
Flow monitoring in Software-Defined Networks:
Finding the accuracy/performance tradeoffs

José Suárez-Varelaa, Pere Barlet-Rosa,b

aUPC BarcelonaTech (Spain) - {jsuarezv,pbarlet}@ac.upc.edu
bTalaia Networks (Spain)

Abstract

In OpenFlow-based Software-Defined Networks, obtaining flow-level mea-
surements, similar to those provided by NetFlow/IPFIX, is challenging as
it requires to install an entry per flow in the flow tables. This approach
does not scale well as the number of entries in the flow tables is limited and
small. Moreover, labeling the flows with the application that generates the
traffic would greatly enrich these reports, as it would provide very valuable
information for network performance and security among others. In this
paper, we present a scalable flow monitoring solution fully compatible with
current off-the-shelf OpenFlow switches. Measurements are maintained in
the switches and are asynchronously sent to a SDN controller. Additionally,
flows are classified using a combination of DPI and Machine Learning (ML)
techniques with special focus on the identification of web and encrypted
traffic. For the sake of scalability, we designed two different traffic sampling
methods depending on the OpenFlow features available in the switches. We
implemented our monitoring solution within OpenDaylight and evaluated it
in a testbed with Open vSwitch, using also a number of DPI and ML tools to
find the best tradeoff between accuracy and performance. Our experimental
results using real-world traffic show that the measurement and classification
systems are accurate and the cost to deploy them is significantly reduced.

1. Introduction

Traffic monitoring is a cornerstone for network management and security,
as it provides an essential information for some tasks such as security policy
enforcement, traffic engineering or troubleshooting. With the advent of the
Software-Defined Networking (SDN) paradigm, it is even more important
to perform a fine-grained monitoring to optimally exploit the possibilities

Preprint submitted to Computer Networks December 25, 2017



offered by a centralized control plane, which can make decisions with a global
view of the network.

Nowadays, one of the most deployed solutions in legacy networks for
network monitoring is NetFlow/IPFIX. There are plenty of tools in the
market based on NetFlow that harness the information present in flow-
level measurements to infer some useful information about the network.
These tools provide a wide variety of services such as anomaly detection,
Distributed Denial-Of-Service (DDoS) detection or bandwidth monitoring.

Regarding the SDN paradigm, OpenFlow [1] has become a dominant
protocol for the southbound interface (between control and data planes). It
permits to maintain in the switches records with flow statistics and includes
an interface that enables to retrieve this information passively or actively,
which could be used to provide similar reports as those of NetFlow.

An inherent issue in SDN is its scalability. Thus, for a proper design of
a monitoring system, it is of paramount importance to consider the network
and processing overheads to store and collect the flow statistics. On the one
hand, since controllers typically manage a large amount of switches in the
network, it is important to reduce the controllers’ load as much as possible.
On the other hand, the most straightforward way of implementing per-flow
monitoring with OpenFlow is by maintaining an entry for each flow in a
table of the switch. Thus, monitoring all the flows in the network results
in a great constraint, since nowadays OpenFlow commodity switches do
not support a large number of flow entries due to their limited hardware
resources (i.e., the number of TCAM entries and processing power) [2].

Additionally, flows in the measurement reports are often labeled (e.g.,
by protocol) using port-based classification techniques. However, these tech-
niques are becoming increasingly obsolete, since they are not well suited to
current scenarios. Nowadays, it is becoming more frequent to find very di-
verse applications sharing the same port (e.g., web-based applications) or
using non well-known ports to avoid being detected (e.g., P2P applications).
Particularly, we can find behind the HTTP and HTTPS ports a wide va-
riety of applications ranging from some services that are very sensitive to
delays (e.g., VoIP) to other services whose performance relies on the average
bandwidth (e.g., cloud storage). This reflects the necessity of a more com-
prehensive level of classification where the system can provide information
about the specific applications generating the traffic (e.g., Netflix).

Regarding the latest trends in the research area of traffic classification,
two main lines can be mainly remarked. On the one hand, techniques based
on Deep Packet Inspection (DPI) analyze the packets’ payload to identify
the traffic. Typically, they can perform an exhaustive classification (e.g.,

2



at the application layer) achieving high accuracy levels. Nevertheless, per-
forming DPI over every packet in the traffic is resource consuming and not
feasible in all scenarios. On the other hand, other solutions based on ma-
chine learning (ML) were proposed to alleviate the burden of the classifica-
tion based on DPI. These techniques are able to achieve similar accuracy
to DPI tools when classifying the traffic by application-level protocols (e.g.,
SMTP, DNS). However, they cannot accurately identify the applications
(e.g., Gmail, YouTube) generating traffic over the same application protocol
(e.g., HTTP). For these cases, DPI typically far outperforms ML classifiers.

In the light of the above, we present a scalable monitoring solution with
OpenFlow that implements flow sampling and performs flow-level traffic
classification with special emphasis on the identification of web and en-
crypted traffic. As in NetFlow/IPFIX, for each flow sampled, we maintain
a flow entry in the switch which records the duration and the packet and
byte counts. Moreover, our system efficiently combines some state-of-the-art
traffic classification techniques used in legacy networks to provide labeled
flow records with the application that generated the traffic. In more detail,
our monitoring system has the following novel features:

Scalable: We address the scalabity issue in two different dimensions: (i)
to alleviate the overhead for the controller and (ii) to reduce the number of
entries required in the flow tables of the switches. To these end, we designed
two sampling methods which depend on the OpenFlow features available in
current off-the-shelf switches. We implement flow sampling because it is
easier to provide without requiring modifications to the OpenFlow specifi-
cation, although we also plan to provide a packet sampling implementation
in a future work. We remark that our methods only require to initially
install some rules in the switch which will operate autonomously to discrim-
inate randomly the traffic to be sampled. To the best of our knowledge,
there are no solutions in line with this approach. For example, iSTAMP [2]
proposes to sample traffic based on an algorithm that ”stamps” the most
informative flows. However, this solution specifically addresses the detection
of particular flows like heavy hitters, while our solution provides a generic
report of the flows in the network.

Fully compliant with OpenFlow: Our monitoring system imple-
ments flow sampling using only native features present since OpenFlow 1.1.0.
This makes our proposal more pragmatic and realistic for current SDN de-
ployments, which strongly rely on OpenFlow. Furthermore, for backwards
compatibility, we also propose a less effective monitoring scheme that is com-
patible with OpenFlow 1.0.0. Unlike NetFlow in legacy networks, OpenFlow
enables to independently monitor specific slices of the network, which can

3



be highly interesting in emerging SDN/NFV scenarios. We found in the lit-
erature some monitoring proposals for SDN that rely on different protocols
than OpenFlow. For instance, OpenSample [3] performs traffic sampling us-
ing sFlow, which is more commonly present than NetFlow in current SDN
switches. However, we consider sFlow to have a high resource consumption
as it sends every sampled packet to an external collector and maintains there
the statistics. In contrast, our system maintains the statistics directly in the
switches and retrieves them when the flow expires. The flow entries used by
our system are independent from other entries installed by other modules
performing different network functions (e.g., forwarding). This allows our
system to operate transparently and specifically select the most adequate
timeouts to obtain accurate measurements.

