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Abstract

We present the design of a predictive load shedding scheme for a network moni-
toring platform that supports multiple and competing traffic queries. The proposed
scheme can anticipate overload situations and minimize their impact on the accu-
racy of the traffic queries. The main novelty of our approach is that it considers
queries as black boxes, with arbitrary (and highly variable) input traffic and pro-
cessing cost. Our system only requires a high-level specification of the accuracy
requirements of each query to guide the load shedding procedure and assures a
fair allocation of computing resources to queries in a non-cooperative environment.
We present an implementation of our load shedding scheme in an existing network
monitoring system and evaluate it with a diverse set of traffic queries. Our results
show that, with the load shedding mechanism in place, the monitoring system can
preserve the accuracy of the queries within predefined error bounds even during
extreme overload conditions.
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1 Introduction

The ability to extract detailed information from live traffic streams is critical
to network management applications such as traffic engineering, performance
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analysis and network security. The challenges in this context include the un-
predictable nature of network traffic as well as the types of computations,
usually unknown in advance, to be performed on the packet streams. At any
given point in time, a variable number of applications may need access to the
packet stream traversing the same monitoring system.

Recently, several research efforts have proposed network monitoring frame-
works that abstract away the low-level details of the network traffic and allow
developers to quickly design and implement new methods to process and ex-
tract information from packet streams [7,14]. These systems differ from previ-
ous designs in that they are not tailor made for a single specific application,
but instead can handle multiple, concurrent monitoring applications.

In an environment where multiple monitoring applications compete for the
same shared resources, ensuring fairness of service in the presence of overload is
a basic requirement. Load shedding has been recently proposed as an effective
alternative to over-provisioning for handling overload situations in several real-
time systems [23,20,25,3]. Load shedding is the process of dropping excess
load in such a way that the system remains stable and no overflow occurs
in the system buffers. Traditionally, load shedding has been implemented by
dynamically discarding part of the incoming data in the presence of overload.
In this work, we address the problem of how to efficiently and fairly shed
excess load from an arbitrary set of monitoring applications while keeping the
measurement error within bounds defined by the end users.

There are three main requirements that make this problem particularly chal-
lenging. First, the system operates in real-time with live packet streams.
Therefore, the load shedding scheme must be lightweight and quickly adapt
to sudden overload situations to prevent undesired packet losses. Second, the
monitoring applications are unaware of other applications running on the same
system and cannot be assumed to behave in a cooperative fashion. Instead,
they will always try to obtain the maximum share of the system resources.
The system however must ensure fairness of service and avoid starvation of
any application, while trying to satisfy their accuracy requirements. Third, to
provide developers with maximum flexibility, the system has to support ar-
bitrary monitoring applications for which the resource demands are unknown
a priori. In addition, the input data (i.e., the network traffic) is continuous,
highly variable and unpredictable in nature. As a consequence, the system
cannot make any assumptions about the input traffic nor use any explicit
knowledge of the cost of the monitoring applications to decide, for example,
when it is the right time to shed load.

To address this third challenge, in a previous work [3] we designed a load shed-
ding scheme that can efficiently handle extreme overload situations, without
requiring explicit knowledge of the monitoring applications. The core of our
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load shedding scheme is based on an on-line prediction model that allows the
monitoring system to anticipate future overload situations. It infers the cost
of each application from the relationship between its actual resource usage
and a large set of simple (and lightweight) traffic features that summarize
the incoming traffic (e.g., the number of packets, flows, unique IP destination
addresses, etc.). This prediction is then used for gracefully degrading the ac-
curacy of the monitoring applications by deciding, for example, when or how
much load to shed using well-known traffic sampling techniques.

In this paper, we extend our previous load shedding scheme to address the
problem of where to shed excess load (i.e., the amount of load to be shed
in each application), which ensures robustness and fairness of service when
dealing with non-cooperative monitoring applications.

In our previous prototype [3], an equal sampling rate is applied to each moni-
toring application in the presence of overload. Although this solution is fair in
the number of packets processed by each application, this paper shows that the
system can shed load more effectively by applying different sampling rates to
different applications according to external information about their accuracy
requirements (e.g., maximum loss the application can tolerate to guarantee a
maximum error in the results).

Other strategies used by similar systems to decide where to shed load fall into
two broad categories. The first includes solutions that maximize an aggre-
gate performance metric, such as the overall system utility [23] or through-
put [1,22]. We argue that these approaches, when applied to non-cooperative
environments, suffer from serious fairness issues and therefore are only suit-
able for scenarios where the system administrator has complete control over
the utility functions or priorities of each application. In this paper, we propose
instead a variant of the classical max-min fair share policy that ensures fair-
ness of service even with non-cooperative users. We model our system using
game theory and show that it has a single Nash equilibrium when all players
provide correct information about their resource requirements. That is, our
system has the appealing feature that a user obtains maximum benefit only
when providing correct information to the system.

The second category includes solutions that achieve fairness of service by as-
suring that each application receives an equal share of the system computing
resources [16]. In contrast, in this paper we show that, in the context of net-
work monitoring, ensuring fair access to the packet stream can significantly
improve the accuracy of monitoring applications. This result indicates that in
a scenario where multiple monitoring applications have to run on the same
system, a packet-based scheduler can obtain better performance than the Op-
erating System task scheduler, which is basically designed to guarantee fair
access to the CPU.
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The remainder of this paper is organized as follows. The next two sections re-
view the related work and our load shedding scheme, respectively. We present
our method to handle non-cooperative monitoring applications in Section 4
and model it using game theory in Section 5. Section 6 describes our testbed
scenario, while Section 7 presents a performance evaluation of an actual imple-
mentation. Finally, Section 8 concludes the paper and discusses future work.

