
0-7803-7661-7/03/$17.00©2003 IEEE

Robust Connections for TCP Transfers Over ATM Through an
Active Protocol in a Multiagent Architecture1

José Luis González-Sánchez (*), Jordi Domingo-Pascual (**) and Alfonso Gazo Cervero (*)

(*) University of Extremadura. Escuela Politécnica de Cáceres Avda. Universidad S/N. (10.071) Cáceres (Spain)
Phone: +34-927.257.259 Fax:+34-927.257.202 E-Mail: jlgs@unex.es agazo@unex.es

(**) Polytechnic University of Catalunya. Campus Nord, Modul D6, Jordi Girona 1-3 (08034) Barcelona (Spain)
Phone: +34-93.401.6981 Fax: +34-93.401.7055 E-Mail: jordi.domingo@ac.upc.es

Abstract- TAP (Trusted and Active PDU transfers)
is a new distributed architecture and a protocol for
ATM networks that provides assured transfers to a set
of privileged VPI/VCI. The distributed architecture
manages the privileged connections and offers an
improvement in performance when network
connections cause some cell loss. Our AcTMs (Active
ATM switch) model supports the trusted protocol. This
research also offers an attractive solution to the chaotic
nature of TCP Congestion Control. Several simulations
demonstrate the effectiveness of the mechanism that
recovers the congested PDU locally at the congested
switches with better end-to-end goodput in the
network. Also, the senders are alleviated of NACKs and
end-to-end retransmissions.

I. INTRODUCTION

The ATM technology is characterized by its good
performance with the different traffic classes and by its
negotiation capacity of the QoS (Quality of Service)
parameters. Congestion causes the most common type of
errors, and it is here that our work is intended to offer
guaranteed transfers through our TAP (Trusted and Active
Protocol) architecture. TAP adopts ARQ (Automatic
Repeat Request) with NACK (Negative
Acknowledgement) using RM (Resource Management)
cells to alleviate the negative effect of implosion. The
intermediate active nodes are responsible for local
retransmissions to avoid end-to-end retransmissions. We
have implemented a modification of EPD (Early Packet
Discard) as a means of congestion control that we have
called EPDR (Early Packet Discard and Relay) in order to
alleviate the effect of congestion and PDU fragmentation.
Currently, congestion control is delegated to protocols that
solve it with end-to-end retransmissions such as TCP. This
is an easy technique to implement at high speeds by
simplifying the switches and routers, but the whole
network is overloaded with the retransmissions and this
does not offer protection against egoist sources. Also, we
make fair assignations of bandwidth based on a delegated
scheme by extending WFQ (Weighted Fair Queuing) [1]
so as to reduce their complexity of implementation and
achieving constant cost O(1).

At present, the ATM networks are used as a technology
to support all kinds of traffic, with predominance of
TCP/IP protocols. Therefore we present the advantages
that our mechanism of congestion retrievals can offer, not
only for the native ATM traffic, but also for the traffic
generated by TCP/IP sources. The TCP protocol has
become in the last years the standard of data
communications. As we know, TCP is a reliable protocol
of the transport layer of the TCP/IP architecture that uses
error control and flux control based on window
mechanisms with end-to-end control [2]. A considerable
amount of research has intended to integrate two
technologies as different as ATM and TCP/IP; however,
their integration offers [3] poor results in the behavior of
TCP throughput over ATM. While ATM is a connection-
oriented technology, of switched cells of 53 octets and
uniform size, TCP and IP are based on routing mechanisms
of segments and datagrams of variable size.

These characteristics cause a very negative effect on the
throughput when the TCP segments cross ATM switches
with buffer size less than the window size of TCP. This
causes loss of cells and retransmissions due to timeout.
Moreover, the loss of only one cell causes the loss of a
TCP segment at the receiver of the communication that
will request the retransmission to the source, which must
resend the whole segment and not only the lost cell.

We present simulations to demonstrate the chaotic
behavior of TCP when suffering congestion. We use the
NS (Network Simulator) [4] to study the window
mechanisms of TCP, to analyze the effects of the
threshold, of the congestion window, the probability of
loss, and the effect of all this on the throughput. We will
see how the goodput degenerates when the congestions
appear in simulated scenarios. If we introduce TAP in the
network, we can improve the goodput of TCP
transmissions, thus managing to reduce (or eliminate) end-
to-end retransmissions and the actions of selfcontrol of the
congestion window are also reduced in TCP sources.