Traffic classification: Our system performs flow-level classification
combining some state-of-the-art techniques. In particular, we apply specific
DPI or ML techniques to different types of traffic according to their trade-
off between accuracy and cost. Similarly to [4] and [5], we use information
in HTTP headers and certificates of encrypted (SSL/TLS) connections to
unveil the applications hidden behind web and encrypted traffic. Moreover,
we process the DNS traffic as a complementary source of information to dis-
cover the domain names associated to the different flows. This, in turn, can
help to identify the applications. For the different classification techniques
we evaluate, we individually measured the accuracy against a ground truth
and the cost to deploy them in OpenFlow-based SDN environments.

The remainder of this paper is structured as follows: Section 2 shows
the architecture of our flow monitoring system. Section 3 describes our flow
measurement system. Section 4 describes our traffic classification system.
In Section 5, we evaluate the accuracy and overhead contribution of our
monitoring system in a testbed with Open vSwitch, with an implementa-
tion within OpenDaylight [6] and combining different traffic classification
techniques. Section 6 summarizes the related work. Lastly, in Section 7 we
conclude and mention some aspects for future works.

2. Architecture of our monitoring system

In Fig. 1 we show the architecture of our flow monitoring system, which
is implemented in the SDN controller (i.e., the control plane). We divided
it in two different logical subsystems called “Flow measurement system”
and “Flow classification system”. The former is in charge of installing flow
entries in the OpenFlow switches to perform traffic sampling and maintain
per-flow statistics. In this way, when a flow entry in a switch expires, this

4



system asynchronously collects the measurements (packets and bytes counts,
and duration) of the corresponding flow. Note that we identify the flows
by its 5-tuple. At the same time, the flow classification system manages
to identify the application which generated each flow in the traffic. To
this end, this system combines different Deep Packet Inspection (DPI) and
machine learning techniques for traffic classification and eventually provides
reports with labels associated to each flow. Thus, our monitoring system
combines the outputs of these two subsystems to finally provide a report
that includes, for each flow in the traffic, its associated measurements and
a label identifying the application which generated it.

Figure 1: Architecture of our flow monitoring system.

The following two sections of this paper provide a detailed description of
the flow measurement system (Section 3) and the flow classification system
(Section 4) that compose our monitoring system.

3. Flow measurement system

Our flow measurement system fully relies on the OpenFlow specifica-
tion to obtain flow-level measurements similar to those of NetFlow/IPFIX
in legacy networks. This is not new in SDN, since some works, such as [7],
used a similar approach earlier. However, to the best of our knowledge,
no previous works proposed OpenFlow-based methods to implement traf-
fic sampling and provide reports in a NetFlow/IPFIX style, i.e., randomly
sampling the traffic and maintaining per-flow statistics in separated records,
which are finally reported to a collector. Since we are aware that OpenFlow
has many features that are classified as “optional” in the specification, we
designed two different sampling methods with different levels of requirements
of features available in the switch. These methods, in summary, consist of
installing a set of entries in the switch which allow us to discriminate the
traffic to be sampled. Thus, we only send the first packets of those flows to

5



be monitored and the controller is in charge of installing reactively specific
flow entries to maintain the flow measurements.

Our measurement system makes use of the multiple tables feature of
OpenFlow, which is available from OpenFlow 1.1.0. Nevertheless, we pro-
pose an alternative solution with some limitations for switches with Open-
Flow 1.0.0 support (more details in Section 3.2). The support of multiple
tables allows us to decouple the sets of entries of different modules operating
in the SDN controller that perform other network tasks.

Before showing the details of our sampling methods, we describe the
generic structure of OpenFlow tables in our system, which is illustrated in
Fig. 2a. In both methods proposed, the monitoring system operates in the
first table of the switch, where the pipeline process starts. In this way, our
system installs in this table some entries to sample the traffic and maintains
records for monitored flows. All the entries in the first table have at least
one instruction to direct the packets to another table, where other modules
can install entries with different purposes (e.g., forwarding). Focusing on
the table where our system operates, three different blocks of entries can
be differentiated by their priority field. There is a first block of flow-level
(5-tuple) entries that act as flow records. Then, a block of entries with lower
priority defines the packets to be sampled. And lastly, we add a default entry
with the lowest priority which directs to the next table the packets that did
not match any previous entries. The key point of this system resides on the
second block of entries, where the methods described below install rules to
define which packets are sampled. The operation mode when a new packet
arrives to the switch is to check firstly if it is already in one of the per-flow
monitoring entries. If it matches any of these entries, the packets and bytes
counters are updated and the packet is directed to the next table. If not, it
goes through the block of entries that define whether it has to be sampled
or not. If it matches one of these, the packet is forwarded to the next table
and to the controller (Packet In message) to add a specific entry in the first
block to sample subsequent packets of this flow. Finally, if the packet does
not match any of the previous rules, it is simply directed to the next table.

3.1. Proposed sampling methods

We present here the two methods devised for our measurement system
and discuss the OpenFlow features required for each of them. One is based
on hash functions, which performs flow sampling very accurately, and the
other one, based on IP suffixes, is proposed as a fallback mechanism when
it is not possible to implement the previous one. Our sampling mechanisms
are covered by the Packet Sampling (PSAMP) Protocol Specification [8],

6



(a) Sampling based on IP suffixes (b) Sampling based on hash function

Figure 2: Scheme of OpenFlow tables and entries of our flow measurement system.

which is compatible with the IPFIX protocol specification. According to
the PSAMP terminology, the first method matches the definition of hash-
based filtering. While the second method can be classified as property match
filtering, where a packet is selected if specific fields within the packet headers
are equal to a predefined set of values. We assume that the switches have
support for OpenFlow 1.1.0 and later versions so, they have at least support
for multiple tables. However, in Section 3.2, we make some comments about
how to implement an alternative solution with OpenFlow 1.0.0.

3.1.1. Sampling based on IP suffixes

This method is based on performing traffic sampling based on IP address
matches. To achieve it, the controller adds proactively one entry with match
fields for particular IP address ranges. Typically, in traditional routing the
matching of IP addresses is based on IP prefixes. In contrast, we consider
to apply a mask which checks the last n bits of the IPs, i.e., we sample
flows with specific IP suffixes. In this way, we sample a more representative
set of flows, since we monitor flows from different subnets (IP prefixes) in
the network. In order to implement this, it is only necessary a wildcarded
entry that filters the IP suffixes desired for source or destination addresses,
or combinations of them. To control the number of flows to be sampled,
we make a rough consideration that, in average, flows are homogeneously
distributed along the whole IP range (we later analyze this assumption with
real traffic in Section 5.1.1). As a consequence, for each bit fixed in the
mask, the number of flows sampled will be divided by two with respect
to the total number of flows arriving to the switch. We are aware that
typically there are some IPs that generate much more traffic than others,
but this method somehow permits to control the number of flows to be
monitored. Furthermore, if we consider pairs of IPs for the selection, instead

7



of individual IPs, we can control better this effect. In this case, if we sample
an IP address of a host which generates a large number of flows, only those
flows which match both source and destination IP suffixes are sampled.
Generically, our sampling rate can be defined by the following expression:

sampling rate =
1

2m · 2n
(1)

Where ’m’ is the number of bits checked for the source IP suffix and ’n’
the number of bits checked for the destination IP suffix.

