              Figure 1. Data (C = 350 Mbit/s) ..........   Figure 2: Voice calls (C = 0.7 Mbit/s and K=50)

FCAC Simulation

ECA (M+1)-MMDP

The ECA prediction provides an upper bound for the average cell loss
probability for the traffic scenarios plotted in figures 1 and 2. ECA is
conservative in this scenario being more accurate when the number of
sources increases. The FCAC prediction conforms with the cell loss value
given by the simulation.



The ECA prediction for both figures is below the average cell loss curve
obtained via simulations but the difference is not enough to classify the
prediction given by ECA as optimist. The same behaviour can be observed
for the prediction given by the (M+1)-MMDP approximation in Figure 1,
but it is quite optimistic in cell loss predictions in Figure 2. The FCAC
prediction conforms with the cell loss value given by the simulation. Note
that the rounding to the next power of ten can sometimes mislead the
observer to think that the approach is either pessimist or optimist for a
particular traffic study.

3.2 Heterogeneous scenarios

This set of experiments allows to compare the average cell loss results
obtained from on-line measurements in the Exploit ATM test-bed in Basel
[17] with the cell loss predictions given by both the ECA and FCAC
approaches for heterogeneous traffic scenarios.

Traffic Class Peak Rate  Mbit/s Mean Rate Mbit/s Burst L. cells
A 31.1 6.22 1467
B 7.78 0.39 183
C 1.94 0.97 229

Table 1 Characteristics of the traffic sources.

In table 1 the traffic sources used for the comparison experiments are
described. The link capacity considered is 155.52 Mbit/s. Considering that
the buffer size is small (27 cells), it is not surprising that the cell loss
predicted by the convolution approach is so close to the cell loss measured
values.
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Figure 3. CLR (2 A, variable # B)         Figure 4. CLR (4 A, variable # C)

It can be observed that the cell loss prediction given by FCAC is close to
the one obtained from measurements. The fact that the cell loss predictions
given by FCAC can be more optimistic than predictions given by ECA, for
some traffic scenarios, has to do with the fact that the rounding-off error to
the closest negative power of ten.

FCAC ECA Simul



Overall, the FCAC predictions obtained for each of the eight
heterogeneous traffic mixes shown previously approximate the
measurements curve and the FCAC prediction is never less optimistic and
generally more optimistic than the ECA prediction.

4. Conclusions and Further Work

The cell loss predictions obtained by FCAC and ECA measurement are in
agreement with the cell loss reference values obtained via on-line
measurements and using simulations, although the cell loss ratio prediction
given by ECA is generally conservative and the FCAC prediction is
generally optimistic. The conservatism of the prediction given by ECA is
related with the bufferless assumption. The optimism observed in the
prediction given by FCAC is mainly related to the round-off error when
rounding a floating point value of the measured cell loss ratio to the
nearest negative power of ten.

Future research is required to test both ECA and FCAC approaches on-line
regarding the speed of the calculations, the accuracy of the cell loss ratio
predictions and the optimisation of the use of the ATM link. This paper has
used as much as possible results obtained from on-line measurements but
the set of obtained results is not enough to make very broad conclusions.
The authors regret that there isn’t a common set of ATM traffic scenarios
used among ATM researchers to compare CAC approaches.
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