Firstly, we shall comment on the general characteristics
of TCP, and simulate several scenarios with the NS
(Network Simulator). Section 3 presents the TCP
characteristics over ATM and the next two sections
propose the use of TAP in an IPoverATM scenario. Our
conclusions are presented at the end of this paper.

II. TCP CONGESTION CONTROL CAN BE
IMPROVED

The TCP protocol is a set of algorithms that sends
packets to the network without any previous reservation,
but can react if any event appears. Within this set of
algorithms, the Congestion Control algorithm and the Loss
Segment Retrieval algorithm are the most important.

The mechanism of congestion control in TCP has two
different phases: Slow Start and Congestion Avoidance. At
the beginning of a connection, or in a retransmission due to
the loss of segments, the size of the congestion window
(CWND) is one packet, and then, is incremented to twice
the size in each ACK received in RTT time. During this
phase, CWND is incremented linearly, and not
exponentially as in the Slow Start phase. The following
aspects are basic to the functioning of TCP:

• CWND: represents the congestion window, and is a
variable that limits the amount of data that TCP can
send. Its size varies depending on network conditions.
If the network does not discard packets due to
congestion, the size of CWND increases, also allowing
for the increase in the rate of transfers in traffic
sources.

• INITIAL_WINDOW is the initial value of the
congestion window (CWND).

• SMSS represents the maximum amount of data that a
source of traffic can send.

• RWND is the maximum quantity of data that a receipt
of TCP traffic can receive.

• RTT is the Round Trip Time. This determines the
transmission rate of TCP, because the source sends in
this time the quantity of data fixed by the CWND
window.

• CURRENT_WINDOW represents the amount of
information that the source sends each RTT. This
window takes the lesser value of CWND and RWND.

• SSTHRESH determines which algorithm of the
congestion control is used. When CWND <
SSTHRESH the algorithm Slow Start is used; and
when CWND ≥ SSTHRESH, the congestion control
applied is determined by the Congestion Avoidance
algorithm.

A source TCP fixes the amount of data to be sent by
using the CWND window, and transmits a window of
segments for each RTT. The TCP adjusts the size of this
window depending on the conditions of the network. Thus,
the size of CWND increases to twice the segments for each
ACK received in Slow Start algorithm, and increases by
1/CWND for each ACK received in the Congestion
Avoidance algorithm. This is the scenario in a connection
without loss of segments that is illustrated in Fig. 1, where
we can see the congestion window without loss.

Seconds

Fig.1. Evolution of CWND without losses

CWND increases exponentially while the size is less than
SSTHRESH (using the Slow Start algorithm that
progressively increases the number of segments (1, 2, 4...)
when the ACKs are received). When the size of CWND is
equal to the SSTHRESH, the congestion control of
Congestion Avoidance works. Thus, the CWND window
increases linearly by 1/CWND for each ACK.

The Slow Start algorithm is used by TCP to check the
capacity of the network (whose capacity is unknown) and
the amount of segments that it can support without
congestion. When congestion is imminent, TCP passes the
control to Congestion Avoidance which changes to a lineal
increase of CWND until the congestion is detected.

A. Reaction in case of congestion

When the capacity of transmission of the network is less
than the amount of information to be transmitted, the
network will discard segments so that the sources reduce
the volume of generated information. TCP detects a
discarded segment caused by congestion when the number
of repeated ACKs received is 3, or when the timeout of
retransmissions expires. TCP reacts by resetting
SSTHRESH to the half of CWND, and reduces CWND to
the INITIAL_WINDOW, thus decreasing the quantity of
sent segments.

Fig. 2 represents this scenario showing the evolution of
CWND with losses in the network due to congestion. Fig.
1 and Fig. 2 are obtained with the simulation of the same
topology over NS. This topology has 7 nodes. Each link
has a bandwidth of 1 Mbps, a delay of 10 ms and uses
DropTail as the queue type. The difference between the
two scenarios is that Fig. 2 introduces loss probability of
0.02 with error models at links 2-3 and 3-4 of the topology.