This method is similar to host-based (or host-pair-based) sampling, as we
are using IP addresses to select the packets to be sampled. However, host-
based schemes typically provide statistics of aggregated traffic for individual
or group of hosts. In contrast, we sample the traffic by single or pairs
of IP suffixes, but provide individual statistics at a flow granularity level.
Moreover, to avoid bias in the selection, the IP suffixes can be periodically
changed by simply replacing the sampling rule(s) in the OpenFlow table.

To implement this method, the only optional requirement of OpenFlow
is the support of arbitrary masks for IP to check suffixes, since there are
some switches which only support prefix masks for IP. We also present and
evaluate in a technical report [9], an alternative method based on matching
on port numbers for switches that do not support IP masks with suffixes,
but this method requires a larger number of entries to sample the traffic.

3.1.2. Hash-based flow sampling

This method consists of computing a hash function on the traditional
5-tuple fields of the packet header and selecting it if the hash value falls in
a particular range. To implement this method, we make use of the group
table feature of OpenFlow. In OpenFlow, a group table contains a number
of buckets which, in turn, are composed by a set of actions. Therefore, if
a bucket is selected, all its actions will be applied to the packet. For the
implementation of this method, we leverage the use of the select mechanism
to balance the load between different buckets within a group. The bucket
selection depends on a selection algorithm (external to the OpenFlow speci-
fication) implemented in the switch which should perform equal or weighted
load sharing among buckets. In Fig. 2b, we can see the tables structure de-
signed for this method. In this case, all IP packets are directed to the next
table as well as to a group table where only one bucket sends the packet to
the controller to monitor the flow, other buckets drop the packet. To control
the sampling rate, we can select a weight for each bucket. This method much
better controls the sampling rate, as we can assume that a hash function is

8



homogeneous along all its range for all the flows in the switch. In contrast
to the previous one, this method accurately follows the definition of flow
sampling, i.e., sample the packets of a set of flows with some probability.

This method requires the use of group tables with select buckets and to
have an accurate algorithm in the switch to balance the load among buckets.

3.2. Modularization of the system

Our measurement system leverages the support of multiple tables to
isolate its operation from other modules performing other network functions.
Thus, we can see our monitoring system as an independent module in the
controller which does not interfere with other modules operating in other
tables. In the controller we can filter and process the Packet In messages
triggered by entries of our module, since these messages contain the table
Id of the entry which forwarded the packet to the controller. Note that, in
order to process packets in the monitoring system before other modules, it
is necessary to properly select the ordering of the Packet In listeners of the
different modules operating in the controller. Additionally, our system can
be integrated in a network using a hypervisor (e.g., CoVisor [10]) to run
network modules in a distributed manner in different controllers.

Alternatively, we propose a solution for those switches that have only
support for OpenFlow 1.0.0, where only one table can be used. Since this
version does not support group tables, only the method based on matches of
IP suffixes can be implemented. Thus, it is feasible to install the monitoring
entries by combining them with the correspondent actions of other modules
at the expense of loosing the decoupling of our monitoring system.

3.3. Statistics retrieval

To collect flow measurements with OpenFlow, two different approaches
can be highlighted. On the one hand, pull-based mechanisms consist of
making active measurements, i.e., sending queries (OFPT MULTIPART
REQUEST message) to the switch. The switch will respond with an OFPT
MULTIPART REPLY message with the requested flow statistics (duration,
packets count and bytes count). On the other hand, push-based mecha-
nisms consist of collecting measurements asynchronously. In this case, when
adding a new flow entry, idle and hard timeouts are defined. Then, when
a flow entry expires, the switch sends to the controller an OFPT FLOW
REMOVED message with the flow statistics. Our system envisions a push-
based approach to retrieve statistics. Given that it uses specific flow entries,
we can selectively choose the timeouts. Thus, we overcome the issue of other

9



push-based solutions like FlowSense [11], where flows with large timeouts are
collected after too long a time decreasing the accuracy of the measurements.

4. Flow classification system

Our flow classification system provides labels that identify the applica-
tions generating the different flows that were sampled by the flow measure-
ment system (Sec. 3). To this end, it operates in the SDN controller (i.e.,
the control plane) to combine a number of classification techniques already
present in the literature for legacy networks. In particular, we adapt these
techniques to implement them in SDN-based networks and perform traffic
classification with two different levels of detail: (i) we use Deep Packet In-
spection (DPI) and machine learning (ML) techniques to classify flows at the
level of application layer protocols (e.g., RTP, DHCP, SSH), and (ii) apply
specific DPI techniques aimed at discovering the names of the applications
(e.g., Netflix, Facebook, YouTube) generating web and encrypted traffic.

In OpenFlow-based networks, when installing flows reactively, packets
belonging to the same flow are sent to the controller until a specific entry is
installed for them in the switch. As a consequence, the SDN controller can
receive more than one packet for each flow to be monitored. In particular,
this occurs during the time interval when the first packet of a flow arrives
to the switch, and the time when a flow entry for this flow is installed in the
switch. This time interval is mainly the result of the following factors: (i) the
time needed by the switch to process an incoming packet of a new sampled
flow and forward it to the controller, (ii) Round-Trip Time (RTT) between
the switch and the controller, (iii) the time in the controller to process the
Packet In and send an order to the switch to install a new flow entry, and
(iv) the time in the switch to install the new flow entry. The first and fourth
factors depend on the processing power of the switch. The RTT depends
on some aspects like the distance between the switch and the controller or
the capacity and utilization of the control link that connects them. The
second factor depends on the processing power and the workload of the con-
troller and, of course, its availability. As a consequence, the controller will
receive the first few packets of each flow sampled by our flow measurement
system. Thus, our classification system leverages this issue by applying DPI
only to those packets, which often contain enough information to properly
classify the traffic. This allows us to perform accurate classification without
producing additional large overheads.

In Fig. 3, we show the operation mode of our classification system when
a new packet arrives to the SDN controller. Firstly, it discerns whether the

10



Figure 3: Scheme of our flow classification system.

packet contains DNS traffic or not. We consider that the traffic is DNS if
the packet header matches port 53. In this case, the packet is forwarded to
our “DNS module” to extract some data from the records in DNS queries.
This enables to then apply the method in [5], which, in summary, consists of
associating domain names to the server IPs of HTTP and encrypted flows.
Otherwise, if the packet is considered as non-DNS traffic, it is processed by
our “DPI/ML module”, which implements either a DPI tool or a supervised
ML model. The aim of this module is to provide a label that classifies the
flow at the level of application protocol (e.g., SMTP). Following the scheme
in Fig. 3, if the “DPI/ML module” labels the flow as HTTP or encrypted
traffic, the packet is accordingly directed to our “HTTP” or “Encrypted”
modules. In these modules, we apply DPI techniques proposed in [5] and [4]
to extract the hostnames associated to flows either from the HTTP headers
or the SSL/TLS certificates. If the “HTTP” or “Encrypted” modules man-
age to obtain the hostname, the system selects it as classification label for
the flow. Otherwise, we use the information collected in the “DNS module”
to infer a domain name associated to the server IP address of the flow.

