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Knowledge-Defined Networking:
A Machine Learning based approach for network and traffic modeling

by Albert MESTRES

The research community has considered in the past the application of Machine Learn-
ing (ML) techniques to control and operate networks. A notable example is the
Knowledge Plane proposed by D.Clark et al. However, such techniques have not
been extensively prototyped or deployed in the field yet. In this thesis, we explore
the reasons for the lack of adoption and posit that the rise of two recent paradigms:
Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate
the adoption of ML techniques in the context of network operation and control. We
describe a new paradigm that accommodates and exploits SDN, NA and ML, and
provide use-cases that illustrate its applicability and benefits. We also present some
relevant use-cases, in which ML tools can be useful. We refer to this new paradigm
as Knowledge-Defined Networking (KDN).

In this context, ML can be used as a network modeling technique to build models
that estimate the network performance. Network modeling is a central technique
to many networking functions, for instance in the field of optimization. One of the
objective of this thesis is to provide an answer to the following question: Can neural
networks accurately model the performance of a computer network as a function of the input
traffic?. In this thesis, we focus mainly on modeling the average delay, but also on
estimating the jitter and the packets lost. For this, we assume the network as a black-
box that has as input a traffic matrix and as output the desired performance matrix.
Then we train different regressors, including deep neural networks, and evaluate its
accuracy under different fundamental network characteristics: topology, size, traffic
intensity and routing. Moreover, we also study the impact of having multiple traffic
flows between each pair of nodes.

We also explore the use of ML techniques in other network related fields. One rel-
evant application is traffic forecasting. Accurate forecasting enables scaling up or
down the resources to efficiently accommodate the load of traffic. Such models are
typically based on traditional time series ARMA or ARIMA models. We propose
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a new methodology that results from the combination of an ARIMA model with
an ANN. The Neural Network greatly improves the ARIMA estimation by model-
ing complex and nonlinear dependencies, particularly for outliers. In order to train
the Neural Network and to improve the outliers estimation, we use external infor-
mation: weather, events, holidays, etc. The main hypothesis is that network traffic
depends on the behavior of the end-users, which in turn depend on external fac-
tors. We evaluate the accuracy of our methodology using real-world data from an
egress Internet link of a campus network. The analysis shows that the model works
remarkably well, outperforming standard ARIMA models.

Another relevant application is in the Network Function Virtualization (NFV). The
NFV paradigm makes networks more flexible by using Virtual Network Functions
(VNF) instead of dedicated hardware. The main advantage is the flexibility offered
by these virtual elements. However, the use of virtual nodes increases the diffi-
culty of modeling such networks. This problem may be addressed by the use of ML
techniques, to model or to control such networks. As a first step, we focus on the
modeling of the performance of single VNFs as a function of the input traffic. In this
thesis, we demonstrate that the CPU consumption of a VNF can be estimated only
as a function of the input traffic characteristics.
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Chapter 1

Knowledge Defined Networking

1.1 Introduction

D. Clark et al. proposed “A Knowledge Plane for the Internet” [1], a new con-
struct that relies on Machine Learning (ML) and cognitive techniques to operate
the network. A Knowledge Plane (KP) would bring many advantages to network-
ing, such as automation (recognize-act) and recommendation (recognize-explain-
suggest), and it has the potential to represent a paradigm shift on the way we oper-
ate, optimize and troubleshoot data networks. However, at the time of this writing,
we are yet to see the KP prototyped or deployed. Why?

One of the biggest challenges when applying ML for network operation and control
is that networks are inherently distributed systems, where each node (i.e., switch,
router) has only a partial view and control over the complete system. Learning from
nodes that can only view and act over a small portion of the system is very com-
plex, particularly if the end goal is to exercise control beyond the local domain. The
emerging trend towards logical centralization of control will ease the complexity
of learning in an inherently distributed environment. In particular, the Software-
Defined Networking (SDN) paradigm [2] decouples control from the data plane and
provides a logically centralized control plane, i.e., a logical single point in the net-
work with knowledge of the whole.

In addition to the “softwarization” of the network, current network data plane ele-
ments, such as routers and switches, are equipped with improved computing and
storage capabilities. This has enabled a new breed of network monitoring tech-
niques, commonly referred to as network telemetry [3]. Such techniques provide
real-time packet and flow-granularity information, as well as configuration and net-
work state monitoring data, to a centralized Network Analytics (NA) platform. In
this context, telemetry and analytics technologies provide a richer view of the net-
work compared to what was possible with conventional network management ap-
proaches.
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In this thesis, we advocate that the centralized control offered by SDN, combined
with a rich centralized view of the network provided by network analytics, enable
the deployment of the KP concept proposed in [1]. In this context, the KP can use
various ML approaches, such as Deep Learning (DL) techniques, to gather knowl-
edge about the network, and exploit that knowledge to control the network using
logically centralized control capabilities provided by SDN. We refer to the paradigm
resulting from combining SDN, telemetry, Network Analytics, and the Knowledge
Plane as Knowledge-Defined Networking (KDN).

The following section describes the KDN paradigm and how it operates. Then, we
describe a set of relevant use-cases that show the applicability of such paradigm
to networking and the benefits associated with using ML. In addition, we analyze
the open research challenges associated with the KDN paradigm. Finally, we define
the scope of this thesis, which summarized is to demonstrate the feasibility of the
KDN paradigm by modeling the end-to-end delay of a network using only traffic
information using state-of-the-art techniques.

1.2 A Knowledge Plane for SDN Architectures

The concept of KDN introduced in this thesis restates the concept of Knowledge
Plane (KP) as defined by D. Clark et al. [1] in the context of SDN architectures. The
addition of a KP to the traditional three planes of the SDN paradigm results in what
we call Knowledge-Defined Networking. Fig. 1.1 shows an overview of the KDN
paradigm and its functional planes.

The Data Plane is responsible for storing, forwarding and processing data packets.
In SDN networks, data plane elements are typically network devices composed of
line-rate programmable forwarding hardware. They operate unaware of the rest of
the network and rely on the other planes to populate their forwarding tables and
update their configuration.

The Control Plane exchanges operational state in order to update the data plane
matching and processing rules. In an SDN network, this role is assigned to the
–logically centralized– SDN controller that programs SDN data plane forwarding
elements via a southbound interface. While the data plane operates at packet time
scales, the control plane is slower and typically operates at flow time scales.

The Management Plane ensures the correct operation and performance of the net-
work in the long term. It defines the network topology and handles the provision
and configuration of network devices. In SDN this is usually handled by the SDN
controller as well. The management plane is also responsible for monitoring the
network to provide critical network analytics. To this end, it collects telemetry in-
formation from the control and data plane while keeping a historical record of the
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FIGURE 1.1: KDN planes

network state and events. The management plane is orthogonal to the control and
data planes, and typically operates at larger time-scales.

The Knowledge Plane, as originally proposed by Clark, is redefined in this thesis un-
der the terms of SDN as follows: the heart of the knowledge plane is its ability to inte-
grate behavioral models and reasoning processes oriented to decision making into an SDN
network. In the KDN paradigm, the KP takes advantage of the control and manage-
ment planes to obtain a rich view and control over the network. It is responsible for
learning the behavior of the network and, in some cases, automatically operate the
network accordingly. Fundamentally, the KP processes the network analytics col-
lected by the management plane, either preprocessed data or raw data, transforms
them into knowledge via ML, and uses that knowledge to make decisions (either
automatically or through human intervention). While parsing the information and
learning from it is typically a slow off-line process, using such knowledge auto-
matically can be done at a time-scales close to those of the control and management
planes. However, the trend is towards on-line learning for applications such as those
described in section 1.4.
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FIGURE 1.2: KDN operational loop

1.3 Knowledge-Defined Networking

The Knowledge-Defined Networking (KDN) paradigm operates by means of a con-
trol loop to provide automation, recommendation, optimization, validation and es-
timation. Conceptually, the KDN paradigm borrows many ideas from other areas,
notably from black-box optimization [4], neural-networks in feedback control sys-
tems [5], reinforcement learning [6] and autonomic self-* architectures [6]. In addi-
tion, recent initiatives share the same vision stated in this thesis1 [7–9] Fig. 2 shows
the basic steps of the main KDN control. In what follows we describe these steps in
detail.

Forwarding Elements & SDN Controller→Analytics Platform The Analytics Plat-
form aims to gather enough information to offer a complete view of the network. To
that end, it monitors the data plane elements in real time while they forward pack-
ets in order to access fine-grained traffic information. In addition, it queries the SDN
controller to obtain control and management state. The analytics platform relies
on protocols, such as NETCONF (RFC 6241), NetFlow (RFC 3954) and IPFIX (RFC
7011), to obtain configuration information, operational state and traffic data from the
network. The most relevant data collected by the analytics platform is summarized
below.

1Cognet project: http://www.cognet.5g-ppp.eu/
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• Packet-level and flow-level data: This includes Deep Packet Inspection (DPI)
information, flow granularity data and relevant traffic features.

• Network state: This includes the physical, topological and logical configura-
tion of the network.

• Control & management state: This includes all the information included both
in the SDN controller and management infrastructure, including policy, virtual
topologies, application-related information, etc.