Time

 Number of Packets

Fig. 2. CWND and SSTHRESH in a congested network

In Fig. 2 we have used a higher time of simulation (20
seconds) to show the effect of losses over the congestion
window that is reduced to 1 at several points to solve
congestion problems.

We should point out that the TAP protocol solves these
problems of loss that affect the decrease in size of the
congestion window and also the subsequent retransmission
of end-to-end losses. Thus, the source will not be obliged
to reduce and to adjust its rate of transmission all the time
as Fig. 2 shows, and also, when congestions appear, these
are solved locally in the affected nodes.

B. Throughput and losses

If it is supposed that the maximum size of CWND
window is W segments and, according to the definition of
the Congestion Avoidance algorithm, in [5] it can be
deduced that the total quantity of delivered data in the
network in each cycle can be calculated by the expression,

() ()W W W2
2 1

2 2
2 3

8
2+ = (1)

Therefore, we can suppose a network without losses and
a constant RTT, because it has enough bandwidth and a
low total charge that does not overflow the queues.
According to [5], we can estimate the random packets lost
with a P constant probability assuming that the link
delivers 1/P consecutive packets approximately followed
by a discard, without considering the transmitted data
during retrievals.

We have then two approximations of the delivery of
packets, expression (1) and 1/P. So, by adding both
approximations, we obtain,

W p= 8
3 (2)

On the other hand, we can apply these known data to the
next expression (3) that calculates the transmitted
bandwidth (where MSS is the maximum segment size of
TCP),

AB
datos ciclo

tiempo ciclo

MSS W

RTT
W

MSS P

RTT
P

= = =/
/

*

*

/

*

3
8

2
2

3

2 (3)

We can reorganize equation (3) by grouping the constant

term K = 3

2
; thus obtaining,

AB
MSS

RTT

K

P
= (4)

Equation (4) expresses the throughput in the network and
calculates the performance of TCP after all previous
simplifications. Paper [5] presents other references with
several approximations to the value of the K constant

regardless of its value that is always less than 1. We can
finally choose the next equation (5) as a good expression
of the TCP throughput,

AB
MSS

RTT P
<

1 (5)

We have also analyzed the TCP improvement in several
situations and we planned the effect and behavior of
throughput, studied in relation to the probability of loss of
packets. Therefore, we have reorganized the expression (5)
of the Congestion Avoidance algorithm which expresses
the “steady state” behavior of TCP over low conditions of
charge and a moderate loss of packets, in the next general
equation,

TH
MSS

RTT P
= (6)

If in (6) TH represents the throughput, and we consider
the values of MSS and RTT to be constant, we can obtain
equation (7) where we show that the throughput is
inversely proportional to the loss probability,

TH
K

P
= (7)

Thus, equation (7) represents the behavior experienced
by the throughput when there are lost packets at congested
routers. In equation (7) we can obtain a new equation that
estimates the size of the W window used by TCP with an
average loss rate P. So, by adjusting the value of the K
constant in (4), we obtain the next equation which is the
result of the adaptation of (7) in [5] and the proposals
presented in [6],

W
P

= 0 866, (8)

We can reorganize (8) and according to reference [7] we
will obtain the average loss rate P in the next equation,

P
W

= 0 75
2

, (9)

Equation (8) can be understood as if the network discards
a percentage of segments independently of actions that
have been performed by the source. So, this describes how
the source can react.

In order to study this behavior, we have simulated with
NS a new scenario with links of 2 Mbps of throughput,
with delays of 10 ms. and a DropTail queue. We have also
associated at each link an initial loss probability of 0.001
that is incremented by 5% every 5 seconds at all links. The
objective of this scenario is to study the behavior of the
throughput in relation to the P error probability. As a

result, we have obtained the graph in Fig. 3, where we can
see again the macroscopic behavior that Fig. 1 indicates
intuitively. We can see in Fig. 3 how the loss probability P
determinates the throughput of the TCP source, as the (8)
previous expression intuitively indicates. When the loss
probability increases, the throughput decreases
logarithmically to achieve a lineal evolution. The negative
logarithmic slope represents the fall of the throughput in
the network when this is experiencing loss of packets. The
problem is that TCP duplicates the intervals of
retransmission times between successive loss of packets.
So, if we do not consider the RTT value in equation (6) to
be constant, the effect shown in Fig. 3 will be even more
negative for the throughput of the network. TAP proposes
to decrease the loss, to improve the throughput, because as
we can see in Fig. 3, small improvements in loss
probability can mean higher gains in throughput.