We provide below a more detailed description of the the four classification
modules (in Fig. 3) that compose our system:

DPI/ML module: The aim of this module is to classify the monitored
flows with labels that identify their associated application-level protocols
(e.g., BGP, SNMP). To this end, we implemented within this module two
alternative solutions to classify the traffic: one based on DPI, and another
based on supervised ML models. We then evaluate these two classifiers (in
Section 5.2.2) using real-world traffic to show the tradeoffs between accuracy
and resource consumption when applying each of them. Note that, except
for those flows that are classified as DNS, HTTP or encrypted traffic, the

11



output label of our classification system is the one generated by this module.
DNS module: In this module, we implemented the proposal in [5],

where they use information in DNS queries to then associate domain names
to the HTTP(S) flows in the traffic. For this purpose, they rely on the
basic assumption that, prior to execute an HTTP(S) request, the client
application typically resolves the IP address of the server by sending a DNS
query. Hence, monitoring the DNS traffic enables to discover the domain
names associated to the server IP addresses of the HTTP(S) flows. Note
that, as they highlight in [4], the domain name information is very valuable
as it often permits to unveil the name of the application that generated
a specific flow. In order to implement this technique, this module should
receive the DNS traffic traversing the monitored switches and maintain the
information extracted from DNS records until their expiration time. To this
end, we proactively add a flow entry in the switches that redirects to the
controller all the traffic matching port 53. We then evaluate (in Section
5.2.2) the cost of deploying this technique in a SDN controller and show
that the amount of traffic processed by this module is quite reduced in our
evaluation scenario using real-world traffic.

HTTP module: In this module, we implement the technique they pro-
pose in [5] to extract the hostname from the host field in the HTTP headers.
In this way, inspecting the first few packets of an HTTP connection is typ-
ically sufficient to find the hostname associated to the HTTP flow. This,
in turn, provides useful information to discover the applications generating
different flows of HTTP traffic. Note that this module only processes the
packets that are classified by the “DPI/ML module” as HTTP traffic.

Encrypted module: In this module we implement the technique pro-
posed in [4], where they perform DPI to extract the Server Name Indication
(SNI) fields of the SSL/TLS certificates exchanged during the handshake
prior to establish an encrypted connection. Similarly to the previous mod-
ule, this information is typically present in the first few packets of these
flows and is useful to unveil the applications generating encrypted flows.
Note that this module only processes the packets classified as encrypted
traffic by the “DPI/ML module”.

We provide in Section 5.2 a description of the tools and features involved
in the implementation of each of these modules within the SDN controller.

In a nutshell, our approach is to combine different classification tech-
niques and apply them only to specific types of traffic regarding the tradeoff
between accuracy and performance. This allows us to achieve high levels
of accuracy considerably saving the processing power needed in the SDN
controller to perform such a comprehensive classification. Remark that our

12



Trace dataset # of flows # of packets Description

MAWI [12]

15th July 2016

3,299,166 (total flows)

2,653,150 (TCP flows)

646,016 (UDP flows)

54,270,059
1 Gbps transit link of WIDE network to the upstream ISP. Trace from the samplepoint-F.

Average traffic rate: 507 Mbps

CAIDA[13]

18th February 2016

2,353,413 (total flows)

1,992,983 (TCP flows)

360,430 (UDP flows)

51,368,574

This trace corresponds to a 10 Gbps backbone link of a Tier1 ISP (direction A - from Seattle to
Chicago).

Average traffic rate: 2.9 Gbps

UNIVERSITY-1

25th November 2016

2,972,880 (total flows)

2,349,677 (TCP flows)

623,203 (UDP flows)

75,585,871

10 Gbps access link of a large Spanish university, which connects about 25 faculties and 40
departments (geographically distributed in 10 campuses) to the Internet through the Spanish

Research and Education network (RedIRIS).

Average traffic rate: 2.41 Gbps

UNIVERSITY-2

17th March 2017

4,679,374 (total flows)

3,712,431 (TCP flows)

966,943 (UDP flows)

298,860,479

This trace was captured from the same vantage point that the trace labeled as
“UNIVERSITY-1”.

Average traffic rate: 3.17 Gbps

Table 1: Summary of the real-world traffic traces used in our experiments.

system provides a deep insight of the traffic, as it not only classifies the traf-
fic by application protocols, but also provides useful information to discover
the applications that generate web and encrypted traffic.

5. Experimental evaluation

This section includes an evaluation of the two subsystems that compose
our Flow Monitoring System. We first evaluate the Flow Measurement Sys-
tem in Section 5.1. Then, in Section 5.2, we evaluate the Flow Classification
System regarding its classification accuracy and its deployment cost.

5.1. Evaluation of the Flow Measurement System

For the evaluation of our monitoring system, we implemented it in a
module within the OpenDaylight SDN controller [6]. We conducted experi-
ments in a small testbed with an Open vSwitch, a host (VM) which injects
traffic into the switch and another host which acts as a sink for all the traffic
forwarded. All the experiments make use of real-world traffic from three dif-
ferent network scenarios. We provide in Table 1 a description of the traces
we used. These traces were filtered to keep only the TCP and UDP traffic.

5.1.1. Accuracy of the sampling methods

We conducted experiments to evaluate the accuracy of our flow measure-
ment system. Thus, we first assess if the sampling rate is applied properly
and if the selection of flows is random enough when using the proposed sam-
pling methods. All our experiments were separately done for the MAWI,
CAIDA and UNIVERSITY-1 traces described in Table 1 and repeated ap-
plying sampling rates of 1/64, 1/128, 1/256, 1/512 and 1/1024. For the
method based on IP suffixes, we considered two different modalities: match-
ing only a source IP suffix, or matching both source and destination IP

13



(a) MAWI trace (b) CAIDA trace (c) UNIVERSITY-1 trace

Figure 4: Evaluation of sampling rate for methods based on source IP suffixes.

(a) MAWI trace (b) CAIDA trace (c) UNIVERSITY-1 trace

Figure 5: Evaluation of sampling rate for methods based on pairs of IP suffixes.

(a) MAWI trace (b) CAIDA trace (c) UNIVERSITY-1 trace

Figure 6: Evaluation of sampling rate for the hash-based method.

suffixes. For each of these modalities, with a particular trace, and a specific
sampling rate, we performed 500 experiments selecting randomly IP suffixes.

To analyze the accuracy in the application of the sampling rate, we eval-
uate the number of flows sampled by our methods and compare it with the
theoretical number of flows if we used a perfectly random selection func-
tion. We calculated these theoretical numbers by simply multiplying the
total number of flows in the traces by the sampling rate applied. We show
in Fig. 4, the results for the method based only on source IP suffixes for
the three traces. These plots display the median value of the number of
flows sampled for the experiments conducted in relation to the sampling
rate applied. The experimental values include bars which show the interval
between the 5th and the 95th percentiles of the total 500 measurements ob-
tained for each case. Likewise, in Fig. 5, we show the same results for the
case that considers pairs of source and destination IP suffixes. Given these
results, we can see that the median values obtained are quite close to the
theoretical values, i.e., in the average case these methods apply properly the
sampling rate established. However, we can see there is a high variability
among experiments. This means that, depending on the IP suffixes selected,

14



Modality of the sampling method
Number of bits checked

SR = 1/64 SR = 1/128 SR = 1/256 SR = 1/512 SR = 1/1024

Based on src IP suffixes bits src IP suffix (m) 6 7 8 9 10

Based on pairs of src/dst IP suffixes
bits src IP suffix (m) 3 4 4 5 5

bits dst IP suffix (n) 3 3 4 4 5

Table 2: Number of bits checked for the source and destination IPs in our experiments.

we can over- or under-sample. Regarding Equation 1, we show in Table 2
the number of bits we checked for the source and destination IP suffixes to
define the desired sampling rates in the different experiments we made.