2 Related Work

In network monitoring, the simplest form of load shedding consists of discard-
ing packets without control in the presence of overload. This naive approach
is still adopted by most monitoring applications, although it is known to have
a severe (and unpredictable) impact on the accuracy and effectiveness of these
applications.

In order to minimize this impact, critical monitoring systems often integrate
specialized hardware (e.g., DAG cards [10]) or make use of ad-hoc configura-
tions to avoid the inherent hardware limitations of the PC-based architecture
for network monitoring [21]. Although these solutions have demonstrated their
effectiveness in some scenarios, they present scalability issues that make them
viable only as a short term solution.

Recently, several research works have proposed solutions that offer a more
robust and predictable behavior in the presence of overload. Most proposals
are based on data reduction techniques (some of them adaptive), such as
packet filtering, traffic sampling or data aggregation [11,16,8,6,27].

Although most of these solutions are more effective and scalable, they incur
one of the following two limitations: (i) they are designed to address overload
situations only in traffic collection devices, without considering the cost of
analyzing these data on-line [6,11], or (ii) they are limited to a pre-defined set
of traffic reports or analyses [8,16,27].

Our load shedding scheme differs from these approaches in that it can handle
arbitrary network monitoring applications and operate without any explicit
knowledge of their actual implementation. This way, we significantly increase
the potential applications and network scenarios where a monitoring system
can be used.

This flexibility however raises different problems to those addressed in pre-
vious works, such as how to ensure fairness of service. For example, [16] as-
sumes that the average cost per packet of each component of the monitoring
system is a constant share of the total CPU usage. This assumption is a di-
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rect consequence of their careful design, but does not hold for any arbitrary
monitoring application. Conversely, our system has to deal with arbitrary, non-
cooperative monitoring applications, with different accuracy requirements and
variable cost per packet.

It is however in the context of Data Stream Management Systems (DSMS)
where the load shedding problem has been explored more extensively. Most
load shedding designs in this area (e.g., [23,20,22]) require queries to be built
out of a small set of operators, whose cost and selectivity is assumed to be
known and constant. Our work differs again from these approaches in that
our system considers queries as black boxes and therefore cannot make any
assumption on their cost or selectivity to guide the load shedding procedure.

A noticeable exception is the control-based approach proposed in [24]. Nev-
ertheless, it addresses only the problem of when and how much load to shed,
while in this paper we focus mainly on the question of where to shed it.

More recently, some of the techniques used in [23] have been extended to the
Borealis distributed DSMS [22]. The feasibility of using similar techniques to
the one proposed in this paper in a distributed network monitoring system
constitutes an important part of our future work.

Finally, in the Internet services space, SEDA [25] proposes an architecture to
develop highly concurrent server applications. SEDA implements a reactive
load shedding approach by dropping incoming requests when an overload sit-
uation is detected. In this paper, as well as in [3], we show that in a network
monitoring system our predictive approach can significantly reduce the impact
of overload compared to a reactive one.

3 Background

We implemented our proposal as an extension to the CoMo monitoring plat-
form [14]. CoMo is an open-source passive network monitoring system that
allows for fast implementation and deployment of network monitoring appli-
cations. Applications in CoMo (or “modules” 1 ) are written in the C language,
making use of a feature-rich API provided by the core platform.

In order to provide the user with maximum flexibility when writing queries,
CoMo does not restrict the type of computations that a plug-in module can
perform. As a consequence, the platform does not have any explicit knowledge
of the data structures used by the plug-in modules nor the cost of maintaining

1 In the rest of the paper the terms monitoring application, module and query are
used interchangeably.
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Fig. 1. System overview

them. This approach allows users to define traffic queries that otherwise could
not be easily expressed using common declarative languages (e.g., SQL).

Without any knowledge of the plug-in modules, the load shedding scheme in
CoMo [3] infers the cost of each query from the relation between its actual
resource usage and a pre-defined set of traffic features. A traffic feature is
simply a counter that describes a specific property of the incoming traffic
(e.g., number of packets, bytes, flows, unique IP destination addresses, etc.).

The intuition behind this method comes from the empirical observation that
each query incurs a different overhead when performing basic operations on the
state it maintains while processing the input packet stream (e.g., creating new
entries, updating existing ones or looking for a valid match). The time spent
by a query is mostly dominated by the overhead of some of these operations,
which can be modeled by considering the right set of simple traffic features.

Figure 1 shows the components and data flow in the CoMo system. The pre-
diction and load shedding subsystem (in gray) intercepts the packets before
they are sent to the plug-in modules implementing the traffic queries.

The system operates in four phases. First, it groups the incoming traffic in
“batches” of packets. Each batch is then processed to extract a large set of
pre-defined traffic features (Section 3.1). Next, the feature selection subsystem
is in charge of selecting the most relevant features according to the recent
history of the query’s CPU usage (Section 3.2). This subset of relevant features
is then given as input to the multiple linear regression (MLR) module to
predict the CPU cycles required by the query to process the entire batch
(Section 3.3). If the prediction exceeds the available cycles, the load shedding
subsystem applies traffic sampling to reduce the load of the monitoring system
(Section 4). Finally, the actual CPU usage is measured using the time-stamp
counter [15] and fed back to the prediction subsystem to close the loop.