• Service-level telemetry: This is relevant to learn the behavior of the application
or service, and its relation with the network performance, load and configura-
tion.

• External information: This is relevant to model the impact of external events,
such as activity on social networks (e.g., amount of people attending a sports
event), weather forecasts, etc. on the network.

In order to effectively learn the network behavior, besides having a rich view of
the network, it is critical to observe as many different situations as possible. As we
discuss in Section 1.5, this includes different loads, configurations and services. To
that end, the analytics platform keeps a historical record of the collected data.

Analytics Platform→Machine Learning ML algorithms (such as Deep Learning
techniques) are the heart of the KP, which are able to learn from the network be-
havior. The current and historical data provided by the analytics platform are used
to feed learning algorithms that learn from the network and generate knowledge
(e.g., a model of the network). We consider three approaches: supervised learning,
unsupervised learning and reinforcement learning.

In supervised learning, the KP learns a model that describes the behavior of the
network, i.e., a function that relates relevant network variables to the operation of
the network (e.g., the performance of the network as a function of the traffic load and
network configuration). It requires labeled training data and feature engineering to
represent network data.

Unsupervised learning is a data-driven knowledge discovery approach that can au-
tomatically infer a function that describes the structure of the analyzed data or can
highlight correlations in the data that the network operator may be unaware of. As
an example, the KP may be able to discover how the local weather affects the link’s
utilization.

In the reinforcement learning approach, a software agent aims to discover which ac-
tions lead to an optimal configuration. As an example the network administrator can
set a target policy, for instance the delay of a set of flows, then the agent acts on the
SDN controller by changing the configuration and for each action receives a reward,
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TABLE 1.1: KDN applications

Closed Loop Open Loop

Supervised
Automation
Optimization

Validation
Estimation
What-if analysis

Unsupervised Improvement Recommendation

Reinforcement
Automation
Optimization

N/A

which increases as the in-place policy gets closer to the target policy. Ultimately, the
agent will learn the set of configuration updates (actions) that result in such target
policy. Recently, deep reinforcement learning techniques have provided important
breakthroughs in the AI field that are being applied in many network-related fields
(e.g., [10]).

Please note that learning can also happen offline and applied online. In this context
knowledge can be learned offline training a neural network with datasets of the
behavior of a large set of networks, then the resulting model can be applied online.

Machine Learning→ Northbound controller API The KP eases the transition be-
tween telemetry data collected by the analytics platform and control specific actions.
Traditionally, a network operator had to examine the metrics collected from network
measurements and make a decision on how to act on the network. In KDN, this pro-
cess is partially offloaded to the KP, which is able to make -or recommend- control
decisions taking advantage of ML techniques.

Depending on whether the network operator is involved or not in the decision mak-
ing process, there are two different sets of applications for the KP. We next describe
these potential applications and summarize them in table 1.1.

• Closed loop: When using supervised or reinforcement learning, the network
model obtained can be used first for automation, since the KP can make deci-
sions automatically on behalf of the network operator. Second, it can be used
for optimization of the existing network configuration, given that the learned
network model can be explored through common optimization techniques to
find (quasi)optimal configurations. In the case of unsupervised learning, the
knowledge discovered can be used to automatically improve the network via
the interface offered by the SDN controller. For instance the relation between
traffic, routing, topology and the resulting delay can be modeled to then apply
optimal routing configurations that minimize delay.

• Open loop: In this case the network operator is still in charge of making the
decisions, however it can rely on the KP to ease this task. When using super-
vised learning, the model learned by ML can be used for validation (e.g., to
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query the model before applying tentative changes to the system). The model
can also be used as a tool for performance estimation and what-if analysis, since
the operator can tune the variables considered in the model and obtain an as-
sessment of the network performance. When using unsupervised learning, the
correlations found in the explored data may serve to provide recommendations
that the network operator can take into consideration when making decisions.

Northbound controller API→ SDN controller The northbound controller API of-
fers a common interface to, human, software-based network applications and policy
makers to control the network elements. The API offered by the SDN controller can
be either a traditional imperative language or a declarative one [11]. In the latter
case, the users of the API express their intentions towards the network, which then
are translated into specific control directives.

The KP can operate both on top of imperative or declarative languages as long as
it is trained accordingly. However, and at the time of this writing, developing truly
expressive and high-level declarative northbound APIs is an open research ques-
tion. Such intent-based declarative languages provide automation and intelligence
capabilities to the system. In this context, we advocate that the KP represents an
opportunity to help on their development, rather than an additional level of intel-
ligence. As a result, we envision the KP operating on top of imperative languages,
while helping on the translation of the intentions stated by the policy makers into
network directives.

SDN controller→ Forwarding Elements The parsed control actions are pushed to
the forwarding devices via the controller southbound protocols in order to program
the data plane according to the decisions made at the KP.

1.4 Use-cases

This section presents a set of specific uses-cases that illustrate the potential applica-
tions of the KDN paradigm and the benefits a KP based on ML may bring to common
networking problems. For two representative use-cases, we also provide early ex-
perimental results that show the technical feasibility of the proposed paradigm. All
the datasets used in this thesis, as well as codes and relevant hyper-parameters, can
be found at [12].

The KDN architecture we introduce in this thesis has a very wide range of use-cases
in networking that take base on the use of ML techniques. In what follows we de-
scribe a set of specific use-cases that exemplify the applications of the KDN architec-
ture.
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Hidden 
Network

Overlay nodes

FIGURE 1.3: Overlay network with a hidden underlay

1.4.1 Routing in an Overlay Network

The main objective of this use-case is to show that it is possible to model the behavior
of a network with the use of ML techniques. In particular, we present a simple proof-
of-concept example in the context of overlay networks, where an Artificial Neural
Network (ANN) is used to build a model of the delay of the (hidden) underlay net-
work, which can later be used to improve routing in the overlay network.

Overlay networks have become a common solution for deployments where one net-
work (overlay) has to be instantiated on top of another (underlay). This may be the
case when a physically distributed system needs to behave as a whole while rely-
ing on a transit network, for instance a company with geo-distributed branches that
connects them through the Internet. Another case is when a network has to send
traffic through another for which it is not interoperable, for example when trying to
send Ethernet frames over an IP-only network.

In such cases, an overlay network can be instantiated by means of deploying overlay-
enabler nodes at the edge of the transit network and then tunneling overlay traffic
using an encapsulation protocol (e.g., LISP (RFC 6830), VXLAN (RFC 7348), etc.). In
many overlay deployments, the underlay network belongs to a different adminis-
trative domain and thus its details (e.g., topology, configuration) are hidden to the
overlay network administrator (see fig. 1.3).

Typically, overlay edge nodes are connected to the underlay network via several
links. Even though edge nodes have no control over the underlay routing, they can
distribute the traffic among the different links they use to connect to it. Edge nodes
can use overlay control plane protocols (e.g., LISP) to coordinate traffic balancing
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policies across links. However, a common problem is how to find best/optimum
per-link policies at the edge such that the global performance is optimized. An effi-
cient use of edge nodes links is critical since it is the only way the overlay operator
can control –to a certain extent– the traffic path over the underlay network.

Overlay operators can rely on building a model of the underlay network to optimize
the performance. However, building such a model poses two main challenges. First,
neither the topology nor the configuration (e.g., routing policy) of the underlay net-
work are known, and thus it is difficult to determine the path that each flow will
follow. Second, mathematical or theoretical models may fall short to model such a
complex scenario.

Similar scenarios has been addressed before in the past (e.g., [13]) using network op-
timization techniques. ML techniques offer a new tool to model hidden networks by
analyzing the correlation of inputs and outputs in the system. In other words, ML
techniques can model the hidden underlay network by means of observing how the
output traffic behaves for a given input traffic (i.e., f (routing policy, traffic) = perfor-
mance). For instance, if two edge node links share a transit node within the -hidden-
underlay network, ML techniques can learn that the performance decreases when
both of those links are used at the same time and therefore recommend traffic bal-
ancing policies that avoid using both links simultaneously.

1.4.2 Resource Management in an NFV scenario

This use-case shows how the KDN paradigm can also be useful in the context of
Network Function Virtualization (NFV). NFV [14] is a networking paradigm where
network functions (e.g., firewalls, load-balancers, etc.) no longer require specific
hardware appliances but rather are implemented in the form of Virtual Network
Functions (VNFs) that run on top of general purpose hardware.

The resource management in NFV scenarios is a complex problem since VNF place-
ment may have an important impact on the overall system performance. The prob-
lem of optimal Virtual Machine (VM) placement has been widely studied for Data
Center (DC) scenarios (see [15] and the references therein), where the network topol-
ogy is mostly static. However, in NFV scenarios the placement of a VNF modifies
the performance of the virtualized network. This increases the complexity of the
optimal placement of VNFs in NFV deployments.