Next, we evaluate the hash-based sampling method making use of the
load balancing algorithm for group tables included in Open vSwitch. In
line with the scheme in Fig. 2b, we installed in the switch a group table
with two buckets of type select (with actions output to controller and drop
respectively) and properly defined their weights to send to the controller the
desired amount of flows according to the sampling rate applied. The results
in Fig. 6, show that this method considerably outperforms the previous one
in terms of control of the sampling rate. Not only it samples a number of
flows very close to the ideal one, but also it does not experience any variabil-
ity among experiments as it is based on a deterministic selection function.
Furthermore, it achieves good results for the three traces, which indicates
that it is a robust and generalizable method for any network scenario.

In order to evaluate the randomness in the selection of our sampling
methods, we compare our results with those obtained with a perfect im-
plementation of flow sampling, with a completely random selection process.
Thus, if our implementation is close to a perfect flow sampling implemen-
tation, the flow size distribution (FSD) should remain unchanged after ap-
plying the sampling, i.e., the distribution of the flow sizes (in number of
packets) must be very similar for the original and the sampled data sets.
We acknowledge that this property is not completely preserved for the IP-
based method, but we follow this approach to measure how random is the
flow selection of this method and compare it with the hash-based method.

We quantify the randomness of the sampling method by calculating the
difference between the FSDs of the original and the sampled traffic. For this
purpose, we use the Weighted Mean Relative Difference (WMRD) metric
proposed in [14]. Thus, a small WMRD means that the flow selection is quite
random. In Fig. 7, we present boxplots with the results of our proposed
methods. For the sake of brevity, we do not show the results applying a
sampling rate of 1/256, which are very similar to those displayed (these
results are available in a technical report [9]). We can observe that these
results are in line with the above results about the accuracy controlling the

15



(a) Sampling = 1/64 (b) Sampling = 1/128 (c) Sampling = 1/512 (d) Sampling =1/1024

Figure 7: Weighted Mean Relative Difference (WMRD) between FSDs.

sampling rate. The method which shows better results is the hash-based one.
Moreover, for the methods based on IP suffixes, we see that for the MAWI
trace, the method based on pairs of IP suffixes achieves a more random
flow subset. While for the CAIDA and UNIVERSITY-1 traces, the method
based on source IP suffixes behaves better. Note that we chose the FSD to
compare the randomness of these two methods because the FSD is known
to be robust against flow sampling.

All the previous experiments were done using traffic traces captured
in edge nodes of large networks, which aggregate great amounts of traffic
from a large number of different subnets within the networks. However, we
find also interesting to evaluate how our sampling methods behave when
they are deployed in inner switches in the network that forward traffic from
few subnets (i.e., IP prefixes). To this end, we repeated the experiments
with a filtered trace obtained from the UNIVERSITY-2 trace (in Table 1)
that keeps only traffic belonging to a specific department in the university
network. In particular, this trace contains traffic from three different IP
prefixes with mask lengths of 24 bits. The resulting trace contains a total
of 82,183 different flows. For the sake of brevity, we only show some results
for the methods based on IP suffixes. However, we also made the evaluation
applying the hash-based method and, similarly to the results in Figs. 6 and
7, it achieves a number of flows sampled very close to the theoretical ones
with quite low WMRD values. Since the total number of flows in the trace is
quite low, we made only experiments applying sampling rates of 1/64, 1/128
and 1/256, as lower sampling rates result in an excessively small amount of
flows sampled. Figs. 8a and 8b show the results regarding the accuracy
applying the sampling rate respectively for the methods based on source
IP suffixes and pairs of src/dst IP suffixes. We also evaluated the results
regarding the randomness of these two methods. Fig. 8c shows the results
when applying a sampling rate of 1/128. We also made this evaluation

16



(a) Source IP suffixes (b) Pair of IP suffixes (c) WMRD with SR=1/128

Figure 8: Results with traffic from a specific department in trace UNIVERSITY-1.

applying sampling rates of 1/64 and 1/256, and obtained similar results.
As final remark, we would like to highlight that our system permits to

consistently sample the traffic along the whole network by installing rules in
all the monitored switches using the same IP suffixes or, for the hash-based
method, sampling traffic that matches the same range of the hash value.
This, for instance, enables to perform Trajectory Sampling [15], which is very
useful to observe the trajectories of different flows traversing the network.

5.1.2. Overhead of the Flow Measurement System

An inherent problem in OpenFlow is that, when we install flows reac-
tively, packets belonging to the same flow are sent to the controller until a
specific entry for them is installed in the switch. This is a common problem
to any system that works at flow-level granularities. As a consequence, in
our system we can receive in the controller more than one packet for each
flow sampled. Specifically this occurs during the time interval between the
reception of the first packet of a flow in the switch, and the time when a spe-
cific entry for this flow is installed in the switch. The factors that contribute
to the duration of this time interval were already discussed in Section 4.

In order to analyze all the different bottlenecks in a single metric, we
measure the number of packets that are sent to the controller for each flow
sampled before the switch installs specific rules to maintain the measure-
ments. That is, the amount of additional packets of the same flow that our
measurement system has to process. In the remainder of this section we refer
to these additional packets as “extra packets”. We consider a scenario with
a range from 1 ms to 100 ms for the elapsed time to install a new flow entry.
As a reference, in [16] they observe a median value of 34.1 ms for the time
interval to add a new flow entry with the ONOS controller in an emulated
network with 206 software switches and 416 links. Thus, we simulate this
range of time values for the MAWI, CAIDA and UNIVERSITY-1 traces (in
Table 1) and analyze the timestamps of the packets to calculate, for each
flow, how many packets are within this interval and, thereby, would be sent
to the controller. We analyze separately the overhead for TCP and UDP, as

17



(a) TCP traffic (b) UDP traffic

Figure 9: Average number of extra packets per flow.

(a) TCP traffic (b) UDP traffic

Figure 10: Percentage of extra bytes.

their results may differ due to their different traffic patterns. We show the
results in Fig. 9. As we can see, the average number of extra packets varies
from less than 0.2 packets for delays below 20 ms, to around 1.2 packets for
an elapsed time of 100 ms with TCP traffic.

Likewise, in Fig. 10 we show the results in terms of average percentage
of extra bytes sent to the controller. That way, the percentage of extra bytes
ranges from less than 0.8% for elapsed times below 20 ms to 3.1% in the worst
case with an elapsed time of 100 ms and TCP traffic. These results show
that the amount of extra traffic sent to the controller is significantly smaller
than if we implemented the trivial approach of forwarding all the traffic to
the controller or a NetFlow probe and not installing in the switch specific
entries to process subsequent packets and maintain per-flow statistics.