In case of overload, CoMo applies packet or flow sampling to the incoming
traffic in order to shed excess load. Packet sampling consists of randomly
selecting packets in a batch with probability p (i.e., the sampling rate), while
flow sampling consists of randomly selecting entire flows, rather than single
packets, with probability p. In order to efficiently implement flow sampling,
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CoMo uses a hash-based technique called Flowwise sampling [9].

The remainder of this section is devoted to a quick review of the three compo-
nents that perform the prediction. An extensive evaluation of the prediction
accuracy and overhead is available in [3].

3.1 Feature Extraction

We are interested in finding a set of traffic features that are simple and
lightweight to compute, while helpful to characterize the CPU usage of a
wide range of queries. A feature that is too specific may be used to predict a
given query with great accuracy, but could have a cost comparable to directly
answering the query (e.g., counting the packets that contain a given pattern to
predict the cost of signature-based IDS-like queries). Our goal is therefore to
find features that may not explain in detail the entire cost of a query, but can
provide enough information about the aspects that dominate the processing
cost. For instance, in the previous example of a signature-based IDS query,
the cost of matching a string will mainly depend on the number of collected
bytes.

In addition to the number of packets and bytes, we maintain four counters
per traffic aggregate that are updated every time a batch is received. A traffic
aggregate considers one or more of the TCP/IP header fields: source and
destination IP addresses, source and destination port numbers and protocol
number. The four counters we monitor per aggregate are: (i) the number of
unique items in the batch; (ii) the number of new items compared to all items
seen in a measurement interval; (iii) the number of repeated items in the
batch (i.e., items in the batch minus unique) and (iv) the number of repeated
items compared to all items in a measurement interval (i.e., items in the batch
minus new).

This large set of features (four counters per traffic aggregate plus the total
packet and byte counts, i.e., 42 in our experiments) helps narrow down which
basic operations performed by the queries dominate their processing costs
(e.g., creating a new entry, updating an existing one or looking up entries).

In order to extract the features with minimum overhead, we implement the
multi-resolution bitmap algorithms proposed in [13]. The advantage of the
multi-resolution bitmaps is that they bound the number of memory accesses
per packet as compared to classical hash tables and they can handle a large
number of items with good accuracy and small memory footprint.
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3.2 Feature Selection

Since modules consist of arbitrary code, the system cannot know in advance
which features perform best as predictors for each query. Including all the
extracted traffic features in the regression has several drawbacks: (i) the cost
of the linear regression increases quadratically with the number of predictors,
much faster than the gain in terms of accuracy (irrelevant predictors); (ii)
even including all possible predictors, there would still be a certain amount of
randomness that cannot be explained by any predictor; (iii) predictors that
are linear functions of other predictors (redundant predictors) can negatively
impact on the accuracy of the predictions (multicollinearity).

The CoMo platform uses a variant of the Fast Correlation-Based Filter (FCBF)
[26], which can effectively remove both irrelevant and redundant features and
is computationally very efficient.

3.3 Multiple Linear Regression

Regression analysis is a widely applied technique to study the relationship
between a response variable and one or more predictor variables. The linear
regression model assumes that the response variable is a linear function of the
predictors. The fact that this relationship exists can be exploited for predicting
the expected value of the response variable when the values of the predictors
are known.

In CoMo, the linear regression is used to model the resource usage of each
query from the relation between the features selected by the FCBF algorithm
and the CPU usage of each query observed while processing previous batches.
This model is used to predict the CPU cycles that will cost to process a given
batch once the values of the individual features are known.

4 Fairness in a Non-Cooperative Environment

The load shedding strategy described in Section 3 has a major limitation: it
does not differentiate among queries, since the load shedder always applies the
same sampling rate to each of them. However, the system would make load
shedding decisions in a more graceful and intelligent manner if it could con-
sider some additional knowledge about the queries to guide the load shedding
procedure, such as their level of tolerance to loss. For example, when using
traffic sampling, some queries (e.g., ranking top flows [2]) require much higher
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sampling rates than other simpler ones (e.g., packet/byte counts) to achieve
the same degree of accuracy in the results.

Nevertheless, our system cannot directly measure the error of a query to infer
its tolerance to loss, given that it considers them as black boxes. Thus, there
is no option other than obtaining this information from the user. The main
drawback of this approach is that users will tend to request the largest possi-
ble share of the resources. Therefore, the monitoring system must implement
mechanisms to ensure fairness of service and make sure users provide accurate
information about their queries.

4.1 Max-Min Fairness

Fairness can be defined in many different ways. A classical technique used
to ensure fair access to a scarce shared resource is the max-min fair share
allocation policy. Intuitively, the max-min fair policy maximizes the smallest
allocation of the shared resource among all users: it assures that no user re-
ceives a resource share larger than its demand, whereas users with unsatisfied
demands get an equal share of the resource.

Table 1 summarizes the notation used throughout this section. For each query
q ∈ Q at time t, d̂q and cq denote the cycles predicted (using the method
described in Section 3) and those actually allocated by the system, respec-
tively. Let C be the system capacity in CPU cycles at time t. 2 A vector
c = {cq | q ∈ Q} of allocated cycles is feasible if the following two constraints
are satisfied:

∀q∈Q cq ≤ d̂q (1)∑
q∈Q

cq ≤ C (2)

The max-min fair share allocation policy is then defined as follows [4]:

Definition 1 A vector of allocated cycles c is max-min fair if it is feasible,
and for each q ∈ Q and feasible c̄ for which cq < c̄q, there is some q′ where
cq ≥ cq′ and cq′ > c̄q′.