Contrary to the overlay case, in the VNF placement problem all the information is
available, e.g., virtual network topology, CPU/memory usage, energy consumption,
VNF implementation, traffic characteristics, current configuration, etc. However, in
this case the challenge is not the lack of information but rather its complexity. The
behavior of VNFs depend on many different factors and thus developing accurate
models is challenging.
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The KDN paradigm can address many of the challenges posed by the NFV resource-
allocation problem. For example, the KP can characterize, via ML techniques, the
behavior of a VNF as a function of the collected analytics, such as the traffic pro-
cessed by the VNF or the configuration pushed by the controller. With this model,
the resource requirements of a VNF can be modeled by the KP without having to
modify the network. This is helpful to optimize the placement of this VNF and,
therefore, to optimize the performance of the overall network.

1.4.3 Knowledge extraction from network logs

Operators typically equip their networks with a logging infrastructure where net-
work devices report events (e.g., link going down, packet losses, etc.). Such logs
are extensively used by operators to monitor the health of the network and to trou-
bleshoot issues. Log analysis is a well-known research field and, in the context of
the KDN paradigm, it can also be used in networking [16]. By means of unsuper-
vised learning techniques, a KDN architecture can correlate log events and discover
new knowledge. This knowledge can be used by the network administrators for
network operation using the open-loop approach, or to take automatic decisions in
a closed-loop solution. These are some specific examples of Knowledge Discovery
using Network Logging and unsupervised learning:

• Node N is always congested around 8pm and Services X and Y have an above-
average number of clients.

• Abnormal number of BGP UPDATES messages sent and Interface 3 is flapping.

• Fan speeds increase in node N when interface Y fails.

1.4.4 5G mobile communications networks

The fifth generation of mobile communications networks will provide higher data
rates, lower latencies, among other advances together with an important update of
the network [17]. The 5G network is, by design, a Wireless SDN (WSDN), which of-
fers a flexible network architecture, required by the specifications of 5G. Moreover,
5G is complemented by the use of Network Function Virtualization (NFV), to in-
crease the flexibility of the 5G network and to create virtual networks over the same
physical network. Within this context, KDN can be easily applied as in a conven-
tional SDN+NFV network.

Additionally, 5G networks require novel technical solutions in which the KDN paradigm
can also be helpful. The high scalability required makes necessary the design of intel-
ligent routing algorithms for a large number of users, especially when these users are
mobile [17]. The design of reliable handoffs, as well as the design of dynamic routing
algorithms may take advantage of the data collected to predict the user movement



1.5. Challenges 11

to increase the performance of these algorithms. Moreover, this can also be used
to increase the efficiency of the beam-steering techniques, which will facilitate the
increase of the throughput in the physical layer.

1.4.5 Network Planning

Moreover, these networks models can also be used to update the network to future
needs, in a process usually known as network planning. The objective of network
planning is that in the long run the network meets the requirements of the network
operator (and its subscribers, if any), that is to plan ahead to prevent potential bot-
tlenecks, packet losses or performance drops [18]. The models developed in the
KDN architecture can be used to estimate the network capacity and forecast future
requirements. As a simple example, KDN can learn the relation between the num-
ber of clients (or the number of services) and the load and thus, accurately estimate
when a network upgrade is required.

Over time, network deployments typically have to face an increment in traffic load
(e.g., higher throughput) and service requirements (e.g., less latency, less jitter, etc).
Network operators have to deal with such increments and prepare the network in
advance, in a process usually known as network planning. Network planning in-
cludes designing the network topology, selecting the specifications of the network
hardware and deciding the traffic policies that distribute the traffic over the network.
The objective of network planning is that in the long run the network meets the re-
quirements of the network operator (and its subscribers, if any), that is to plan ahead
to prevent potential bottlenecks, packet losses or performance drops [18].

Network planning techniques commonly rely on computer models managed by ex-
perts that estimate the network capacity and forecast future requirements. Since this
process is prone to errors, network planning typically results in over-provisioning.
A KDN architecture can develop an accurate network model based on the historical
data stored in the analytics platform. As a simple example, KDN can learn the re-
lation between the number of clients (or the number of services) and the load and
thus, accurately estimate when a network upgrade is required.

1.5 Challenges

The KDN paradigm brings significant advantages to networking, but at the same
time it also introduces important challenges that need to be addressed. In what
follows we discuss the most relevant ones.

New ML mechanisms: Although ML techniques provide flexible tools to computer
learning, its evolution is partially driven by existing ML applications (e.g., Com-
puter Vision, recommendation systems, etc.). In this context the KDN paradigm



12 Chapter 1. Knowledge Defined Networking

represents a new application for ML and as such, requires either adapting existing
ML mechanisms or developing new ones. Graphs are a notable example, they are
used in networking to represent topologies, which determine the performance and
features of a network. In this context, only preliminary attempts have been proposed
in the literature to create sound ML algorithms able to model the topology of sys-
tems that can be represented through a graph [19]. Although such proposals are not
tailored to network topologies, their core ideas are encouraging for the computer
networks research area. In this sense, the combination of modern ML techniques,
such as Q-learning techniques, convolutional neural networks and other deep learn-
ing techniques, may be essential to make a step further in this area.

Non-deterministic networks: Typically networks operate with deterministic protocols.
In addition, common analytical models used in networking have an estimation ac-
curacy and are based on assumptions that are well understood. In contrast, mod-
els produced by ML techniques do not provide such guarantees and are difficult to
understand by humans. This also means that manual verification is usually imprac-
tical when using ML-derived models. Nevertheless, ML models work well when
the training set is representative enough. Then, what is a representative training set
in networking? This is an important research question that needs to be addressed.
Basically, we need a deep understanding of the relationship between the accuracy
of the ML models, the characteristics of the network, and the size of the training
set. This might be challenging in this context as the KP may not observe all possible
network conditions and configurations during its normal operation. As a result, in
some use-cases a training phase that tests the network under various representative
configurations can be required. In this scenario, it is necessary to analyze the char-
acteristics of such loads and configurations in order to address questions such as:
does the normal traffic variability occurring in networks produce a representative
training set? Does ML require testing the network under a set of configurations that
may render it unusable?

New skill set and mindset: The move from traditional networks to the SDN paradigm
has created an important shift on the required expertise of networking engineers and
researchers. The KDN paradigm further exacerbates this issue, as it requires a new
set of skills in ML techniques or Artificial Intelligence tools.

Standardized Datasets: In many cases, progress in ML techniques heavily depends on
the availability of standardized datasets. Such datasets are used to research, develop
and benchmark new AI algorithms. And some researchers argue that the cultivation
of high-quality training datasets is even more important that new algorithms, since
focusing on the dataset rather than on the algorithm may be a more straightforward
approach. The publication of datasets is already a common practice in several pop-
ular ML application, such as image recognition2. In this thesis, we advocate that
we need similar initiatives for the computer network AI field. For this reason, all

2Imagenet database: http://www.image-net.org/
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datasets used in this thesis are public and can be found at [12]. This datasets have
proven useful in routing and VNF experiments, it is our hope that help kick-off a
community contributing with larger datasets.

Summary: We advocate that in order to address such important challenges and
achieve the vision shared in this thesis, we require a truly inter-disciplinary effort
between the research fields of Artificial Intelligence, Network Science and Computer
Networks.

1.6 Thesis scope

The KDN paradigm opens a wide range of new applications in the networking field
in which ML tools can play an important role. In this section, we define the scope
and the specific objectives of this work.

The main objective of this thesis is to settle the basis for the use of ML techniques in
the networking field and to demonstrate its feasibility. To do so, we focus on per-
formance optimization problem based on a network model. In other words, we use
ML-tools to train a “network performance simulator”. We have divided this objec-
tive in three main areas: network performance modeling with simple traffic, traffic
characterization and ML-based traffic forecasting, and advanced network elements
characterization.

1.6.1 Network performance modeling

The main objective of this thesis is to validate the hypothesis that the performance of
a network can be modeled by using ML techniques. Specifically, we focus on mod-
eling the average end-to-end delay of a network, knowing only the traffic matrix
(ingress, egress), and assuming a constant topology and configuration. Indeed, un-
der these assumptions, the delay experimented by the different source-destination
flows depends only on the amount of traffic that goes through the network.

In chapter 3, we explore the possibility of using a priori knowledge of the network
behavior to design a ML-model able to capture characteristics of the network. One
of the drawbacks of traditional ML models is that the resulting models are not un-
derstandable, in other words, the trained model cannot be analyzed to obtain more
information of the modeled system. The first objective is to evaluate if it is possible
to build a model able to obtain more information of the system.

The next step is to evaluate if networks can be modeled using ML techniques. As
the starting point, we focus only on the network modeling, so we simplify as far as
possible the representation of the traffic.
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The objectives of this experiment are two: 1) ML-based model are clearly faster to
execute than traditional simulation-based models, so they can be used to optimize
networks in a faster way. The main disadvantage is that we need lots of data and
time in the training period. 2) From a research point of view, the fact of validating the
general hypothesis on the use of ML techniques to characterize computer networks
opens a wide range of more specific network applications.

1.6.2 Traffic characterization and forecasting

In the firsts chapters of the thesis, we focus only on modeling the network for simple
traffic. Afterwards, we focus on the traffic. The behavior of the network, do not only
depends on its topology and configuration, but also on the traffic characteristics.
Moreover, if we are able to forecast the traffic, we will be able to predict the behavior
of the network, which will simplify its management. The objective is to validate
that, with more complex traffic, we need more detailed information of it to be able
to model the network performance. We also want to focus on other performance
metrics, such as the jitter or the number of packets lost.