These results also reflect that, for the UDP traffic, the number of ex-
tra packets and bytes per flow is significantly smaller than for TCP flows.
Among other reasons, this is due to the fact that typically many UDP flows
are single-packet (e.g., DNS requests or responses). Note that these results
are not applicable to any scenario, as we can find networks using protocols
such as VXLAN, LISP or QUIC that typically generate large flows over the
UDP protocol. For these cases, the overhead contribution of the UDP flows
would be closer to the case of TCP traffic. That is the case of the results
for the UNIVERSITY-1 trace, where we could observe that UDP flows had
a larger average number of packets, as is reflected in Figs. 9b and 10b.

From these results, it is possible to infer the CPU cost of running our
monitoring system in a SDN controller, as the processing cost per packet can

18



be considered constant. In particular, the controller only needs to maintain
a hash table to keep track of those packets sent to the controller and thus
not accounted for in switch (i.e., extra packets shown in Fig. 9).

As for the memory overhead in the switch, we implement sampling meth-
ods that provide mechanisms to control the number of entries installed. With
our solution it is necessary to maintain a flow entry for each individual sam-
pled flow. Thus, there are three main factors which determine the amount
of memory necessary in the switch to maintain the statistics: (i) the rate
of new incoming flows (traffic matching different 5-tuples) per time unit,
(ii) the sampling rate selected, and (iii) the idle and hard timeouts selected
for the entries to be maintained. The first factor depends specifically on the
nature of the network traffic, i.e., the rate of new flows arriving to the switch
(e.g., flows/s). It is a parameter fixed by the network environment where
we operate. However, as in NetFlow, the sampling rate and the timeouts
(idle and hard) are static configurable parameters and the selection of these
parameters affects the memory requirements in the switch. In this way, with
(2) we can roughly estimate the average amount of concurrent flow entries
maintained in the switch.

Avg. entries = Rflows/s · sampling rate · E[tout]

sampling rate ∈ (0, 1] tout ∈ [tidle, thard]
(2)

Where “Rflows/s” denotes the average rate of new incoming flows per
time unit, “sampling rate” is the ratio of flows we expect to monitor, and
E[tout] the average time that a flow entry is maintained in the switch.

In order to configure a specific sampling rate, for the method based on
IP suffixes we can set the number of bits to be checked for the IP suffix(es)
according to (1). Likewise, for the hash-based method, we can set the pro-
portion of flows to be sampled by configuring the weights of the buckets.
Regarding the timeouts, the controller can set the values of the idle and
hard timeouts when adding a new flow entry in the switch to record the
statistics (in the OFPT FLOW MOD message).

To conclude this section, we propose some different scenarios and esti-
mate the average number of concurrent flow entries to be maintained in the
switch. The purpose of this analysis is to have a picture of the approxi-
mate memory requirement of our Flow Measurement System. To this end,
we rely on (2). In our scenarios we consider the three different real-world
traces MAWI, CAIDA and UNIVERSITY-1 described in Table 1. Thus, to
calculate “Rflows/s” for each trace, we divide their respective total number
of flows by their duration. Furthermore, we consider two different sampling

19



Sampling rate Trace dataset Rflows/s

Avg. number of flow entries

E[t]=15 s E[t]=60 s E[t]=300 s E[t]=600 s E[t]=900 s E[t]=1,200 s E[t]=1,800 s

1/128

UNIVERSITY-1 9,916 1,162 4,648 23,241 46,481 69,722 92,963 139,444

MAWI 3,665 429 1,718 8,590 17,180 25,770 34,359 51,539

CAIDA 21,672 2,540 10,159 50,794 101,588 152,381 203,175 304,763

1/1024

UNIVERSITY-1 9,916 145 581 2,905 5,810 8,715 11,620 17,430

MAWI 3,665 54 215 1,074 2,147 3,221 4,295 6,442

CAIDA 21,672 317 1,270 6,349 12,698 19,048 25,397 38,095

Table 3: Estimation of the average flow entries used in the switch.

rates, 1/128 and 1/1024. For the configuration of the timeouts, we envision
a typical scenario using the default values defined in NetFlow: 15 seconds
for the idle timeout and 30 minutes (1800 seconds) for the hard timeout.
Regarding the average time that a flow remains in the switch (E[tout]), we
know that it ranges from the idle timeout to the hard timeout. In this way,
we consider these two extreme values and some others in the middle. The
case with the lowest memory consumption will be when E[tout] is equal to
the idle timeout, and the case with the highest consumption, when E[tout]
is equal to the hard timeout. The amount of memory for each flow entry
strongly depends on the OpenFlow version implemented in the switch. The
total amount of memory of a flow entry is the sum of the memory of its
match fields, its action fields and its counters. For example, in OpenFlow
1.0 there are only 12 different match fields (269 bits approximately), while
in OpenFlow 1.3 there are 40 different match fields (1,261 bits).

Table 3 summarizes the results for all the cases described above. As a
reference, in [17] they noted that modern OpenFlow switches have support
for 64k to 512k flow entries. To these flow entries estimated, we must add the
additional amount of memory of the implementation of the sampling meth-
ods described in Section 3.1. For both methods, the switch must allocate an
additional table to maintain the sampled flows as well as the entries which
determine the flows to be sampled. For the method based on IPs, it uses
an additional wildcarded flow entry which determines the IP suffix(es) to be
sampled. For the hash-based method, it uses an additional entry to redirect
the packets to a group table, as well as the group table with its respective
buckets. We don’t provide an estimation of this memory contribution since
we consider it is too dependent on the OpenFlow implementation in the
switch. Nevertheless, we assume that this amount of memory is negligible
compared to the amount of memory allocated for the entries that record the
statistics of the sampled flows.

Note that our system could be attacked by malicious agents sending
malformed packets or messages at a high rate in order to cause congestion
in the controller, as it would receive all the first few packets from sampled

20



flows. Also the communication in the Southbound interface could be in-
terrupted because the control channels were compromised. All these are
inherent problems of OpenFlow-based networks, since the data plane some-
times relies much on the decision making in the controller. For our particular
case, we consider as future work the design of a complementary system to
detect and mitigate these types of attacks and mechanisms to guarantee a
reliable connection between the data and control planes.

5.2. Evaluation of the Flow Classification System

We implemented our classification system combining different classifica-
tion tools. For the ’DPI/ML module’, we implemented the classifier based
on DPI using a distribution of “nDPI” (version 1.8-stable). A list of the pro-
tocols supported by this tool is available in [18]. The implementation of our
ML classifier was done using the well-known C5.0 decision tree [19], whose
code is under the Gnu GPL. We made the ML feature selection based on the
work in [20], where they use as inputs for the model some flow-level NetFlow
features. In particular, we included the source and destination ports, the IP
protocol and the size of the first packets of the flow (with a maximum of 6
packets). As possible classes, we use the application protocols included in
the list of classification labels provided by nDPI [18]. To this end, we only
selected from this list those labels whose prefix is “NDPI PROTOCOL”,
as there are others that identify some specific applications names or type of
contents in web traffic for instance. In total, our ML model has 169 different
classes. For the implementation of the HTTP, Encrypted and DNS modules,
we used respectively the HTTP, SSL and DNS scripts of the open-source tool
Bro IDS, which permits to extract the hostname from HTTP headers and
SSL/TLS certificates, and the domain names from DNS queries.