2 In [3] we describe how the system capacity is measured. We also show that it
varies over time due to the system overhead and the prediction error in previous
time bins.
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Table 1
Notation and definitions

Symbol Definition
Q Set of q continuous traffic queries
C System capacity in CPU cycles
d̂q Cycles demanded by the query q ∈ Q (prediction)
mq Minimum sampling rate constraint of the query q ∈ Q

c Vector of allocated cycles
cq Cycles allocated to the query q ∈ Q

p Vector of sampling rates
pq Sampling rate applied to the query q ∈ Q

aq Action of the query q ∈ Q

a−q Actions of all queries in Q except aq

uq Payoff function of the query q ∈ Q

4.2 Fairness in terms of CPU Cycles

We aim at using external information to drive the load shedding decision. A
possible way to express this information is by providing a utility function per
query that describes how the utility varies with the sampling rate. To simplify
the system and reduce the burden on the users we let the user specify only
the minimum sampling rate (mq) a query q ∈ Q can tolerate. This allows to
keep the load shedding algorithm very simple yet flexible enough to control
resource usage.

Minimum constraints however are not considered in the classical definition of
max-min fairness. For this reason, we modify the constraint (1) of the standard
max-min fair policy by the following one in order to introduce the notion of a
minimum sampling rate:

∀q∈Q (mq × d̂q) ≤ cq ≤ d̂q (3)

Depending on the query requirements and the system capacity, a max-min fair
allocation that satisfies each query’s minimum rate constraint may or may not
exist. When no feasible solution exists, some queries have to be disabled. The
strategy used by our system to encourage users to request the smallest amount
of resources (i.e., low mq) is to disable the smallest subset of Q′ ⊆ Q queries

to satisfy (2) and (3), such that
∑

q′∈Q′ mq′ × d̂q′ is maximized. That is, the
system disables first the queries with the largest minimum demands.

As we show in Section 5, this (intentionally) simple strategy not only enforces
users to specify mq values as small as possible, since higher values increase the
probability of being disabled in the presence of overload, but also encourages
them to write queries in an efficient manner (i.e., small dq), because given two
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equivalent queries, the least demanding one will have more chances to run.

4.3 Fairness in terms of Packet Access

The strategy we described so far is max-min fair in terms of access to the CPU
cycles. An alternative strategy is to be max-min fair in the access to the packet
stream. The intuition behind this idea is that the number of processed packets
has a stronger correlation with the accuracy of a query than just the number
of allocated CPU cycles. Simpler queries, such as aggregate packet counters,
tend to be more resilient to sampling and also require very few cycles to exe-
cute. On the other hand complex queries, such as top-k destinations, are more
expensive and more sensitive to sampling. As a result, allocating CPU cycles
may guarantee 100% sampling to simple (and cheap to execute) queries that
do not need that high sampling rate while penalizing more complex queries.

A strategy that is max-min fair in terms of packet access consists of optimizing
the minimum number of packets processed among all queries, rather than the
allocated cycles, while satisfying the minimum sampling rate constraints.

Letting C be the system capacity in CPU cycles at time t, we say that a vector
p = {pq | q ∈ Q} of sampling rates is feasible if the following two constraints
are satisfied:

∀q∈Q mq ≤ pq ≤ 1 (4)∑
q∈Q

(pq × d̂q) ≤ C (5)

We then define the max-min fair share policy in terms of access to the packet
stream as follows:

Definition 2 A vector of sampling rates p is max-min fair in terms of access
to the packet stream if it is feasible, and for each q ∈ Q and feasible p̄ for
which pq < p̄q, there is some q′ with pq ≥ pq′ and pq′ > p̄q′.

Like in the strategy described in Section 4.2, when no feasible solution exists,
the system uses the minimum demands (i.e., mq × d̂q) to decide which queries
are allowed to run, but then allocate spare cycles according to each query
per-packet processing cost.
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4.4 On-line Algorithm

The main advantage of both strategies is that they are simple yet fair in a
non-cooperative environment. Both strategies can run online given that an
algorithm exists to compute the optimal solution in polynomial time [4].

Our algorithm is based on the classical max-min fair share algorithm [4], but
it includes the minimum sampling rate constraint. It is divided into two main
phases. The first phase is common to both strategies, since they both aim
at satisfying the minimum requirements (mq) and only differ on how the re-
maining cycles are distributed among the queries. First, it sorts the queries
according to their mq × d̂q values and checks if the following condition can be
satisfied without disabling any query:

∑
q∈Q

(mq × d̂q) ≤ C (6)

If (6) is satisfied, the algorithm continues to the second phase. Otherwise, it
sets cq (or pq when using the strategy that is fair in terms of packet access) of

the query with the greatest value of mq × d̂q to 0 (i.e., the first query of the
list is disabled), q is removed from the list, and the process is repeated again
with the remaining queries.