1.6.3 Complex network elements characterization

The last objective of the thesis, is to evaluate the estimating capabilities when mod-
eling complex elements. The NFV paradigm makes networks more flexible by using
Virtual Network Functions (VNF) instead of dedicated hardware. The main advan-
tage is the flexibility offered by these virtual elements. However, the use of virtual
nodes increases the difficulty of modeling such networks. This problem may be ad-
dressed by the use of ML techniques, to model or to control such networks. As a
first step, in order to validate this approach, we focus on modeling the performance
of single VNFs as a function of the input traffic.

1.6.4 Thesis outline

The remainder of this thesis is organized as follows. Before detailing the contribu-
tions of this work, we review in Chapter 2 the state of the art on different network
topics related to this thesis, we briefly introduce the machine learning research area,
and we review similar approaches that use ML techniques in the networking field.
In Chapter 3 we explore two different approaches to model the end-to-end delay of a
network: we compare a black-box model based on Artificial Neural Network (ANN)
with a model inspired on traditional queuing-based models. Thereafter, we explore
how these models are able to learn the delay of the network under different traf-
fic environments in Chapter 4. Specifically, we explore different traffic intensities,
different topologies, different network sizes and different routing configurations .
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Chapter 5 explores how ML techniques can be used to improve the accuracy of tra-
ditional forecasting tools. In particular, we focus on improving the detection and
prediction of outliers when forecasting traffic . The modeling of complex elements,
such as VNFs is explored in Chapter 6, in order to evaluate the possibility of mod-
eling complex and non linear elements. Chapter 7 concludes the dissertation with a
summary of the lessons learned and paths that could be explored in future research
endeavors.





17

Chapter 2

State of the art

In this chapter, we review the basic research topics related to this thesis, as well
as we introduce different approaches similar to KDN. We start by introducing the
field of Machine Learning (ML), which is the base of the Knowledge plane in the
Knowledge-Defined Networking (KDN) architecture. On the next sections, we fo-
cus on the state of the art related to the networking area. We start by presenting
classic and state-of-the-art network models, in order to compare the advantages and
disadvantages of using ML to model networks. Right after, we review the state of
the art of traffic models and traffic prediction techniques, which are needed to rep-
resent and to forecast the traffic in our models. Finally, we review the most relevant
contributions which use ML in the networking field.

2.1 Machine Learning

Machine Learning (ML) is a field of computer science, the objective of which is to
study and develop algorithms that are able to “learn”. The “learning” concept refers
to the ability of this algorithms to generalize different behaviors by only using in-
formation from training examples. In traditional software, the information needed
to generalize this behavior is hard-coded in the program, whereas the code of ML
algorithms defines the ability to learn, which can be used to generalize many behav-
iors. In other words, the main difference between traditional software and machine
learning approaches is that, in machine learning algorithms, the output of the exe-
cution depends on the training phase of the software, therefore, the same algorithm
can produce different outputs depending on the training data used.

Machine Learning techniques are used in a wide range of applications: image pro-
cessing, voice recognition, search engines, intelligent personal assistants, self-driving
cars, video games, However, there are few applications on the networking field,
which we review in section 2.4.

As stated above, data is the key point on machine learning. Data is structured usu-
ally in features, which are real value representing some characteristic on the model.
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Choosing relevant features and representing them in an appropriate way is an im-
portant challenge in all ML applications [20]. For example, it is difficult for ML to
understand discrete labels as features, there are other mechanism to represent them,
such as one-hot representations.

The training is the process in which the model learns the best parameters to mini-
mize the error. To improve the generalization capabilities of the model, usually the
dataset is divided in three sets: the training set, the validation set and the test set.
The training set and the validation set are used in the training phase: the training
set is used by the learning algorithm to learn the best model parameters, whereas
the validation set is used to explore different ML configuration parameters and to
chose the optimal. Finally, the test dataset is used to give an independent metric of
the performance of the model.

Note that the focus of this thesis is not the development of new ML techniques or
algorithms. In this section, we only introduce the concepts of ML used in this work.
More information about ML techniques can be found in [21].

2.1.1 Machine Learning Approaches

There are different ML approach, each one useful for different applications. ML
techniques can be divided as a function of the output they produce: Classification
and Regression models, and as a function on the data they use to learn: Supervised
or Unsupervised techniques.

On the one hand classification models are used to classify inputs example into dif-
ferent categories. In these models, the output features usually are computed as val-
ues between zero and one, representing the probability of this example of being in a
particular group. The higher value is chosen as the output category.

On the other hand, Regression models are used to learn a continuous functions,
which depends on the input features. A single ML model can be used to model
one or multiple continuous functions, which increases the learning complexity, but
usually it is less expensive to train a big model than N smaller models.

If we consider the other division, with Supervised techniques, the training data con-
sist on pairs of input and output features, and the training algorithm infers the re-
lation among them. With Unsupervised techniques, data is unlabeled, and the ML
has to find relationships on the data to describe the model.

2.1.2 Machine Learning techniques

In this subsection we briefly describe the more relevant ML techniques, focusing on
ANNs, which are used in most of the experiments performed in this thesis.
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Regression techniques are statistical models, which uses traditional approaches to
build continuous models. Linear models are linear combinations of all inputs fea-
tures. If different powers of the input features are used, we refer to it as polynomial
regression. The main advantage of linear and polynomial models is the low amount
of time needed to train it.

Support vector machines (SVMs) are a supervised learning technique which divides
the data in different categories, by creating different hyperplanes, Kernel functions
are used to divide the data into these different planes

Artificial Neural Networks

Artificial Neural Networks (ANNs) are a ML model inspired in the behavior of bi-
ological neurons and their interconnections. Each unit or neuron performs a simple
action based on multiple input signals to produce a single output. The interconnec-
tion of many neurons is known as the network. Biologic neural networks do not
follow any particular structure, but ANNs usually follow a layer-based structure
in which the first layer is known as the input layer, the last layer is known as the
output layer and the layers in between are known as hidden layer. When there are
more than one hidden layer, they are also referred as Deep Learning. Fig. 2.1 shows
an example of one ANN with 3 neurons in the input layer, two hidden layer with 4
neurons in each layer and two neurons in the output layer.
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Artificial Neural Networks (ANNs) were first proposed in the middle of 20th cen-
tury as a biologically inspired learning algorithm. In 1975, the backpropagation
algorithm was first introduced, which made possible to train multiple layers net-
works [20]. However, the main revolution in ANN field was in the 21th century, in
which the advances in computing and GPU made possible to train complex network
in a reasonable time.

Artificial Neural Networks (ANNs) are able to model complex non-linear systems,
and for this reason is one of the most used ML technique. However, the main trou-
ble when using Artificial Neural Networks (ANNs) is the huge quantity of hyper-
parameters to choose, in order to be able to learn in an efficient way. The paramaters
of the ANN are the values of the models that are used to compute the output, the
hyper-parameters are the parameters that changes the learning process and the fit-
ting capabilities, but that are not part of the resulting model.

Mathematically, the operations performed in an ANN can be recursively defined as:

yi = fi

∑
∀j
Wi,j · xj + bi


where fi is the activation function, Wi,j of this layer and bi are the weight of this
layer. yi stands for the output of the neuron, which is the input of the next layers
except for the output layer, and xi is the input of the neuron, which comes from the
previous layer or the input. The “learning” phase consist on finding the optimalWi,j

and bi parameters for each layer. The optimal function is defined as the function the
output of which minimize a certain cost function, which for regression problem is
usually the mse! (mse!). This optimization is perform using SGE (Stochastic Gradi-
ent Descent) techniques, or different optimization of these techniques. All of these
techniques are based on performing small steps to minimize the cost function while
evaluating the function to decide where to go.

In the following list we briefly describe the set of the most relevant hyper-parameters:

• Activation function:
It is the function performed on the weighted sum of the input values of a neu-
ron. The most common functions are: linear, sigmoid, rectified (ReLu) and
hyperbolic tangent.

• Learning Rate:
It defines the step done in each iteration to minimize the cost. A low learning
rate increases the training time, whereas a high learning rate may jump over
the minimum.

• L2 regularization:
To avoid over-fitting, we can define a parameter that increases the cost of high
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neuron parameters. The optimal parameter completely depends on the appli-
cation and has to be found empirically.

• ANN size:
It is not a hyper-parameter, but the size and the topology of the network (num-
ber of layers and neurons per layer) has to be chosen before the training, and
they determine the training time and fitting capabilities.

• Other:
Other parameters have more impact upon the training time than upon the er-
ror. For example: the optimization algorithm, the size of the epoch (which is
defined as the number of samples processed per each iteration), the maximum
number of iterations, ...

2.2 Networking: Novel networking paradigms and network
modeling approaches

In this section, we introduce two relevant topics. First, we introduce two novel net-
work paradigms, Software-Defined Networking (SDN) and Network Function Vir-
tualization (NFV), which are changing the networking field and enables the KDN
proposal. Second, we review the different network models approaches done through-
out history.

