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Abstract. Hidden traffic interference has been identified as an impor-
tant source of network instabilities in dense wireless network deploy-
ments. This paper follows recent research results that relate packet loss
and hidden traffic interference and explores, through extensive exper-
imentation, the possibility to infer hidden traffic load using loss mea-
surements in practical WLAN deployments. Furthermore, we present a
preliminary tool able to provide online estimates of the hidden traffic
load combining active and passive measurements.
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1 Introduction

WLAN deployments have spread at an unprecedented pace during the last years.
The high availability of off-the-shelf hardware and software solutions and the
configuration flexibility that they offer have driven the use of IEEE 802.11 devices
in multiple and varied scenarios.

However, as a side consequence of this success, it is common to find mul-
tiple wireless devices or WLAN deployments coexisting in shared spaces. As a
result, the interference between WLAN transmissions has been identified as an
important source of unexpected problems in wireless networks. This has been
specially remarked and studied in the context of wireless mesh networks (e.g.
[1],[2]) where it highly increases the complexity of tasks such as routing (e.g. [4],
[5]). However, the undesirable effects of interference also extend to traditional
WLAN access networks, specially in dense urban areas or offices, where it has
fostered the development of strategies for channel and power allocations (e.g.
3))-

This paper focuses on the measurement of hidden traffic interference from a
packet level perspective. We consider as hidden interference those transmissions
that are not considered (i.e. sensed) harmful from a sender-side perspective when
transmitting a packet, but that lead to losing this packet at the receiving side



of the communication. Note here that the study does not restrict to a particu-
lar interference model [8], but considers the measurement of hidden interfering
transmissions from a generic perspective.

More specifically, the paper studies the inter-relation that exists between
packet losses and the presence of hidden transmission and takes base in our
previous work [9]. In [9] we used renewal theory arguments to show how the
losses of a probing packet sequence can be used to measure (infer) the actual
hidden traffic load affecting the communication between a pair of nodes. We
provided expressions of the bias that such a measure presents and suggested
methods to avoid it.

In this paper we extend our previous work and we present extensive ex-
periments validating the assumptions taken in a wide range of scenarios. Our
experiments confirm that loss samples are biased measurements of hidden traffic,
and that this bias can be quite large, eventually. The experiments serve also to
analyze the use of simple estimators to measure hidden traffic in practical scenar-
ios. Finally the paper presents a preliminary tool to gather online measurements
of hidden traffic load.

The results of this study provide fundamental insights to understand some
of the results obtained in related literature (e.g. [1], [6]). From a use case per-
spective, the approach presented here can be used to model the effects of hidden
traffic interference on those routing metrics that rely on active probing of wireless
channels [2] (e.g. ETX and ETT), and to tune WLAN optimization strategies
that rely on loss characterization [7].

2 The interrelation between probing losses and hidden
traffic load

The study presented in [9] reveals how packet losses constitute, in fact, biased
samples of hidden traffic load. Let us denote as U(t) the process describing the
busy/idle state of a wireless channel. If this channel utilization is hidden to a
probing station, that sends probing packets at instants {7}, }, the successful/lost
transmissions of these probing packets constitutes a sample of the hidden traffic
load such that,

1 probe packet n is lost

0 probe packet n is received

Taking the long term hidden traffic utilization as u, = lim;_, . P[U(t) =
1], and assuming that the sequence of probing arrivals {T},} follows a Poisson
distribution, the study in [9] reveals how the limiting average of the probability
of losing a packet is biased with respect to the channel utilization. This can be
expressed as

lim P[U, = 1] = u, +&(T}), (2)
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where €(T},) is the bias term and depends on T, the time that it takes to transmit
the probing packets over the air.

2.1 Building loss based estimators of hidden traffic load

The previous results provide fundamental insights that can be used to develop
packet probing based estimators of the hidden channel utilization. Here we review
two basic approaches that help illustrating the impact of the bias term.
Following the definitions in the paper, a sample-mean estimator of the hidden
traffic utilization based on the losses of a Poisson sequence, can be defined as

N-1

Z Ui =ur +e(Tp) +w, (3)
i=0

N 1
us(Tp) = N
where N samples are used for the estimation and where w denotes the noise
associated to the measure (assumed with a zero mean and independent of the
hidden traffic). As it can be seen the sample mean constitutes, in fact, a biased
estimator of the hidden traffic utilization.