The second phase differs depending on the strategy being implemented. In the
strategy that is fair in terms of CPU access, the second phase consists of finding
a vector c′ ⊆ c of allocated cycles that is max-min fair, while satisfying the
minimum rate constraint of each query q′ ∈ Q′, where Q′ stands for the queries
that are left in the list after the first phase. The algorithm starts allocating
mq′ × d̂q′ cycles to each query. The queries are then divided in two lists. The
first initially contains the query with the smallest cq′ , while the second list
includes the rest of the queries sorted by ascending cq′ values. Throughout the
algorithm, the first list always contains queries with equal cq′ that are also
always smaller than any other in the second list. The cq′ values of all queries
in the first list are set to the minimum of: (i) the cq′ value of the first query in

the second list, (ii) the minimum d̂q′ of the queries in the first list, and (iii)
their current cq′ plus the remaining cycles over the number of items in the
first list. If (i) is used, the first query in the second list is moved to the first

list, while if (ii) is used, the cq′ of the query with minimum d̂q′ is definitive
and q′ is removed from the first list. This process is repeated until there are
no queries left on the lists or the system capacity is reached (i.e., when the
value (iii) is used).

The second phase of the strategy that is fair in terms of packet access con-
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sists of finding a vector p′ ⊆ p of sampling rates that is max-min fair, while
satisfying the minimum sampling rate constraint of each query q′ ∈ Q′. The
algorithm starts computing a global sampling rate r = C/

∑
q′ dq′ . Then, for

all queries q′ ∈ Q′ such that mq′ > r, the sampling rate pq′ is set to mq′ . The
sampling rate of these queries is definitive and they are removed from the list.
Next, r is recomputed for the rest of the queries and the process is repeated
again, but subtracting from the system capacity the cycles already allocated.
The algorithm finishes when there is no query q′ ∈ Q′ such that mq′ > r. In
this case, pq′ of the queries still remaining in the list is set to r.

5 System’s Nash Equilibrium

To verify that no user has an incentive to provide incorrect mq values, we
evaluate our strategy in terms of game theory. In particular, our system can be
modeled as a strategic game with Q players, where each player q corresponds
to a query. Each player has a set of possible actions that consist of its minimum
CPU demands, denoted by aq (i.e., mq×d̂q).

3 The objective of non-cooperative
players is to obtain the maximum number of cycles from the system. Thus,
the payoff function uq, which specifies the player’s preferences, is the number
of cycles actually allocated by the system to the query q, which depends on
aq and the minimum demands of the rest of the queries a−q (the −q subscript
stands for all queries except q).

In particular, according to the strategies described in Sections 4.2 and 4.3, our
system tries to satisfy all minimum demands and eventually shares any spare
cycles max-min fairly (in terms of CPU or packet access) among the queries.
However, if the sum of all aq values is greater than the system capacity, the
system disables first the queries with largest aq. We can express the payoff uq

of a query q as a function of the action profile a = (aq, a−q) as follows:

uq(aq, a−q) =


aq + mmfsq(C −

∑
i:ui>0

ai), if
∑

i:ai≤aq

ai ≤ C

0, if
∑

i:ai≤aq

ai > C
(7)

where i denotes the set of all queries (i ∈ Q) and mmfsq(x) is the max-min
fair share of x cycles (in terms of CPU or packet access) that correspond to the
query q given the action profile a. The first condition of Equation 7 gives us

3 Note the difference between the full demand of a query (d̂q) and its minimum
demand (aq), which denotes the number of cycles required by the query to achieve
its minimum sampling rate (mq).
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the payoff uq of a query q when the system can satisfy its minimum demand.
This occurs when the sum of all minimum demands less than or equal to aq

(including aq) is less than or equal to the system capacity C. In this case,
the query will receive at least its minimum demand aq and, if the sum of the
minimum demands of the queries that remain active (i.e., those with ui > 0)
is less than C, the query will additionally receive its max-min fair share of
the spare cycles. Note that although ui is recursively defined, there is only
one possible value for each ui and no cycles occur. On the other hand, if aq

cannot be satisfied, no cycles are allocated to the query q and its payoff is 0,
as captured in the second condition of Equation 7.

Definition 3 A Nash equilibrium (NE) is an action profile a∗ with the prop-
erty that no player i can do better by choosing an action profile different from
a∗

i , given that every player j adheres to a∗
j [19].

Theorem. Our resource allocation game has a single Nash Equilibrium when
all players demand C

|Q| cycles.

First, we prove that the action profile a∗, with a∗
i = C

|Q| for all i ∈ Q, is a NE.
Next, we show that in fact it is the only NE of our game.

Proof (a∗ is a NE). According to Definition 3, an action profile a∗ is a NE
if ui(a

∗) ≥ ui(ai, a
∗
−i) for every player i and action ai. We differentiate two

different cases that cover all possible actions with ai 6= a∗
i and show that, for

none of them, a query i can obtain greater payoff than C
|Q| , which is the one it

would obtain by playing a∗
i , if all other queries keep their actions fixed to C

|Q| .

(1) ai > C
|Q| . In this case the sum of the minimum demands is greater than

C. Therefore, according to Equation 7, the payoff ui(ai, a
∗
−i) is 0, since i

is the query with the largest minimum demand.
(2) ai < C

|Q| . In this case the sum of the minimum demands is less than C

and ui(ai, a
∗
−i) = ai +mmfsi(

C
|Q| −ai), where C

|Q| −ai are the cycles left to
reach the system capacity C. Independently of whether the system uses
the strategy that is fair in terms of CPU or packet access, by definition
mmfsi(x) ≤ x and, therefore ui(ai, a

∗
−i) ≤ C

|Q| . 2

Proof (a∗ is the only NE). In order to prove that our game has a single NE,
it is sufficient to show that for any action profile other than a∗

i = C
|Q| , for all

i ∈ Q, there is at least one query that has an incentive to change its action.
We differentiate three different cases that cover all possible situations:

(1)
∑

i ai > C. In this case the system does not have enough resources to
satisfy the minimum demands of all queries. Those with the largest min-
imum demands are disabled and obtain a payoff of 0. Therefore, at least
these queries have an incentive to decrease their demands in order to
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obtain a non-zero payoff.
(2)

∑
i ai < C. In this case the system capacity is not reached and the spare

cycles are distributed among the queries in a max-min fair fashion. There-
fore, in this scenario any query would prefer to increase its minimum de-
mand in order to capture the spare cycles rather than sharing them with
other queries.