2.2.1 Software-Defined Networking and Network Analytics

Software-Defined Networking (SDN) was created to overcome the limitations of tra-
ditional networks [22]. SDN separates data plane and the control plane to help in
the control and management of the network; and it offers a centralized point of con-
trol and the the ability to program the network elements. Both centralization and
programmability are novelties offered by the SDN paradigm that are explored to
improve the performance of networks.

The architecture of SDN consist on 5 components: SDN Datapath, SDN Controller,
SDN Application, SDN Control to Data-Plane Interface (CDPI) and SDN North-
bound Interfaces (NBI). The SDN Datapath is the logical view of the network that
the traffic sees, and it may correspond or not to the physical network. The SDN
Controller is the logically centralized unit in charge of communicating with the net-
work elements in their own language, translating the instructions received by SDN
Application or human administrators. This controller is connected to every network
element in the network. SDN Application are programs that control and take deci-
sions about the behavior of the network. These applications can be as complex as



22 Chapter 2. State of the art

needed, and can their function is usually to simplify and to automatize the manage-
ment of the network. However, since they are the upper-level component in the SDN
architecture, they are the less explorer component in the SDN architecture. Finally,
the CDPI and the NBI are the interfaces between the controller and the application
and datapath respectively. Each interface uses a predefined language to commu-
nicate; for example, Open Flow (OF) is standardized and the most used control to
data-plane language.

The concept of Network Analytics (NA) is used to define the new set of network
monitoring techniques, which make possible to collect real-time packet and flow-
granularity information, as well as configuration and network state monitoring data,
to a centralized NA platform [3]. This is mainly enabled by the “softwarization” of
the network, current network data plane elements, such as routers and switches, are
equipped with improved computing and storage capabilities. This information is
fundamental to understand the network functioning in order to improve the control
and the management of the network. ML tools can use this relevant data to facilitate
this work.

2.2.2 Network Function Virtualization

A different research area, but closely related to SDN is the Network Function Virtu-
alization (NFV) [23]. It proposes the use of virtualalization to create Virtual Network
Function (VNF), which can be compared to VM in the networking field. Example of
VNF are load balancers, firewalls, intrusion detection devices and WAN accelerators
(Wide Area Network). The main advantage of using VNF is the flexibility offered by
virtualization, as occurs in Data Centers and VMs. Moreover, this VNF can be easily
deployed or moved to a different point of the network; and the software of the VNF
can be easily updated. A VNF can be implemented in a traditional non-SDN net-
work, but it is when SDN and NFV are working together when a great benefit can
be obtained. The centralized point of observation in SDN can be used to optimize
the placement of the VNF, and the programmability inherent in SDN is a perfect
complement to configure the different VNFs.

2.2.3 Network Modeling

Computer networks are complex system, which are difficult to operate. Modeling
these systems is an important challenge that easies the operation of computer net-
works. Different approaches have been followed to achieve this objective, from an-
alytical models to advanced simulation tools [24]. In this chapter we summarize the
most relevant approaches.
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2.2.4 Markov chains and queuing theory

The Markov chain theory [25] is widely used to model any kind of processes de-
scribed by discrete events, such as the generation and the sending of communica-
tion packets. Mathematically, a Markov chain is defined as a memoryless stochastic
process, in which the probability of being in a certain state of the chain does not de-
pend on the time. This property is the basis of the queuing theory, which models the
behavior of the packets sent through a queue.

A fundamental problem in the queuing theory is the modeling of the arrival and de-
parture rates. Different arrival and departure distributions produce different mod-
els, which implies that we do not only need to model the queue, but also we need to
model the process that goes through the queue. With real traffic, this arrival and de-
parture rate is translated as the inter-arrival distribution, the packet size distribution
and the capacity of the different links of the network.

Commonly studied arrival and departure distributions are Markov distributions
and Deterministic distributions. Note that even if they are not memoryless distri-
butions, they can be used to create analytical models for single queues. These dis-
tributions gives well-known models, such as M/M/1, M/D/1, and other variations
with finites queues or with more than one output.

These models have been extended to model networks of nodes, i.e. queuing net-
works [26]. Example of these theories are: Jackson Networks, Gordon-Newell the-
orem, Mean value analysis, Buzen’s algorithm, Kelly network, G-network, BCMP
network [27, 28]. As with single queues model, these theoretical models need to
assume certain probabilistic of the traffic, which it is translated as assuming certain
relationships among nodes and how they route packets.

The main disadvantage of these analytical models is the need to assume certain traf-
fic properties, as well as how the traffic is routed inside the network.

2.2.5 Network Calculus

A different approach is Network Calculus, which is defined as “a set of mathematical
results which give insights into man-made systems such as concurrent programs, digital
circuits and communication networks” [29].

Network Calculus combines different network constrains, and traffic arrival and de-
parture functions by using convolution under min-plus algebra. Example of these
constrains are the capacity of the links, the congestion control protocol used and the
carried traffic. The min-plus algebra, sometimes referred as tropical geometry, is
an area of mathematics which, by modifying some common operations, is able to
transform non-linear problems into linear and tractable problems.
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Computer networks present strong non-linearities that can be addressed with Net-
work Calculus. However, this theory is still stuck in the need of traffic models.
In Network Calculus, these traffic models are named traffic envelopes and services
curves, which models the arrivals rates and services respectively.

2.2.6 Discrete-Event Simulations

Computational models, and more concretely, discrete-event simulations, models the
operation of the network in a discrete sequence of events. These simulations take
advantage of of the discrete changes of state in the network, and consequently, it is
only necessary to model the changes of the state in the network, i.e., the activity of
the packets. The most relevant simulators are ns 1 and mininet 2 Another well-known
software is Omnet++ [30], which is discrete-event framework to develop a simulator
on the top of it.

These simulators typically operate at the packet level, and simplify the network pro-
tocols they simulate. This last simplification is done to reduce the simulation time,
since each change of state increases the simulation time. Moreover, with this simu-
lators, it is possible to use any source of traffic with arbitrary distributions, which is
an important advantage in comparison with analytical models. However, the main
drawback is the high computational cost to run a single simulation.

2.2.7 Our approach

In this thesis we advocate that, enabled by the global view and control offered by
SDN and analytics techniques, ML can represent a third pillar in network model-
ing providing important advantages: ML is data-driven, does not require simplify-
ing assumptions typically found in traditional network modeling, works well with
complex systems (e.g., non-linearities and multi-dimensional dependencies) and, if
trained well, can be general.

2.3 Traffic modeling and prediction

As discussed in the previous section, it is important to model the traffic that goes
inside the network to properly model the behavior of the network. Moreover, to
be able to predict the performance of the network in the future, it is necessary to
forecast the traffic at that specific time. In this section, we review the state of the art
on this area.

1https://www.nsnam.org/
2http://mininet.org/
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2.3.1 Statistical models

Traffic models are statistical models which are able to generate random traffic based
on certain assumptions. The two main assumptions of the traffic are: 1) the inter-
arrival time distribution and 2) the packet size distribution. Traditionally, well-
known mathematical distributions have been used, which makes possible to de-
velop analytical models due to the properties of these distributions. Examples of
these distributions are: Poisson distribution, Uniform distribution, Binomial distri-
bution, and also, the Deterministic distribution. The most used distribution in the
analytical models is the Poisson distribution, due to the memoryless property. These
models may be useful for some applications, however do not accurately reproduce
the actual traffic of the Internet.

The Self-similar process has been introduced to better model the Internet traffic [31,
32]. The self-similar model is characterized by the fact that the traffic behaves the
same when viewed at different scales on time. In other words, Internet traffic ex-
hibits same statistical properties in different time scale, which it is translated into
time dependencies over long range of time scales.

One of the characteristics of the self-similar traffic is the burstiness nature of it. The
presence and the intensity of these bursts is one of the parameters of this model
(usually known as the Hurst parameter). The more bursty the distribution is, the
more different the traffic is with respect to traditional traffic models. Heavy-tailed, or
long-tailed distributions, such as the Pareto distribution are examples of self-similar
processes.

2.3.2 Trace-based simulations

Trace-based simulations, actually, are not traffic models. Instead, trace-based simu-
lations are a common technique used to experiment with more realistic traffic sources.
It consists on using previously captured information of real traffic, which can in-
cludes from the time and size distribution up to addresses and protocols, which
implies that we can use this information to test the network at any layer.

Traffic can be obtained from public databases, such as: [33–35], or obtained in local
network, such as the traces obtained in the UPC campus [36]. This traces contains
certain information from each packet, i.e., every packet is recorded, with some in-
formation. Information can be: the time stamp, the different headers of every layer,
and also the content of the packet. However, due to privacy issues, the addresses
and the content are usually anonymized or deleted. In some high speed links with a
huge amount of traffic, this can be sampled, to reduce the size of the trace.

With the information captured in the trace, it is possible to generate synthetic traffic
with the same characteristics than the captured traffic.
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2.3.3 Traffic forecasting

Traffic forecasting is a widely studied field typically using time series techniques.
Autoregressive Moving Average model (ARMA) and Autoregressive Integrated Mov-
ing Average (ARIMA) are linear modeling techniques based on time series analysis
able to fit complex time series data. Both of them are based on an Autoregressive
(AR) part, which involves representing the variable as a combination of previous
values, and Moving-Average (MA), which involves modeling the error as a com-
bination of the error of past samples. In ARIMA, if the data is not stationary, it is
differentiated until it becomes stationary.