III. TCP OVER ATM

The research in the throughput evaluation of TCP over
ATM is divided into three main groups [8]: 1) those
research papers studying the dynamism of TCP; 2) those
analyzing the throughput of ATM; and 3) those observing
the interaction between TCP windows and the mechanisms
of congestion control of the ATM layer. Although the
throughput evaluation of TCP over ATM has been the
objective of several research papers, the proposals only
solve particular problems such as the fragmentation of
TCP, the buffers required, the interaction between
congestion schemes of TCP and ATM, and the degradation
of TCP. There are a lack of proposals to solve all or even
some of these problems. Our research has looked into these
aspects and offers a MAS (MultiAgent System),
optimizing the goodput with an improvement of entry
queues. Moreover, an accurate policy of buffer
management is used through the delegation of activities in
agents that constitute the MAS.

Most data applications cannot predict their own need of
bandwidth, and this is the reason why we need some
services that allow active users in the network to share
dynamically all the available bandwidth.

We know that in ATM technology the ABR and UBR
classes of service are the standard proposal to support the
data traffic.

Loss probability * 10-3

Bandwidth * 103

Fig. 3. Simulation of equation (4) with NS

Reference [3] presents the study of congestion in TCP
networks over ATM and shows how the TCP throughput
also falls when the discard of cells at ATM switches
begins. The low throughput obtained is due to the waste of
the bandwidth at congested links that transfer packets of
corrupted cells; that is, packets with some dropped cells.
Other research papers have demonstrated that TCP over
UBR, with EPD suffers a considerable degradation of
fairness, and also need a big buffer size, even if there are
few connections. However, if ABR is used with schemes
of explicit rate feedback, TCP offers better behavior of
fairness and exploitation of links even with a buffer size
less than at UBR.

The literature [9,10] also describes other ways to avoid
the degradation of throughput at TCP sources over UBR.
In order to do this, the discard of ATM cells is
disconnected when there is congestion. So, the timeouts of
TCP are avoided although they are the main cause of fall at
TCP throughput, and also the periods of congestion are
reduced, avoiding the big delay experienced with the fast
retransmission algorithm of TCP before the source receives
the duplicate ACKs.

There are two basic references in schemes of congestion
control of TCP and ABR ATM: 1) The mechanisms of
feedback of ABR with RM cells to control the transmission
cell rate from the source (control rate), while the feedback
mechanisms of TCP controls the size of a window as we
have already seen (control credits). 2) The feedback
mechanisms of ABR can be performed by intermediate
switches, or by the receipt of traffic, while at TCP the
feedback mechanisms are only realized by the receipt node
with end-to-end ACK which provides reliability to the
TCP.

At TCP sources, the CWND window controls the
maximum traffic as we can see in the previous section.
However, in the ABR class of ATM service, the traffic is
controlled by several parameters such as MCR (Minimum
Cell Rate), PCR (Peak Cell Rate) and ACR (Allowed Cell
Rate). For TCP over ATM aspects, the mechanisms of
traffic management used at TCP end nodes, at ATM end
nodes and at network switches are also key elements
which, in conjunction, provide a better goodput and reduce
the delay caused by retransmissions. The delay in
processing TCP packets is a random time period that
represents the average delay of processing packets with a
delay variation. This is applied to data packets, and to
ACKs packets between sources and receivers.

With all these differences, and as ATM is a protocol
placed under the TCP transport layer, solutions are
required to solve the throughput problems due to the
integration of these different technologies. These solutions
propose changes at ATM switches inside the network; or
the implementation of new extensions for TCP; or perhaps,
specialized protocols for nodes placed at the limits of the
ATM network and the TCP network. Our TAP protocol
solves these problems by working inside the network, with

hardware (active ATM switches - AcTMs) and also
software (multi-agent system MAS with TAP protocol)
mechanisms. All this configures the whole TAP
architecture.