(3)
∑

i ai = C and ∃i : ai 6= C
Q

. In this case at least one query has an incentive
to increase its minimum demand in order to force the system to disable
the query with the largest minimum demand and capture the cycles it
would free. 2

Therefore, we can conclude that our load shedding strategy intrinsically as-
sures that no player has an incentive of demanding more cycles than C

|Q| in a
system with capacity C and Q queries, which is exactly the fair share of C.
Moreover, given that |Q| and C are unknown for the players, this strategy dis-
courages them to specify a minimum sampling rate greater than their actual
requirements, because it increases the probability of demanding more than C

|Q|
and, as a consequence, the probability of being disabled in the presence of
overload.

Note also that a strategy that maximizes the sum of the query utilities, instead
of the minimum allocation, such as the one used in Aurora [23], would be
extremely unfair and not suitable for a non-cooperative setting. In Aurora, the
Nash equilibrium is when all players ask for the maximum possible allocation,
which in Aurora consists of providing an utility function that drops to zero if
the sampling rate is less than 1.

6 Evaluation Scenario

In this section, we present the testbed scenario and the set of traffic queries
we use to evaluate our load shedding scheme. We also study the tolerance
to sampling of each query to select appropriate values for their minimum
sampling rate constraints.

6.1 Dataset

We implemented both strategies in the CoMo platform and performed several
experiments using a 30-minute trace collected at a Gigabit Ethernet link that
connects the Catalan Research and Education Network (the Scientific Ring)
to its Spanish counterpart (RedIRIS). The Scientific Ring is managed by the
Supercomputing Center of Catalonia (CESCA) and connects more than fifty
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Table 2
Description of the queries used in the experimental evaluation

Query Description Sampling mq

application Port-based application classification packet 0.03
autofocus High volume traffic clusters per subnet [12] packet 0.69
counter Traffic load in packets and bytes packet 0.03
high-watermark High watermark of link utilization over time packet 0.15
pattern search Identifies sequences of bytes in the payload [5] packet 0.10
super sources Detection of sources with largest fan-out [28] flow 0.93
top-k Ranking of the top-k destination IP addresses [2] packet 0.57
trace Full-payload packet collection packet 0.10
tuple Per-flow classification and number of active flows flow 0.05

universities and research centers using many different technologies that range
from ADSL to Gigabit Ethernet [17].

The trace includes the entire packet contents (about 30 GB) and accounts
for 49.43M packets, with an average rate of 133.04 Mbps and a peak rate of
212.22 Mbps. Although similar results were obtained using publicly available
datasets, such as those in the NLANR repository [18], we present only the
results when running the system on a single packet trace, given that it is the
only dataset we have access to that allows us to evaluate those CoMo queries
that require packet contents to operate (e.g., pattern search).

We use a packet trace for the sake of reproducibility, but all conclusions can be
extended to an on-line system, given that CoMo does not make any distinctions
between running on-line or off-line [3,14].

6.2 Queries

To evaluate the different load shedding strategies we use a representative set
of queries that are part of the standard distribution of CoMo. We also im-
plemented two additional queries (uni-dimensional autofocus [12] and super
sources [28]) that make use of more complex data structures. Table 2 presents
a summary of the queries that we believe that form a representative set of
typical uses of a real-time network monitoring system.

In general, the minimum sampling rate constraint mq of a query should be
provided by the user. However, given that the queries in the standard distri-
bution of CoMo do not provide this value yet, we perform 100 executions on
our packet trace by ranging the sampling rate from 0.01 to 1 (in steps of 0.01)
to determine reasonable values for mq, which in a real scenario will depend on
the user’s requirements.
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Table 2 presents the selected values for mq. They are set to the minimum
sampling rate that guarantees an average error below 5% in the output of
each query. For all queries, we measure the relative error as |1− estimated value

actual value
|.

The error of the autofocus query is defined as the number of clusters in the
delta report (see [12]) over the total number of clusters reported by the query.
The error of the top-k query is proportional to the number of misranked pairs
of destination addresses, where the first element of a pair is in the top-k
list returned by the query and the second one is outside the list [2]. The
error of super sources is computed as the average relative error in the fan-
out estimations [28]. For pattern search and trace, we define the accuracy as
the overall ratio of packets processed by the query. To provide for realistic
sampling requirements, we set mq to 0.1 (i.e., 10% sampling) for these two
queries. 4 Table 2 also shows that the level of tolerance of most queries to
sampling is very different, resulting in very diverse values of mq.

7 Experimental Evaluation

In this section, we evaluate our load shedding scheme in the CoMo platform.
We study the performance of the two variants of our load shedding scheme,
namely max-min fairness in terms of access to the CPU (mmfs cpu) and in
terms of access to the incoming packet stream (mmfs pkt), with the traffic
queries presented in Section 6.