Other areas, such as logistics, present similar problems, and have proposed new
forecasting techniques that can be used in the traffic forecasting field. In order to
improve traditional ARMA/ARIMA techniques it has been proposed to use them in
combination with other models such as Artificial Neural Networks (ANN) [37, 38].
The main reason behind this is that neural network are able to account for non-linear
dependencies.

2.4 Machine Learning in the networking field

In the previous sections of the state of the art chapter, we briefly introduced the ML
field as well as networking topics related to the work of this thesis. However, the
main contribution of this thesis is the use of Machine Learning (ML) techniques in
the networking field. In this section, we review the most relevant contributions in
the networking area that make use of ML tools.

The idea of using ML techniques to the networking area is not new. However, most
of the contributions are focused in the traffic analysis field, such as traffic classifi-
cation and anomaly and intrusion detecting systems [39, 40]. They take advantage
of the ability of ML techniques to discover a hidden structure or representation of
the traffic, and then, they are able either to classify or cluster the traffic into different
groups or to detect unusual traffic patterns. However, these proposals only inspects
the traffic and do not consider the rest of the network.

Another interesting application of ML in the computer field is the optimal place-
ment of Virtual Functions in Data Centers (see [41]). They usually apply determin-
istic algorithm to optimize to metrics: to improve the performance and to reduce the
energy consumption. The fact of being able to predict the performance of the net-
work before actually applying the changes will allow to develop novel placement
techniques, and not only for VM but also for VNF.

Recently, some initiatives share the same vision stated in the introduction. A rele-
vant one is COBANETS, from COgnition-BAsed NETworkS [7–9]. The main differ-
ence between KDN and COBANETS is the wide range of applications and use-cases
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proposed in the KDN paradigm. From the industry perspective, there are also some
projects which make use of ML techiques to optimize some points of the network. A
relevant example is the Self-Driving Network introduced by JUNIPER3.

3https://www.juniper.net/us/en/dm/the-self-driving-network/
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Chapter 3

A theoretical inspired approach

3.1 Introduction

The application of ML to networking brings several use-cases as well as challenges.
In this chapter, we make the first approach on the use of ML techniques in the net-
working field. Specifically, we focus on a rather fundamental problem in network-
ing: estimating the delays of a network, and we compare to more traditional approach
to estimate this delay. We consider a simple scenario with a set of traffic produc-
ers/consumers (overlay nodes) and forwarding nodes (underlay nodes), the over-
lay nodes are connected through various links to a subset of underlay nodes and
can traffic-engineer packets across the different links (overlay routing policy). The
underlay nodes use in all cases shortest-path routing.

The objective of this chapter is to understand if we can automatically train a model
to estimate the delays of the network, given the traffic load and the overlay rout-
ing policy. Please note that in our scenario we consider the topology as a hidden
variable. We evaluate a generic adaptive machine learning model, based upon arti-
ficial neural networks, and we compare it with a specific model designed to capture
information of the network.

An important drawback when training a model using neural networks is that these
models, in contrast to traditional network models (e.g., Markov chains), are difficult
to understand and do not provide guarantees based on well-understood assump-
tions. This also means that manual verification is usually impractical when using
neural-network models. For this reason, we also want to asses models inspired by
the existing knowledge of network modeling. Specifically, we present a M/M/1-
inspired ML regressor that, if accurate, would provide insights about the internal
structure of the modeled network. With this, we compare the performance of both
estimators.
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3.2 Problem statement

In this section we describe the problem statement that this chapter aims to address.
The objective is to estimate the average end-to-end delay among all pair of nodes in
a computer network, as a function only of the amount traffic in the network.

In this chapter, we consider a fixed topology and configuration of the network along
the experiments. This network consists on an overlay-underlay network, since it
completely hides the topology of the hidden network. In the learning process we
only consider the traffic matrix among overlay nodes to learn the average delay ma-
trix among all nodes of the overlay network.

As stated in the introduction of the chapter, we first compare a black-box ML-approach,
i.e., an ANN model, with a network-knowledge-aware model, defined in the next
section. Both models are designed to learn and estimate the delay of the network
only as a function of the traffic and the routing on the overlay network. The main
difference between models is the priori knowledge of the network behavior assumed
in the second model.

We also want to compare a model trained with the local information of a node of
the network with a model trained with the global information of all nodes of the
network. The objective is to validate that the fact of using all the information of the
network makes possible to create better models of the network.

The main questions that we aim to address in this chapter are:

• Can we design a machine learning model able to use a priori knowledge of
networks to easily capture the behavior and the hidden characteristics of the
network?

• Can we train a neural network to estimates of the mean end-to-end delay
among the nodes of the network, modeled as a black box?

• Does the learning ability of the different models depends on the network and
traffic characteristics?

• Does the learning ability improves when using the global information of the
network instead of the local information?

3.3 Methodology

To assess the validity of this approach, we carried out different experiments. To
obtain the dataset, we have simulated (see Appendix A) an overlay-underlay net-
work, The overlay nodes contains all the stations that generate and receive traffic
and the underlay nodes holds a routing structure operating on a shortest path pol-
icy. The overlay network has 12 nodes, the underlay has 19 elements and a total of
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72 links, all of them with the same capacity. The simulation has the following traffic
characteristics: overlay nodes generates Poisson traffic and randomly split the traffic
independently of the destination node and the underlay network carries its traffic to
the destination. From the KP perspective, the ML model only sees the overlay nodes
that send and receive traffic, while the underlay network is hidden.

The training, validation and test sets we use have been obtained throughout a sim-
ulation process in Omnet++ 1, implementing a network with 12 overlay nodes and
19 underlay nodes. The overlay nodes contains all the stations that generate and re-
ceive traffic and the underlay nodes holds a routing structure operating on a short-
est path policy. Note that the structure of the underlay network is unknown for the
learning process. The dataset consists on a set of 10,000 repetitions of the simula-
tion under different traffic conditions. Each samples consists on 1) the traffic matrix
with the amount of traffic (per second) sent among source-destination pairs of the
overlay nodes, 2) the routing of the overlay, defined as the ratio of traffic that is sent
through each edge link and 3) the delay matrix with the average delay among the
same nodes.

Therefore, ML models are trained using as input features the traffic matrix and the
routing information and the delay matrix as output features. The dataset has been
slitted in three sets, the training set, the validation set and the test set, in order to
choose the best parameters during the training and to estimate the model error. vol-
ume, defined as the aggregated bytes for the simulated time

3.4 Machine learning techniques

In this section, we present a new machine learning regressor based on the theoretical
model for delays in queuing networks, as well as the more common ANN models
used to compare their performance.

3.4.1 A M/M/1-Inspired regressor

Our machine learning regressor is based on the theoretical model for delays in queu-
ing networks, known as Jackson networks [27, 28]. Since queuing networks com-
monly assume M/M/1 queuing systems, we will refer to the new predictor in the
upcoming lines as the fitted M/M/1 model.

1www.omnetpp.org
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Delays in M/M/1 queuing networks

In a M/M/1 link, the expected delay any packet would experience is described by
[26] as: D = 1/(C − λ) , in which, both C, the capacity, and λ, the inter-arrival rate,
are expressed as packets/s.

In a Jackson network, we assume that the expected delay is the addition of the delay
of all links it goes through:

D =

M∑
i=0

Pi
Ci − λi

(3.1)

where M represents the number of links (or queues) the packet would go through
until it reaches its destination, Ci the capacity at each link i and λi the total amount
of traffic flowing through the link. Also, Pi stands for the average number of times a
packet goes through link i. It is important to remind that this model is valid as long
as Ci − λi > 0 ∀i.

Model definition

The fitted M/M/1 estimator is derived using a reformulation of Eq. (3.1):

D̂ =
M∑
i=0

Pi
Ci − λi

=
M∑
i=0

Pi
Ci − ki · γ

=
M∑
i=0

1

ai − bi · γ
(3.2)

where λi has been expressed as ki · γ, a dot product between γ, all the input traffics
in the network, and ki, their proportion flowing through link i. To achieve a more
simplified expression, we define ai = Ci/Pi and bi = ki/Pi .