IV. ADVANTAGES OF TAP

We propose EAAL-5, as an extension of AAL-5,
specifically designed for data communications over ATM.
At TCP over ATM, the datagrams are transferred to the
data field (payload) of EAAL-5, as we can see in Fig. 4
which shows the stack protocols of sources and receipts of
TCP over ATM.

As we know, congestion control is a key aspect of ATM
technology, and this is the reason why we have paid
special attention to aspects such as: scalability, fairness,
robustness and easy implementation.

The TAP architecture is active, because it provides active
nodes at strategic points that implement an active protocol
to allow the user’s code to be loaded dynamically into
network nodes at run-time. TAP also provides support for
code propagation in the network thanks to the RM cells.
TAP is also a distributed architecture in the sense that the
protocol uses several active coordinated and self-
collaborative agents.

In our previous work [11,12] we have presented the
architecture based on TAP-MAS, constituted by software
agents and equipped with a DMTE dynamic memory to
solve the local retransmissions. The architecture of active
AcTMs switches is presented in Fig. 5. We have also
implemented the PQWFQ (PDU Queues PDU based on
Weighted Fair Queuing) algorithm to apply fairness at
sources. Also, the EPDR algorithm manages the buffer
congestion and avoids PDU fragmentation.

The general motivation of this work is to find solutions
to alleviate this negative problem of end-to-end
retransmissions. Thus, TAP proposes to solve this problem
locally when and where this appears to avoid the total cost
of RTT time and to pay only the local rtt at the congested
local link. The protocol does this when the links are at idle
time. In other words, we use the idle time at links to solve
the point-to-point retransmissions instead of the end-to-
end ones.

S R

TAP

VPN

ATM

EAAL5

IP

 TCP
source

EAAL5

IP

 TCP
receiver

Physical

ATM

Physical

Fig. 4. TCP over ATM with TAP

CoSA

DPA

Port/VPI/VCI/PDUid

RM

RM’ (Port/VPI/VCI/PDUid)

 Transfers PDUs

I/O Table Port 5

VC-merge
EPDR

I/O Table Port 6 I/O Table Port 7 I/O Table Port 8

DMTE

Index

Index

Index

Index

PDU

PDU

PDU

PDU

IndexT IndexT IndexT IndexT

Queue 1 Queue 2 Queue 3 Queue 4

CCA

RCA

Discard
& Relay

PDU/
Cell

PDU

 Programmable
Agent

Agent

Data Control

Port 1 Port 2 Port 3 Port 4

WFQA

Port 5 Port 6 Port 7 Port 8

Buffer

Retransmissions

IndexT IndexT IndexT IndexT

PDU/
Cell

Fig. 5. TAP architecture with the TAP-MAS

Fig. 6 shows a more intuitive scenario, constituted by a
network with 6 links, all with the same delay of d=10 ms.
In an ideal network, the total delay D is 60 ms, so the RTT
is 120 ms end-to-end. Our objective is to locate the TAP
protocol between two links to reduce the negative effect of
congestion at switch 3. If we suppose that switches 2 and 3
support the TAP architecture, when a packet congests
switch 3, its retransmission is not 150 ms. but 20 ms, that
is, the delay due to the local rtt with local congestion. If we
want to consider the effect of N TCP sources sharing a
link, this link can be a bottleneck determined by the size of
the router queue that we could suppose to have the B
value. The total size of the TCP queues will be B, and so
W=B/N. If these values are substituted in equation (9), we
can obtain a new approximate prediction of the packet loss
probability:

P
N

B
= 0 75

2

2, (10)

The previous equation shows how high rates in the
network will generate a high loss of packets. Also, the
number of the sources sharing the link and the buffers of
the routers affect the results. Moreover, the possibility of
traffic management depends on the packet capacity of the
buffer that works as congestion point. For N sources, the
store capacity in the network will be the sum of the TCP
sources sharing RTT multiplied by the bandwidth [7,6]. So,
if TCP sources have the same RTT, the store capacity at the
link is RTT times the bandwidth. In equation (10) the B
value is the store capacity at the link, plus the buffers of
the router queues. Small limits in the queue length mean in
equation (10) that the B variable is converted into a
constant, and causes the loss rate to grow when the number
of TCP connections competing for the link are increased.
As the loss rate grows, each TCP window will be reduced
and each TCP source decreases its rate. So, the V rate of
each source can be obtained from equations (4) and (8),

V
RTT P

= 0 866, (11)

S R54321

RTT=120 ms.

p=10-3

rtt=20 ms.

d=10 ms.