Another important result of [9] is that it shows that when T), is sufficiently
small, €(7},) can be modeled as being linear with respect to T,. As a consequence,
the following proposed estimator uses two different probing sizes Tp1 > Tz? to
obtain a (linear approximation) based unbiased estimation of the utilization,

L (T2)T) — ()12 "
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Next sections provide extensive experimental results validating, in practical
cases, the statements of this section.

3 Experimentation setup

This section describes the methodology employed to carry out experiments. Pre-
cisely, we have used a controlled experimentation platform called EXTREME
Testbed®) [13] and a sniffer attached to a real operational WLAN network.

3.1 Experimentation platform

All the experiments were carried out using the EXTREME Testbed ®) [13]
deployed at CTTC. This is a multi-purpose networking experimental platform
featuring high automation capabilities that support automatic execution of the
experiments, data collection and data processing.

The EXTREME testbed is composed of a cluster of computer nodes. All these
nodes are Pentium 4 PCs with a 3GHz processor, 512MB of RAM memory, and
running Linux with kernel 2.6.27. Every node can be equipped with up to two
wireless Network Interface Cards (NICs). The type of wireless NIC employed for
the experiments is the LevelOne WNC-0300, which is based on the Atheros 11b/g
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Fig. 1. Setup of EXTREME Testbed ®).

chipset. The automated experiment setup in EXTREME makes an extensive
use of the wireless extensions API [14] to configure and control wireless devices.
Specifically, the Madwifi driver [10] supports this API and controls LevelOne
cards.

Since the main objective of this study is devoted to study interference due
to hidden nodes, the testbed setup was designed as to minimize the effects of
channel propagation on the measurements. To this aim, all the communications
between wireless devices are done through coaxial wires, and all wireless devices
are connected to a central bank of splitters and combiners (see Figure 1). This
bank of splitters replicates with very low attenuation (in comparison to open-air
propagation) all signal inputs in each of its ports to the rest of ports. The bank
of splitters and combiners is composed of minicircuit ZX10-4-27 splitters (with
4 ports) and minicircuit ZFSC-2-10G splitters (with 2 ports).

3.2 Traces from a campus network

We have also gathered data from a production WLAN AP belonging to a real
university campus network. The traffic has been collected using a Linux box

(PIV-2GB RAM) equipped with an Atheros card running MadWifi drivers [10] in

monitor mode. In particular, we have collected traffic in the following scenarios’:

— Filetransfer_far: In this scenario, a contending machine was setup to down-
load a large file from a remote server located at many hops from the campus
network.

— Filetransfer_close: This scenario mimics the previous one, but the remote
server was located in the same autonomous system than the campus network.

! The traces used can be downloaded from [11].



— P2P: In this scenario, the contending node was running a popular P2P ap-
plication (BitTorrent).

— Contending-n: In this final scenario, we setup n contending nodes (ranging
from 1 to 4) running a wide set of applications (filetransfer, e-mail clients,
P2P...). This setup reproduces a WLAN link under heavy load.

4 Experiment observations to validate the model

This section validates some of the statements presented in the previous sec-
tion and in [9]. First we validate, in a controlled environment, the inter-relation
between loss and hidden traffic. Second, we use measurements gathered in an
operational campus network to show that the renewal theory assumptions taken
in [9] correctly model practical wireless channel utilization. Third, we provide
some results that relax the requirement to use Poisson probing in order to gather
accurate measurements.

4.1 Validation in a controlled environment

We have used the EXTREME platform (see subsection 3.1) to study the inter-
relation between packet loss and hidden traffic load in the absence of propagation
losses.