The optimization of this predictor consists of a traditional statistical learning process:
finding the parameters ai, bi that minimize a cost function (error rate) over a training
set. A training set consists of a set of pairs (γt, Dt), where γ corresponds to the
amount of traffic that is being generated in the network and D the delay we observe
in the targeted packets under these conditions. As cost function we will be using the
MSE (Mean Squared Error) over a T-sized training set:

E =
1

2

T∑
t=0

(Dt −
∑
i

1

ai − bi · γt
)2 (3.3)

Finding the optimal parameters of the model analytically is impracticable. Con-
sequently, we suggest using stochastic gradient descent, a first-order optimization
algorithm that operates taking successive steps proportional to the negative of the
gradient of the cost function at the current point, until the optimum is found:
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a
(n)
i = a

(n−1)
i − α∂E

∂ai
(3.4)

b
(n)
i,j = b

(n−1)
i,j − α ∂E

∂bi,j
(3.5)

where α represents the step size or learning rate, the parameter that will determine
the convergence to the global optimum. The partial derivatives are as follows:

∂E

∂ai
=

T∑
t=0

Dt −
∑

t(ai − bi · γt)−1

(aj − bj · γt)2
(3.6)

∂E

∂bk,l
=

T∑
t=0

Dt −
∑

t(ai − bi · γt)−1 · γt,l
(ak − bk · γt)2

(3.7)

Proving the convexity of the cost function guarantees that the gradient descent al-
ways finds the global optimum when a sufficiently small learning rate is selected
[42]. However, for most machine learning models convexity is not ensured in their
cost function, even if usually trained with convex optimization techniques. In these
cases, several local minimum may arise. This challenge is normally addressed by
carefully selecting and trying more cases in the cross validation process, taking a
new compromise between training time and error. In this chapter we focus in an
experimental evaluation, and we treat these considerations by iterating a sufficient
number of times when validating each model, in the way we have described.

For the this model we have used our own implementation, consisting in the classi-
cal SGD algorithm with fixed step size and number of epochs. We have explored
different parameters, as described in the next section.

3.4.2 ANN models

In the different experiments we used two different ML tools to implement the ANNs.
For the first experiment, we used the scikit-learn python package 2 selecting a sig-
moid activation function and a stochastic gradient-based optimization algorithm
proposed by Kingma, Diederik, and Jimmy Ba [43] with a constant learning rate.
We have explored different hyper-parameters, as described in the next section. For
the second experiment, we used a different ML library. We trained an ANN using
Pylearn2–Theano 0.7 with one hidden layer and a sigmoid activation function.

2www.scikit-learn.org/stable/
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3.5 Experiment 1: Comparison and Evaluation of the M/M/1
model

3.5.1 Overview

In this experiment we compare the accuracy of the fitted M/M/1 model and a single-
layer neural network.

For each training, the optimal parameters for the experimental M/M/1 model (num-
ber of linksM and step size α) and for the neural network (regularization parameter
and number of neurons in the hidden layer) are selected using a cross validation
methodology. We repeat the training and validation process a sufficient number of
times in each case to guarantee that the results provide at least a 5% beta-confidence.
After the cross-validation selection, the final results displayed in the plots are ob-
tained using an independent test-set. The different parameters selected for cross-
validating the models are restricted to the following:

• Step sizes = (0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0)

• M = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

• Regularization parameters = (0.0001,0.001,0.01,0.1, 1.0, 1.0, 10)

• Number of neurons in the hidden layer = (2,3, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60,
80, 100)

The results have been evaluated using a normalized relative error:

e =

√√√√ 1

T
·
T∑
t=0

(
Ŷt − Yt
Yt

)2 (3.8)

where T states for the number of examples, Ŷt the predicted outcome and Yt the
expected one.

3.5.2 Results

The first experiment compares the learning capacity of the fitted model with a neu-
ral network, observing the required number of examples in each case to achieve a
specific error rate. In this first experiment, and for practical purposes, we have re-
stricted the simulations to only three active, transmitting, stations in the network.
Fig. 3.1 shows the best test error rate every model has been able to achieve as a
function of the training set size. The selected parameters after the cross validation
selection are in this case M=8 and a step size of 0.01 for the fitted M/M/1, while 50
hidden neurons and a cost parameter of 1.0 have shown to be the best choices for
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FIGURE 3.1: Evolution of the relative test error as a function of the
training set size#

Active
stations

Level of
saturation

Best C
Best #

hidden
neurons

Best M
Best
step
size

1 1 10.0 30 3 0.1
1 2 10.0 30 8 0.0001
1 3 10.0 20 7 0.00001
1 4 10.0 7 7 0.00001
3 1 1.0 50 8 0.01
6 1 1.0 30 8 0.01
9 1 1.0 50 8 0.01

TABLE 3.1: Best cross-validated parameters

the neural network. The results clearly show how the neural network learns better
and faster the inherent patterns in the data.

In the next experiments, we test how does the saturation in the links affect the pre-
dictions and how robust are the results to an increase of the number of active (trans-
mitting) stations in our network. Fig. 3.2 and 3.3 show respectively how the best
test error rate changes when we increase the number of active stations and the level
of saturation in the links. For the second case, we set a reference in the third level,
where at this point the links (on average) are expected to start saturating. The sim-
ulations have been developed according to the same approach described in the first
experiment, and the optimal parameters for these cases are shown in Table 3.1.

Again, the M/M/1 experimental model performs poorly compared to the neural
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network, with an additional significantly bad tolerance to load increase in the net-
work. The poor performance of the experimental M/M/1 model can be attributed
to the lack of fulfillment in our network of Jackson’s assumptions, such as overall ar-
rivals independence or exponential distribution for packet lengths in all successive
routers.

3.6 Experiment 2: Global vs local view modeling

3.6.1 Overview

Once we have shown that neural network models outperform the M/M/1 regressor,
we want to verify than the use of the global information of the network is needed to
better modeling the end-to-end delay of the network. We also want to verify the size
of the training set needed to train the model.

To do so, we train two different ANN models. The local view model only uses
the information obtained from one node to predict the delays observed from that
node. The global view model has the same structure than the used in the previous
experiment. We train these models with different number of samples, which makes
possible to characterize the effect of the size of the dataset in the training process.



38 Chapter 3. A theoretical inspired approach

3.6.2 Results

Fig. 3.4 shows the error (the accuracy) of the model as a function of the training set
size (solid line). This error represents how accurately the model predicts the delay
when the routing and traffic is known, but not the topology. As shown by the figure,
the relative error is roughly 1% when using 6,400 training samples, equivalent to a
mean square error of 20 μs2. In addition to this, fig. 3.4 also shows (dashed line)
when the model is trained only using local information. The main reason behind
this experiment is that we aim to validate the main hypothesis stated in this paper:
ML applied to a global view renders better results than when only local information
is available. For this, each overlay node is trained only with local traffic, routing and
delay and as the results show, the accuracy in this case is strongly degraded. This
is because the delay between two nodes depends on the state of the queues of the
underlay network, which in turns depends on the total traffic of the network.

3.7 Conclusions

In this chapter we have studied the performance of two different models to char-
acterize the delays in a network given the traffic load. We have demonstrated that
simple neural network based estimators performs remarkably well. However, these
estimators models the network as a black-box and do not provide insides of the
behavior of the network. For comparison, we implemented a M/M/1-inspired es-
timator, which could provide more information of the network, but it has leaded to
poor results. Moreover, we have demonstrated that a model trained with the com-
plete information of a network outperforms the models trained with a local view of
the network. Finally, we also verified that we need thousands of samples to train the
model for the network used in this chapter.
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Chapter 4

Network modeling using ANN

In the KDN context, learning techniques can be used to provide automatic control
of the network via the SDN controller thanks to the network monitoring informa-
tion obtained via the NA platform. This new networking paradigm is known as
Knowledge-Defined Networking (KDN) [44].

Under the KDN paradigm there are a wide variety of use-cases for taking advan-
tage of ML techniques in computer networks. Among all such potential use-cases,
in this chapter we focus in a single one: modeling of network performance using neu-
ral networks. The main reason for this is that network modeling is central to many
network operations, particularly in the field of network optimization. Typically net-
work optimization algorithms require of a network model over which the optimiza-
tion techniques operates in order to find the best element (e.g., [45–47]). chapter In
this chapter we aim to answer the following question: Can neural networks accurately
model the delay of a computer network as a function of the input traffic? For this we assume
the network as a black-box that has as input traffic and as output delays. Following
this approach we experimentally evaluate the accuracy of the neural network when
estimating the end-to-end delay of traffic, we also compare it to other well-known
regressors and we study the effect of fundamental network characteristics (topology,
routing, etc) in the accuracy of the delay estimates.

The question that we aim to address in this chapter is fundamental to network mod-
eling. Indeed both analytical (e.g., queuing models) and computational models (e.g.,
simulators) are well-known techniques used to estimate the performance of a net-
work based on its input traffic. In this chapter we posit that neural networks can
represent a third pillar in the area of network modeling, providing relevant advan-
tages towards traditional techniques. At the best of our knowledge this is the first
attempt to model a computer network using neural networks.

Indeed, in this chapter we advocate that neural networks represent a third pillar in
the field of network modeling. Neural Networks can efficiently complement existing
analytical and computational techniques, particularly in network optimization sce-
narios. The main advantages of neural networks with respect to existing techniques
are:
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FIGURE 4.1: Graphical representation of the problem statement ad-
dressed in this chapter.

4.1 Problem Statement

In this section we describe the problem statement that we aim to address in this
chapter. Figure 4.1 summarizes the problem statement using three layers. The bot-
tom layer represents the real-world physical network infrastructure that has certain
fundamental characteristics, such as topology, size, routing, etc.