D=60 ms.

TAP

Fig. 6. Local retransmission at a congested switch

We should point out that the incorporation of the DMTE
memory (see Fig. 5) in the TAP architecture contributes to
an increase in the buffer size. Observing (10), DMTE
contributes to decreasing the P loss probability which is
inversely proportional to the buffer size of the queue
routers. However, our proposal goes far beyond a simple
aggregation of the memory. Therefore the most important
gain we obtain is the possibility of local retrievals at the
congested router (switch) with a lower value of RTT. So,
TAP decreases the P loss probability and also the RTT. We
can see how these two variables affect equation (11) where
low values of RTT and P enable higher rates at sources of
traffic.

Fig. 6 reminds us of equations (10) and (11) that express
the relations between RTT, B (buffer size), P (loss
probability) and V (source rate). In the ideal scenario
without loss in the network, the DMTE memory of TAP
offers a higher buffer size, which prevents the losses. On
the other hand, if there is loss, TAP retrieves it at the point
where this appears, reducing the end-to-end RTT to the
point-to-point rtt.

V. EVALUATION OF TAP PERFORMANCE

Fig. 7 shows the effect of varying the CAR (Cell Arrival
Rate) between 86 and 2,667 cells per second (33,000 Kbps
to 1 Mbps respectively). In this simulation we fixed the
congestion probability at 10-3. We used an input buffer of
3,000 octets and the DMTE stored 2 PDUs of 1,500 bytes
for each connection. If the value for CAR is 64 Kbps (167
cells/s.); Ton=0.96 s.; and Toff=1.69 s, over the 50 total
PDUs discarded by congestion, 50 PDUs are retrieved via
TAP. Also, when the CAR=56 Kbps and 33 Kbps, the TAP
retrieves all the congested PDUs. Thus, the performance is
optimized (50 retrieved PDUs out of 50 congested PDUs)
since all the lost PDUs are retrieved and there are no
DMTE failures (all the requested PDUs are in the DMTE).

0

10

20

30

40

50

60

33 56 64 256 512 1024C AR (K bps)

P
D

U
s

Congestion PDUs

Retrieved PDUs

Not requested PDUs

Fig. 7. Number of retrieved PDUs for different CARs.

As we can see, when the arrival rate is low, the number
of retrieved PDUs increases. When the CAR increases, 256
Kbps, TAP retrieves 48 out of 50 PDUs, but the 2 lost
PDUs are not requested because the protocol detects
insufficient idle time (Toff) to do the retransmission. We
can see how the number of NACKs (Not requested PDUs)
not sent is greater when the PCR value increases. Thus the
network is not over-charged with useless retransmissions
when there is not a sufficient aggregate Toff.

We note that at a high CAR (1 Mbps) the number of
retrieved PDUs is 47 and also the 3 not retrieved PDUs are
not requested. As we can see, the goodput is optimized
when the number of trusted sources do not exceed the
service capacity.

To manage the buffer and the input queues at each
AcTMs switch we have implemented the PQWFQ (PDU
Queues based on Weighted Fair Queuing) algorithm as
part of the WFQ agent at TAP-MAS. This algorithm
achieves a fair treatment of the PDUs that arrive at AcTMs
switches. We must treat the PDUs of connections with
GoS (Guarantee of Service) as privileged traffic. PQWFQ
uses a weighted mechanism to implement the priority
required at privileged connections, and also supports a
technique to manage the request of retransmissions when
an input queue is congested.

Fig. 8 shows the statistics of the retransmissions sent
over a scenario in which there were by three AcTMs
switches equipped with our PQWFQ algorithm. This figure
presents the retransmissions sent by each of the active
switches. As we can see, switch A begins to serve the
retransmissions requested from switch B when its buffer is
congested (due to the requested retransmissions from
switch C). When switch A starts to deal with the
retransmissions, the fluctuation of the throughput at this
switch also begins. In Fig. 8 we can see how switch C does
not serve any requested retransmission because this is the
last switch. This simulation only studies the PQWFQ
behavior isolated from other TAP mechanisms.