7.1 Performance Results

To evaluate the performance of our solution, we compare the mmfs cpu and
mmfs pkt strategies to three alternative systems. The first consists of a ver-
sion of CoMo without any explicit load shedding scheme (no lshed). It simply
discards packets without control as buffers fill in the presence of overload.
In order to estimate the error in the absence of load shedding when running
on packet traces, we emulate a buffer of 200ms of traffic. The second alter-
native implements the load shedding strategy presented in [3], which applies
the same sampling rate to all queries (eq srates). In this system, when the
sampling rate is below the minimum sampling rate of a query, the query is

4 Note that usually the output of these two queries is not used directly by a user,
but instead is given as input to other applications. In this case, the error should be
measured in terms of the applications that use the output of these queries. Although
the value of 0.1 is somewhat arbitrary, it can be considered fairly conservative
given the lower sampling rates typically used by network operators for this class of
resource-intensive queries.
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Fig. 2. Average (left) and minimum (right) accuracy of various load shedding strate-
gies when running a representative set of queries with fixed minimum sampling rate
constraints

disabled during one batch, and the sampling rate is computed again for the
queries that remain active. The third alternative (reactive) also applies an
equal sampling rate to all queries, but it implements a reactive approach in-
stead. This system is equivalent to a predictive one, where the prediction for
a batch is always equal to the cycles used to process the previous one. This
strategy is similar to the one used by SEDA [25].

Figure 2 plots the average and minimum accuracy among all queries, when
using the minimum sampling rate constraints defined in Table 2, at different
overload levels (K) that range from 0 to 1 (in steps of 0.1). K = 0 denotes no
overload (the system capacity C is equal to the sum of all demands), whereas
K = 1 expresses infinite overload (C = 0). Therefore, the system capacity is
computed as C × (1−K). The accuracy of a query is defined as 1− εq, where
εq is the actual error of the query as described in Section 6.2. In order to make
all systems comparable, the accuracy of the no lshed system is assumed to be
0 when the error is greater than 5% (or greater than 90% in the case of trace
and pattern search), given that the minimum constraints are not considered
in this system.

It is important to note that our system only requires the minimum sampling
rates to operate and does not use any other external information, such as the
complex utility functions needed by other systems (e.g., [23]). Throughout
the evaluation, we use the accuracy of the queries as a performance metric to
compare the different scheduling alternatives. However, in a real environment
the users are responsible for selecting the minimum sampling rates according
to their actual requirements, which may be very different for every user and
may not necessarily depend on the accuracy of the queries. For example, in
Section 6.2 we selected the mq values of some queries in such a way that
a maximum error in the results is guaranteed (e.g., application, top-k, etc.),
while for other queries (e.g., trace and pattern search) mq is selected according
to a minimum performance requirement, without considering directly their
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Table 3
Average accuracy when resource demands are twice the system capacity (K = 0.5)

Query
Accuracy (mean ±stdev, K = 0.5)

no lshed reactive eq srates mmfs cpu mmfs pkt

application 0.57 ±0.50 0.81 ±0.40 0.99 ±0.04 1.00 ±0.00 1.00 ±0.03
autofocus 0.00 ±0.00 0.00 ±0.00 0.05 ±0.12 0.97 ±0.06 0.98 ±0.04
counter 0.00 ±0.00 0.02 ±0.12 1.00 ±0.00 1.00 ±0.00 0.99 ±0.01
high-watermark 0.62 ±0.48 0.98 ±0.01 0.98 ±0.01 1.00 ±0.01 0.97 ±0.02
pattern search 0.66 ±0.08 0.63 ±0.18 0.69 ±0.07 0.20 ±0.08 0.41 ±0.08
super sources 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.95 ±0.04 0.95 ±0.04
top-k 0.42 ±0.50 0.67 ±0.47 0.96 ±0.09 0.99 ±0.03 0.96 ±0.07
trace 0.66 ±0.08 0.63 ±0.18 0.68 ±0.01 0.64 ±0.17 0.41 ±0.08
tuple 0.00 ±0.00 0.66 ±0.46 0.99 ±0.01 0.95 ±0.07 0.95 ±0.06

accuracy. Our system allows non-cooperative users to directly provide this
different type of preferences without compromising the system integrity, given
that a single Nash Equilibrium exists in C

|Q| , as shown in Section 5.

Figure 2 shows that the mmfs cpu and mmfs pkt strategies outperform the
three alternative systems. The good performance of the original version of
CoMo when K = 0.1 is explained by the fact that the capacity of this system
is slightly larger than the rest, since it does not incur the overhead of the load
shedding scheme itself. The drop in the accuracy when K = 1 is also expected,
given that K = 1 denotes zero cycles available to process queries. The figure
also shows that the mmfs pkt strategy significantly improves the minimum
accuracy as compared to the mmfs cpu strategy, while maintaining a similar
average accuracy.

Table 3 presents the average accuracy broken down by query when K =
0.5 (i.e., when the resource demands are twice the system capacity). The
table confirms that the accuracy of all queries is preserved within the pre-
defined bounds, with a small standard deviation, when using the mmfs cpu
and mmfs pkt strategies.

In this experiment, the minimum accuracy is driven by pattern search (i.e.,
the most expensive query in Table 3), which is commonly used for worm and
intrusion detection purposes. In that case, a monitoring system implement-
ing the mmfs cpu strategy would miss much more intrusions than one using
mmfs pkt, while obtaining similar accuracy for the rest of the queries. Al-
though this query achieves greater accuracy in the alternative systems, note
the large impact of this gain on the accuracy of the rest of the queries, resulting
in a significant decrease in the fairness of service.