Figure 2 reports the measurements of hidden traffic load, for different rates of
hidden traffic, when using the sample mean and the estimation based on linear
interpolation. The figure has been generated using more than 15k loss samples for
each measurement point. To gather these measurements we have used a probing
sequence with packets of 128 bytes in the sample mean case, and an additional
sequence with packets of 64bytes in the linear approximation case. Hidden traffic
is sent at a phy rate of 12Mbps, with Poisson distribution. Probing packets are
sent at 6Mbps with Poisson distribution and broadcast.

As it can be seen, first, the sample mean provides biased estimates of the
actual hidden traffic load. Second, when using the packet sizes we have chosen,
the linear approximation of the bias is consistent and provides accurate estimates
of the utilization using the linear approximation.

4.2 Validation of the model assumptions on WLAN traffic

The purpose of this subsection is to validate some of the assumptions taken
in section 2 and to analyze the accuracy of the proposed estimators using the
datasets described in subsection 3.2, that have been collected in an operational
campus network. Specifically, we are interested in obtaining realistic figures of the
distributions of busy/idle states of channel occupancy in operational networks.
We take the downlink traffic transmitted through the monitored AP as hidden
to an eventual monitoring node and study whether the assumptions hold in such
a case. Using the datasets we measure the actual traffic load and the measure
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Fig. 2. Measurements of utilization using probing losses in a controlled environment

that would be obtained using loss samples from an eventual probing sequence
with mean inter-arrival time of 100ms.

Figures 3 and 4 show the results of these experiments. Please note that
for readability we do not show all the results, the interested reader can find
the remaining ones in [11]. Left plots show the accuracy of the sample-mean
estimators (eq. 3) while right plots show the accuracy of the linear approximation
proposed to obtain unbiased measurements (eq. 4).
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Fig. 3. Comparison of the accuracy of sample-mean vs unbiased estimator (filetrans-
fer_far scenario).
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Fig. 4. Comparison of the accuracy of sample-mean vs unbiased estimator (contend-
ing_3 scenario).

From the figures we can see that all the experiments validate our analytical
model, and show the large bias incurred by sample-mean based estimators. This
bias is present in all the cases and may grow up to 50% in some scenarios. Con-
cerning the linear approximation (right side of the plots) the experiments shows
that it performs remarkably well. This also confirms that the linear assumption
taken holds with a wide range of traffic profiles and with different amounts of
contending (hidden) stations. It is worth noting here that the plots also reveal
the higher variance of the (approximately) unbiased estimator in comparison to
the pure sample-mean measure.

4.3 Do we really need to use Poisson sequences?

One of the main assumptions taken in section 2 and used throughout the vali-
dation study is the use of Poisson probing sequence to sample channel use. The
PASTA property associated to Poisson sequences guarantees the convergence of
some of the findings and the accuracy of the estimators proposed. The objec-
tive of this section is to relax this assumption and show that channel utilization
presents mixing properties [15] that allow using alternative probing patterns.
Relaxing the Poisson assumption is useful in practice, as we will see in the next
section, as it allows using, for example, periodic beacon broadcasts to get samples
of hidden traffic utilization.

The hypothesis here is that although the sampling process is not poisson,
the underlying traffic is mixing enough, and will produce similar results. For
this we have repeated the experiments of the previous section but instead of
using poisson probing, we use periodic probing. In particular each plots shows,
in each case the accuracy of the proposed estimator using poisson probing (left)
and periodic probing (right).
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Figures 5 and 6 show the results for this experiment. Again, we only present
the plots of the same scenarios than in the previous subsection, the interested
reader can find the remaining ones in [11]. The results show that, for all the
scenarios, the accuracy of the unbiased estimator is not affected by periodic
probing and in fact, shows similar accuracy than when using poisson probing.
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(a) Measurement of utilization using

poisson probing (unbiased estimator).
Fig. 5. Comparison of the accuracy of periodic vs. poisson probing (filetransfer_far

scenario).

poisson probing (unbiased estimator).

(a) Measurement of utilization using
Fig. 6. Comparison of the accuracy of periodic vs. poisson probing (contending 4 sce-

nario).



5 Design options to build a tool to measure hidden traffic
load

This section presents some preliminary observations on the design options to the
design of a tool to obtain online measurements of hidden traffic load in practical
scenarios.