5.2.1. Ground truth

In order to evaluate our flow classification system, we created a ground
truth using real-world traffic. Our dataset includes a collection of 4,679,374
different flows from the UNIVERSITY-2 trace corresponding to a large uni-
versity network. More details about this trace are described in Table 1.

We built our ground truth using the open-source tools nDPI and Bro
IDS, which also performs DPI. We processed the whole UNIVERSITY-2
trace with both tools to obtain an extensive information about the traffic
in the trace. Our ground truth consists of a report including all the flows
in the trace (identified by their 5-tuple) and associated labels that classify
each of them. As for the selection of the labels, we follow the operation
scheme of our Flow Classification System. First we select the label provided

21



by nDPI, which classifies the flows by application protocols. In the case
that nDPI classifies a flow as HTTP or SSL/TLS traffic, we substitute this
label for the server hostname extracted either from the HTTP headers or the
SSL/TLS certificates. That way, our ground truth includes a collection of
labels selected by nDPI except for flows with web or encrypted traffic, where
we use the Fully Qualified Domain Name (FQDN) of the server associated
to the connection. Note that this selection of labels allows us to properly
evaluate our classification system for all the techniques it includes. On the
one hand, we can compare our ML classifier with the results achieved by
DPI, as the ML model produces only output labels included in the list of
supported protocols of nDPI [18]. On the other hand, we can evaluate the
server domain names obtained by the DNS module comparing them with
the hostnames achieved by the HTTP and Encrypted modules.

5.2.2. Accuracy and deployment cost of the Flow Classification system

In this Section, we evaluate the different techniques implemented in our
classification system in order to better understand their tradeoffs between
accuracy and performance when deploying them in SDN environments.

As we discussed in Section 4, in our monitoring system, the controller can
receive packets from the same sampled flow during the time interval between
the reception of the first packet in the switch, and the time when a specific
flow entry is installed in the switch. That way, our classification system
leverages the reception of all these packets to perform traffic classification.

In our evaluation, we considered the same scenario than in Section 5.1.2,
with a range from 1 ms to 100 ms for the elapsed time to install a flow entry.
Thus, we simulate this range of time values using the UNIVERSITY-2 trace
(described in Table 1) and analyze the accuracy achieved and the processing
power needed by our classification system. In particular, we analyze these
factors separately for each of the modules within the classification system.

In order to evaluate the accuracy achieved by our system, we used the
ground truth described in Section 5.2.1. This ground truth represents the
results that could be achieved if all the traffic was mirrored to the SDN con-
troller and we applied the DPI techniques in our “DPI/ML” (using nDPI),
“HTTP” and “Encrypted” modules to classify every flow. This approach is
resource consuming and not feasible in all scenarios. That way, we consider
a scenario where we perform DPI only to those first few packets of the flows
that the controller receives. Note that, in our scenario, the longer the time
elapsed to install a flow entry in the switch, the more packets from the same
flow will be received in the controller. Likewise, a larger number of pack-
ets processed by our classification system will potentially lead to a higher

22



level of accuracy. Alternatively, we also consider the use of our supervised
ML classifier (within the DPI/ML module) that collects flow-level features
(described at the beginning of Section 5.2) to perform traffic classification
at the level of application protocols. This allows us to compare the results
obtained by nDPI with those achieved by ML specifically when classifying
the traffic by application protocols. To measure the accuracy of our system,
we consider that it classifies a flow correctly if it produces the same label
than the ground truth. That is, the application protocol labels produced by
nDPI for all the flows except for web and encrypted flows, which are labeled
with the server hostname associated. Remark that, for the evaluation of the
techniques implemented in our “HTTP”, “Encrypted” and “DNS” modules,
we only consider the second-level domains of the hostnames. For example,
if the label in the ground truth is www.google.com, we consider that our
system succeeds if it provides the label google.

In Fig. 11a, we show the accuracy results (in terms of percentage of
flows well classified) individually achieved by our classification modules as
well as combining some them. The x-axis represents the elapsed time to
install the specific entry for the flow. An important fact we highlight, is
that in our “DPI/ML” module we achieve almost the same accuracy either
using nDPI or using our ML model. Furthermore, the results achieved for
low time intervals show that both techniques are able to classify the traffic
even when the controller receives a small number of packets. Note that, it
should not be compared the classification performed in this module with a
simple port-based classifier. In our ML module, apart from ports and IP
protocol, we also include features like the length of the first packets that
reach the controller (max. 6 packets). Regarding the operation of nDPI,
we do not have specific details of its implementation, but typically DPI
tools perform classification not only considering the well-known ports, but
also inspecting the payload content. Note that in these particular case,
both techniques achieve similar accuracy due to the classification is done
at the level of application protocols. Similarly, in [20] we can observe that
they achieve very good results using a C4.5 decision tree to classify the
traffic in classes with a comparable complexity level. However, we also
note that nDPI also provides complementary labels for some flows (e.g.,
web traffic) that identify the applications (e.g., Facebook) or the type of
contents (e.g., AVI contents). In total, it supports 63 different labels of this
type. We did not consider these labels in our system as we used more precise
DPI techniques (in our HTTP, Encrypted and DNS modules) to specifically
unveil the applications generating web and encrypted traffic. Nevertheless,
we note that performing such a comprehensive classification by application

23



(a) Traffic classification accuracy (b) Per-packet execution times

Figure 11: Evaluation results of our flow classification system.

names is not feasible using ML classifiers without considerably sacrificing
the accuracy results. Moreover, in Fig. 11a we also see that the HTTP
and Encrypted modules significantly improve their accuracy as the time
interval becomes longer. We also remark that, in terms of false positives, the
DNS module provides wrong labels for around 21.4% of web and encrypted
flows. However, the HTTP and Encrypted modules do not produce any
false positive. That is why in our system we prioritize the labels produced
by the HTTP and Encrypted modules and use the DNS module as a fallback
classifier if the other modules did not achieve an output label.

Regarding the applicability of our classification system for security pur-
poses, we note here some issues that would be addressed as future work. On
the one hand, malicious hosts could avoid being monitored if they use for
example uncommon ports that nDPI or the ML classifier cannot properly
detect. Moreover, the use of encrypted tunnels (e.g., SSH) prevents our
system from classifying the different flows that they carry inside.

As for the processing power required to deploy our classification system
in a SDN controller, we made an evaluation of the execution cost of the
different classification modules. We measure the cost by calculating the av-
erage execution time per packet. To this end, we execute some experiments
in an ordinary machine with an Intel i7 quad-core processor and 8 GB of
RAM memory. We process the whole traffic trace (UNIVERSITY-2) with
each module and divide the processing time by the total number of pack-
ets in the trace. Note that each module does not process all the packets
in the traffic, but only the incoming packets to the module. For example,
the DNS module only processes the traffic matching port 53 (more details
are described in Section 4). In Fig. 11b, we show the results of the per-
packet execution times for the different modules. From these results, we
infer that the ML module performs much better than the DPI module in
terms of processing overhead, as we expected. Also note that the accuracy
and the execution times of our DNS module do not depend on the elapsed

24



time (x-axis) to install the flow entries, since it is always fed by all the DNS
traffic independently of this time interval. The reduced per-packet execu-
tion times of the DNS module are mainly due to the low amount of DNS
packets that can be typically found in real-world traffic. For example, in
the trace we used in our experiments, only 0.487% of the total number of
packets correspond to DNS traffic.