So far, we have only looked at the average accuracy over the entire duration of
the experiment. In order to better understand the stability of the system, we
plot in Figure 3 the accuracy of the autofocus query over time when K = 0.2.
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Fig. 3. Autofocus accuracy over time when K = 0.2

The figure shows the large impact of light overload situations in two alterna-
tive systems. In particular, the poor performance of the eq srates system is
due to the fact that the query is disabled quite frequently given the variability
in the incoming traffic, although in average the sampling rate during the entire
execution is above the minimum presented in Table 2. This has an important
impact in the accuracy of this particular query. Instead, the mmfs cpu and
mmfs pkt strategies are more stable and allow the system to keep the sam-
pling rate above the minimum sampling rate, even if the incoming traffic is
highly variable.

7.2 Max-Min Fairness in terms of CPU Cycles versus Packet Access

In the previous experiments, we showed the superiority of our load shedding
strategies over alternative approaches. In order to study the differences be-
tween mmfs cpu and mmfs pkt in more detail, we set up a simple scenario
that allows us to compare both load shedding strategies and easily discuss the
effects of the level of overload and the minimum sampling rate constraints on
the accuracy of the traffic queries.

For ease of exposition, in this experiment we only execute two queries with our
packet trace in a scenario especially chosen to emphasize the differences be-
tween both load shedding strategies. The first query (counter) is a lightweight
query that is tolerant to low sampling rates. The second query (trace) is more
expensive, but less tolerant to packet loss. In particular, the computational
cost of trace is approximately 10 times that of counter.

In this experiment, we perform 121 executions varying the minimum sampling
rate (mq) of all queries and the overload level (K) from 0 to 1. Recall that the
system capacity is computed as C × (1 − K), where C is experimentally set
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Fig. 4. Difference in the average (left) and minimum (right) accuracy between the
mmfs pkt and mmfs cpu strategies when running 1 trace and 10 counter queries.
Positive differences show the superiority of mmfs pkt over mmfs cpu.

to the minimum number of cycles that assure that no sampling is applied in
our testbed.

Figure 4 shows the difference in the accuracy of the system between the packet-
based (mmfs pkt) and the CPU-based (mmfs cpu) strategies, when running
1 trace and 10 counters concurrently (i.e., the sum of the demands of the
counter and trace queries is equal). While the difference in the average accu-
racy is negligible (it is almost a flat surface), the packet-based strategy sig-
nificantly improves the minimum accuracy of the system, because mmfs cpu
highly penalizes the accuracy of the trace query. This result indicates that, in
terms of accuracy, mmfs pkt is significantly fairer than mmfs cpu.

7.3 Overhead

Applying different sampling rates to different queries has direct impact on the
cost of running the prediction algorithm as compared to the system presented
in [3], because the traffic features have to be recomputed for each query after
applying traffic sampling in order to correctly update the MLR history. In
contrast, in [3] the traffic features are recomputed just once, given that all
queries always process equal batches.

An optimization that allows to reduce this overhead consists of scaling the
actual CPU usage of each query with its sampling rate while using the orig-
inal features to update the MLR history (avoiding a second full feature ex-
traction on each batch). The overhead imposed by our load shedding system
(mmfs pkt strategy) on the entire CoMo platform is of 10.30%, with simi-
lar prediction accuracy as a system that recomputes the traffic features. The
results presented in Section 7 were obtained on a system implementing this
optimization.
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Note also that the overhead of the different strategies to compute the max-min
fair sampling rates is negligible compared to the cost of extracting the traffic
features, as discussed in [3].

8 Conclusions and Future Work

Current network monitoring systems must inevitably deal with the effects of
extreme overload situations, due to the large volumes, high data rates and
bursty nature of network traffic. This often results in a severe and unpre-
dictable impact on the accuracy and effectiveness of network monitoring ap-
plications.

To address this problem, we designed a load shedding scheme that can ef-
ficiently handle extreme overload situations by gracefully degrading the ac-
curacy of the traffic queries based on an on-line prediction model of their
resource requirements. The main novelty of our approach is that it consid-
ers the queries as black boxes with arbitrary (and highly variable) resource
consumption. This way, we increase the potential applications and network
scenarios where the monitoring system can be used.

In this paper, we presented a load shedding strategy that minimizes the im-
pact of overload situations on the accuracy of the queries by using external
information about their accuracy requirements to guide the load shedding pro-
cedure. Our method ensures that excess load is shed in a fair manner among
the queries, and that any external information used by the system is correct
and free of bias, even when dealing with non-cooperative users.

We implemented our load shedding scheme in an existing monitoring system
and evaluated it with a diverse set of real traffic queries. Our results confirm
that our strategy ensures fairness of service and maintains high levels of ac-
curacy for all queries, even in the presence of severe overload situations. The
results also show that a packet-based scheduler is preferable for handling mul-
tiple queries in a network monitoring system over the more common approach
of providing fair access to the CPU used by typical Operating System task
schedulers.

Our ongoing work is focused on extending our current prototype to support
other load shedding mechanisms, such as lightweight summaries [20] and cus-
tom load shedding mechanisms, for those queries that are not robust against
packet and flow sampling. We also plan to extend our methods to address
the resource management problem in a distributed network monitoring sys-
tem. Finally, we are interested in applying similar techniques to other system
resources, such as memory, disk bandwidth and storage space.
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9 Availability

The source code of the load shedding system presented in this paper is publicly
available at http://loadshedding.ccaba.upc.edu. The CoMo monitoring
system is also available at http://como.sourceforge.net.
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