AcTMs switch A

AcTMs switch B
AcTMs switch C

Time

A

C

B

Total

AcTMs switch A

AcTMs switch B
AcTMs switch C

Time

A

C

B

Total

Fig. 8. Statistics of served retransmissions

These and another simulations demonstrate that the TAP
architecture, which is active and distributed, takes
advantage of the AcTMs switches. We have verified that it
is possible to retrieve an important number of PDUs only
with DMTE and a reasonable additional complexity of the
AcTMs switches supported by software agents. Our
simulations also demonstrate that the intuitive idea of
taking advantage of silent states in ON/OFF sources is
valid. Thus, we can achieve better goodput and QoS in
ATM networks supporting the TCP traffic.

VI. CONCLUSIONS

In protocols of transport layer such as TCP over ATM, a
packet is discarded by the network when one or several
cells are lost, and the destination node requests the whole
retransmission of the corrupted or lost packet. We have
demonstrated through simulations the degradation
experienced by the throughput of TCP. We have also
studied how this falls logarithmically when the probability
of loss of the ATM cells increases. The TAP protocol
makes the retransmissions locally, and this decreases the
loss probability and affects the throughput of TCP that
alleviates the delays due to the end-to-end RTT. The TAP
distributed architecture is constituted by a multiagent
system with a protocol working over active AcTMs nodes
with software agents.

REFERENCES

[1] Yoshihiro Ohba, “QLWFQ: A Queue Length Based
Weighted Fair Queueing Algorithm in ATM
Networks”, INFOCOM’97, Proceedings IEEE, pp.
566-575 vol.2 (1997).

[2] W. Richard Stevens, “TCP/IP Illustrated, Volume 1,”
Addison-Wesley Professional Computing Series,
(1994).

[3] Romanow, A. and Floyd, S., “Dynamics of TCP
traffic over ATM networks,” IEEE Journal on
Selected Areas in Communications, pp. 633-641,
(1995).

[4] UCB/LBL/VINT Network Simulator - ns,
http://www-mash.cs.berkeley.edu/ns/

[5] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi,
and Teunis Ott, “The Macroscopic behavior of the
TCP Congestion Avoidance Algorithm,” Computer
Communications Review of ACM SIGCOMM, vol 27,
n. 3, (1997)

[6] Sally Floyd, “Connections with Multiple Congested
Gateways in Packet-Switched Networks Part 1: One-
way Traffic,” Computer Communications Review, vol
21, n. 5 (1995).

[7] Robert Morris, “Scalable TCP Congestion Control,”
Proceedings IEEE INFOCOM’2000, pp. 1176-1183,
(2000).

[8] K. Djemame, and M. Kara, “Proposals for a Coherent
Approach to Cooperation between TCP and ATM
Congestion Control Algorithms,” Proceedings
UKPEW’99, pp. 273-284,
http://www.cs.bris.ac.uk/Events/UKPEW1999/procee
dings/ (1999).

[9] Hongqing Li, Kai-Yeung Siu, Hong-Yi Tzeng, Ikeda,
C., and Suzuki, H., “A simulation study of TCP
performance in ATM networks with ABR and UBR
services,” Proceedings IEEE INFOCOM’96, pp.
1269-1276, (1996).

[10] Shunsaku Nagata, Naotaka Morita, Hiromi Noguchi,
and Kou Miyake, “An analysis of the impact of
suspending cell discarding in TCP-over-ATM,”
Proccedings IEEE INFOCOM’2000, pp. 1147-1156,
(2000).

[11] José Luis González-Sánchez and Jordi Domingo-
Pascual, “TAP: Architecture for Trusted Transfers in
ATM Networks with Active Switches,” ATM'2000
IEEE Conference on High Performance Switching
and Routing. Joint IEEE ATM Workshop 2000 and
3rd International Conference on ATM (ICATM'2000
Heidelberg), pp. 105-112 (2000).

[12] José Luis González-Sánchez and Jordi Domingo-
Pascual, “Trusted and Active Protocol over a
Distributed Architecture in ATM Networks with
Agents,” IEEE International Conference on
Computer Communication and Networks (IEEE
IC3N'2000, Las Vegas), pp. 484-490 (2000).

1 This work is sponsored in part by the CICYT under Grant No. TEL99-
1117-C03-03