We remark that the purpose of this evaluation is to compare in relative
terms the costs of the different classification modules. Nevertheless, note
that the execution times we provide can be inflated if we compare them
with those times in real scenarios, as our values include the time to read the
traffic trace from the hard-disk memory of the computer.

6. Related work

In this section, we provide an overview of the state-of-the-art regarding
traffic measurement and traffic classification in Software-Defined Networks.

There are a number of efforts in the literature to perform traffic mea-
surement in the SDN paradigm. However, this is an issue which still has a
lot of room for improvement. For example, in [7] they use the measurement
features of OpenFlow to maintain per-flow statistics in the switches. How-
ever, their approach is not scalable as they do not perform traffic sampling
and it requires to install an entry in the flow tables for every flow in the
traffic. In iSTAMP [2], they perform flow-based sampling by making use of
a multi-armed-bandit algorithm to “stamp” some flows. However, this solu-
tion specifically addresses the detection of particular flows like heavy hitters,
while our solution provides a generic dataset of the flows in the network.
Alternatively, some authors suggest to make use of different architectures
specifically designed for monitoring tasks. Thus, in [21], they propose using
OpenSketch, where some sketches can be defined and dynamically loaded
to perform traffic measurement. We also found some proposals that rely on
different protocols than OpenFlow. For instance, OpenSample [3] performs
traffic sampling using sFlow. Nevertheless, we consider sFlow has a high re-
source consumption as it sends every sampled packet to an external collector
to maintain there the statistics. Other authors propose distributed solutions
to address the scalability issue in SDN. Thus, in OpenNetMon[22], they de-
sign an scheme to monitor flows in edge switches and make measurements
of throughput, packet loss and delay. However, these solutions may produce
a high overhead in the controller, which has to calculate all the flow paths
and install as equitable as possible the flow entries in all the edge switches.

25



Regarding the traffic classification, we could not find in the literature
many contributions specifically addressing the SDN paradigm. We highlight
for instance the architecture they proposed in [23] to select flow features for
traffic classification in OpenFlow-based networks. However, for traditional
networks, there are plenty of proposals to classify the traffic using different
techniques ranging from Deep Packet Inspection (DPI) to machine Learning
(ML). Thus, in our classification system we used some techniques such as the
C5.0 decision tree [19] they used in [20] to classify the traffic, or those meth-
ods proposed in [4][5], where they use specific DPI techniques addressing
web, encrypted and DNS traffic.

7. Conclusions and future work

We presented a flow monitoring system for OpenFlow which provides
reports like in NetFlow/IPFIX and it is enriched with labels identifying
the application generating each flow. In order to reduce the overhead in
the controller and the number of entries required in the switch, we proposed
two traffic sampling methods that can be implemented in current OpenFlow
switches. For traffic classification, we efficiently combined some DPI and
machine learning techniques with special focus on the identification of web
and encrypted traffic. We implemented our system in OpenDaylight and
evaluated its accuracy and overhead in a testbed with real traffic. As future
work, we plan to use the reports of our flow monitoring system to perform
automatic network management based on deep learning.

Acknowledgement

This work was supported by the European Union’s H2020 SME Instru-
ment Phase 2 project “SDN-Polygraph” (grant agreement n° 726763), the
Spanish Ministry of Economy and Competitiveness and EU FEDER un-
der grant TEC2014-59583-C2-2-R (SUNSET project), and by the Catalan
Government (ref. 2014SGR-1427).

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, p. 69, 2008.

[2] M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent SDN based traffic
(de)Aggregation and Measurement Paradigm (iSTAMP),” Proceedings of the IEEE INFO-
COM, pp. 934–942, 2014.

26



[3] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample: A low-latency,
sampling-based measurement platform for commodity SDN,” Proceedings of the International
Conference on Distributed Computing Systems, pp. 228–237, 2014.

[4] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafò, “Towards Web Service Classification
using Addresses and DNS,” International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 38–43, 2016.

[5] T. Mori, T. Inoue, A. Shimoda, K. Sato, S. Harada, K. Ishibashi, and S. Goto, “Statistical
estimation of the names of HTTPS servers with domain name graphs,” Computer Commu-
nications, vol. 94, pp. 104–113, 2016.

[6] “The OpenDaylight platform,” http://www.opendaylight.org/.

[7] L. Hendriks, R. D. O. Schmidt, R. Sadre, J. A. Bezerra, and A. Pras, “Assessing the Quality
of Flow Measurements from OpenFlow Devices,” 8th International Workshop on Traffic
Monitoring and Analysis (TMA), 2016.

[8] B. Claise, “Packet sampling (PSAMP) protocol specifications,” 2009.

[9] J. Suárez-Varela and P. Barlet-Ros, “Reinventing NetFlow for OpenFlow Software-Defined
Networks (Technical report),” arXiv preprint arXiv:1702.06803, 2017.

[10] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compositional Hypervisor for
Software-Defined Networks,” Proceedings of Networked Systems Design and Implementation
(NSDI), pp. 87–101, 2015.

[11] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, “FlowSense:
Monitoring network utilization with zero measurement cost,” Lecture Notes in Computer
Science, vol. 7799 LNCS, pp. 31–41, 2013.

[12] “MAWI Working Group traffic archive - [15/07/2016],” http://mawi.wide.ad.jp/mawi/.

[13] “The CAIDA UCSD Anonymized Internet Traces 2016 - [18/02/2016],” http://www.caida.
org/data/passive/passive 2016 dataset.xml.

[14] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions from sampled flow
statistics,” IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 933–946, 2005.

[15] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic observation,”
IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 280–292, 2001.

[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, and B. Lantz, “ONOS:
towards an open, distributed SDN OS,” Proceedings of HotSDN, pp. 1–6, 2014.

[17] “Can OpenFlow scale?” https://www.sdxcentral.com/articles/contributed/openflow-sdn/
2013/06/, accessed: 14 July 2017.

[18] “nDPI - List of supported protocols,” https://github.com/ntop/nDPI/blob/1.8-stable/src/
include/ndpi protocol ids.h, accessed: 2017-12-05.

[19] “Data Mining Tools See5 and C5.0,” https://www.rulequest.com/see5-info.html.

[20] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio, and J. Solé-Pareta, “Analysis of the
impact of sampling on NetFlow traffic classification,” Computer Networks, vol. 55, no. 5, pp.
1083–1099, 2011.

27



[21] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with opensketch,” Net-
worked Systems Design and Implementation, (NSDI), vol. 13, pp. 29–42, 2013.

[22] N. L. M. Van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Network monitoring
in OpenFlow software-defined networks,” IEEE/IFIP NOMS, 2014.

[23] A. Santos, C. C. Machado, R. V. Bisol, L. Z. Granville, and A. Schaeffer-filho, “Identifica-
tion and Selection of Flow Features for Accurate Traffic Classification in SDN,” In Network
Computing and Applications (NCA), 2015.

28