5.1 Periodic samples using beacon frames

Beacon frames can be considered as periodic samples of the wireless channel.
Indeed, in a vast majority of cases, Access Points send beacons with a periodic
interval that comes in the TBTT field. As argued above in section the periodic
nature of beacon broadcasts does not prevent their use, in a practical scenario,
to gather samples of hidden traffic load. Note that the authors of [12] suggested
previously the use of the TBTT field to gather information from beacon mea-
surements.

We have implemented a tool that keeps track of the TBTT field in order
to determine how many beacons might have been lost between two successive
reception of beacon frames. However, as figure 7 reveals, beacon losses have to
be handled with care, as APs are prone to reconfiguration procedures that may
be easily mistook with periods of high traffic occupancy.
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Fig. 7. Measurements of the beacon frame losses during night hours

5.2 Getting samples using retry counts

In order to obtain unbiased measurements of hidden traffic utilization we need
packets of different sizes (and sufficiently small) that sample the occupancy of the



wireless medium. However, generating broadcast frames without proper control
of the WLAN network is generally a difficult task.

The solution that we investigate here takes advantage of the retry field
present in the IEEE 802.11 packet header. In this case we propose the use of
unicast packets as indicators of the presence of hidden traffic. The basic idea
consists in that (1) a remote station sends packets of two different sizes to the
monitoring stations. (2) the monitoring station determines how many packets
are not successfully transmitted at their first attempt (i.e., they have their retry
field to 1). Then, the packets with the retry field equal to 1 are used as indicators
of frame losses, and thus, of hidden channel use.

Figure 8 shows the efficacy of using this method in a controlled environment.
The figure plots the number of 128-byte packets that have not been successfully
transmitted at their first attempt (sample mean) and a linear approximation of
the hidden utilization using a second sequence of 64-byte long packets. As it can
be seen the approach is accurate.
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Fig. 8. Retry based measurements of hidden traffic in a controlled environment

Figure 9 shows the results of applying retry based measurements to gather
unbiased measurements of hidden traffic load in an operational environment.

5.3 Issues to implement the tool in practice

There are a number of issues that difficult the implementation of a practical tool
to measure the present of hidden traffic transmissions.

First, the solution to use unicast frames and retry counts suffers largely
from adaptive mechanisms implemented in commercial WLANs. As an example,
rate adaptation algorithms and variable retransmission strategies prevent the
possibility to use a single value for T}, to be used in the estimation.
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Second, channel propagation errors constitute an important source of dis-
tortion to the mechanisms introduced here. In many cases, channel propagation
errors are more important than hidden transmissions which results in the impos-
sibility to gather reliable measurements of hidden traffic load. A typical solution
is to use low rate modulations to transmit probing packets in order to increase
their reliability.

Finally, beacons present the desirable properties of being short and trans-
mitted at a sufficiently low rate so that the impact of channel propagation is
low. However, without having a certain level of control of a WLAN network,
it is difficult to introduce additional broadcast transmissions to build unbiased
estimators.

6 Conclusions

Hidden traffic interference has been identified as an important source of network
instabilities in dense wireless network deployments. This paper explores the pos-
sibility to infer hidden traffic load using loss measurements in practical WLAN
deployments. It takes base on [9], where we proposed an unbiased estimator for
the hidden load interference. At present, existing estimators account for the hid-
den load computing the ratio of lost packets from a sequence of periodic probing
and using a pure sample-mean estimator. In [9], we proposed an approximately
unbiased estimator based on poisson sampling.

In this paper we have validated through extensive experimentation the va-
lidity of the assumptions taken in [9] along with the accuracy. The validation
has been carried out both in a controled testbed (EXTREME®) [13]) and using
a dataset collected in an operational campus network. The results confirm the
assumptions and show that the proposed estimator performs remarkably well.



Further, the results also show that the proposed estimator can also operate when
we sample the path using a periodic probing process, instead of a poisson one.
This hypothesis has helped us to design a tool able to provide online estimates
of the hidden traffic load combining active and passive measurements.
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