The middle layer represents the system abstraction where the network is assumed
as a black box, traffic ingresses the box and egresses it with a certain average delay.
The traffic is described by stochastic distributions, both the inter-arrival process and
the packet length process. These stochastic processes are combined in the network,
which is a deterministic complex system with certain properties (topology, routing,
etc) and memory when random process such as physical errors are not taken into
account.

Finally, the top layer represents the neural network that models the computer net-
work performance. The neural network is able to produce estimates of the average
end-to-end delay for all pairs of nodes considering the input traffic as a traffic ma-
trix [ingress, egress]. The network characteristics (routing, topology, etc) are hidden
from the neural network, and hence the neural network is trained only for one par-
ticular configuration of the network infrastructure that is, a certain topology, routing,
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etc.

The main questions that we aim to address in this chapter are:

• Can we train a neural network to produce accurate estimates of the mean end-
to-end delay for all pairs of nodes considering the input traffic matrix (ingress,
egress)?

• Which is the impact of fundamental network characteristics (topology, routing,
size, traffic intensity) with respect to the accuracy of the neural network?

• How does the accuracy of a neural network compare to other well-known re-
gressors?

4.2 State-of-the-art

The main goal of this chapter is to understand if a neural network can be used for
network modeling, specifically to estimate the average delay of a computer network
as a function of the input traffic matrix.

Network modeling is a well-established field that provides techniques which are
central to a wide range of communication functions, for instance in network op-
timization. In order to optimzie models are used to estimate the performance of
configurations, then an optimization algorithm searches the configuration space us-
ing these models to find the best possible one, that is a configuration for which the
model estimates the best performance. Notable examples of this are in the area of
Traffic Engineering (TE) [48], where models of the network are used to find routing
configurations that achieve a certain target performance.

In the field of network modeling there are to fundamental approaches: analytical
and computational models (simulation) techniques. As for analytical techniques,
Markov chain theory has been widely used in queuing theory to model the behavior
of a single queue by assuming certain stochastic proprieties of the job arrival and job
completion processes (ex. M/M/1, M/D/1...). These models have been extended
to model networks of nodes, i.e. queuing networks [49]. Example of these theo-
ries are: Jackson Networks, Gordon-Newell theorem, Mean value analysis, Buzen’s
algorithm, Kelly network, G-network, BCMP network. Computational models are
also another popular technique to model the behavior of networks. Typically simu-
lators operate either at packet or flow level and simplify the network protocols they
simulate.

Machine Learning mechanisms have been used in the field of communications, such
techniques have been used extensively in the area of traffic analysis [50], network
security [51] and root-cause analysis [52]. In addition, some works propose the use
of Reinforcement Learning techniques for routing optimization [53]. However and
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at the best of our knowledge, this is the first attempt to model the network as a
black-box using neural networks.

• Accurate in complex scenarios: Typically analytical techniques are based on
strong simplifying assumptions of the underlying networking infrastructure:
this is because they need to be tractable. On the other hand simulations can
model complex behavior, but this comes at a high development and computa-
tional cost. ML techniques and particularly neural networks work very well
with complexity (e.g, non-linear behaviors) and high-dimensionality scenar-
ios. As such, well-trained neural networks can model computer networks
without making any simplifying assumptions while providing accurate esti-
mates.

• Fast and lightweight: Neural networks require important computational re-
source for training, but once trained they are fast and lightweight. Indeed they
can produce estimates of the performance of the network in one single step
and require very little resources to run. This represents an important advan-
tage particularly in front of simulators that require important computational
resources to run and might be slow.

The main disadvantage of neural networks is that they are data-driven techniques,
and as such require large training sets as well as computational resources for the
learning phase.

4.3 Methodology

In this section we detail the methodology used to understand if a neural network
can estimate the average delay of a computer network as a function of the traffic
matrix.

4.3.1 Overview

Figure 4.2 shows an overview of the methodology. In order to experimentally ana-
lyze the accuracy of the neural network we generate different training set by means
of simulations, in each set we change different network characteristics: traffic distri-
bution, traffic intensity, topology, size and routing policy and measure the average
delay.

Once we have generated the data set we use them to train a set of regressors includ-
ing a neural network, then we evaluate its accuracy using the cross-validation tech-
nique. We split the data set into three sets, the training set with 60% of the samples,
the validation set with 20% of the samples and the test set with the remaining 20%
of the samples. The training set is used to optimize the ML model, the validation set
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FIGURE 4.2: Scheme of the methodology followed in this work

is used to evaluate the model during the training phase and the test set is used to
provide an independent evaluation of the performance. With this we compare the
average delay estimated by the regressors with the one measured from the simula-
tor. Ultimately, we want to understand both the accuracy of the neural network and
its relation with fundamental characteristics of networks: traffic distribution, traffic
intensity, topology, size and routing policy.

4.3.2 Network Simulations

In order to generate the data-set we use the Omnet++ simulator (version 4.6), in each
simulation we measure the average end-to-end delay during 16k units of time for all
pairs of nodes. The transmission speed of all links in the network is set to 10 kilobits
per unit of time, and the average size of the packets is 1 kilobits. For the dataset we
consider the following parameters:

• Topology: We explore 3 different network topologies: unidirectional ring, star
and scale-free networks.

• Network size: We study networks from 3 to 15 nodes where all nodes are
active transmitters and/or receivers.

• Traffic Distributions: We evaluate 4 different packet length distributions: de-
terministic (constant), uniform, binomial and poisson using a fixed average
packet length. In all the cases the inter-arrival time is exponential.

• Traffic intensity: We explore different levels of saturations in the network by
varying the traffic intensity. For this we transmit, among all pairs of nodes, a
random value of traffic with maximum value (ρmax).
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• Routing: We explore four different routing configurations, which are detailed
in section 4.4.3.

Overall we have generated 380 different data sets with the different configurations
in order to assess the accuracy of the neural network. Each data set consist on 10,000
different simulation with random traffic matrices between 0 and ρmax.

4.3.3 Regressors

The data set is used to train different regressors: Deep Neural Networks (DNN) (us-
ing one and two hidden layers) and polynomial regression. For the DNN we explore
the following hyper-parameters: number of hidden neurons, the activation function,
the learning rate and the regularization parameter. For the case of the polynomial
regressor we explore its degree. From all the explored models we choose the best
one using the cross-validation technique, please note that we use an independent
test-set to evaluate the accuracy of the model.

In terms of implementation we use the Tensorflow library (version 1.2.1) to imple-
ment the DNN models. After a manual tunning of the hyper-parameters, we used
the following configuration:

• Activation function: Sigmoid
• Number of hidden layers: Equal to the number of input, i.e., the square of the

number of nodes in the network
• Maximum training epoch: 7,500,000
• Training Algorithm: Adam Optimizer
• Cost function: MSE with L2 regularization
• L2 regularization parameter: 0.00003

For the polynomial regularization, we used the LinearRegression tool of the sklearn
(version 0.19). For degree higher than one, we omitted cross-product terms due to
the high dimensionality of the data.

In the results we compute the accuracy of the models as ”learning error”, it is ex-
pressed as a percentage:

error = 100

√√√√ 1

N

N∑
i=1

(d̂i − di)2 (4.1)

Where N is the number of samples averaged, including the size of the test set and
the different pair of nodes.
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saturation for a binomial traffic

4.4 Experimental Results

In this section we present the results obtained in five different experiments that cover
different network and traffic scenarios. Please note that unless stated otherwise, we
only show exemplifying figures since the other cases provide similar results

4.4.1 Traffic Characteristics and Intensity

First we focus on the accuracy of the neural network when estimating the delay
of different traffic intensities and packet-size distributions. Figure 4.3 shows the
accuracy of different regressors in a 10-node scale-free network with different traffic
intensity and for the binomial packet size distribution.

Please note that the traffic intensity is expressed as (ρmax). Each pair of node gen-
erates a uniformely distributed random bandwidth with maximum (ρmax). As an
example (ρmax = 2) represents that, for each simulation, each node of the network,
for each destination, generates a random traffic following the specified distribution
at a random rate between 0 and the double of the link capacity divided by the num-
ber of destinations.

As figure 4.3 shows the neural networks exhibit an interesting behavior, first they
perform remarkably well with an error below 5% in all the configurations. In order
to better understand this error we also plot the variance of the data-set (black line
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FIGURE 4.4: Learning error (lineal scale) as a function of the network
saturation for a binomial traffic in more saturated networks

in the same figure). The variance is approximated by repeating 1,000 time each sim-
ulation, which is used to estimate the “real” delay, and using these samples in the
variance approximation. The variance is also expressed as a percentage, as in (4.1).

Moreover, figure 4.4 shows the same experiment, in a lineal scale, and for more
saturated traffic. It can also be observed than the performance of the polynomial
regression when the network starts to saturate is really poor. However, we can also
observe than the performance of the neural network models start deteriorate for
more saturated traffic. This can be explained by two facts: 1) As the saturation in-
creases, the model becomes more nonlinear and more difficult to learn, and 2) Our
neural networks have been optimized in the region between one and two, and it
start to diverge as we distance from this region.

Understanding the Variance of the training-set: As the figure shows the data-sets
contains variance, this is the result of the measurement process. The per-packet
delay measured in each simulation follows a certain distribution that has a variance.
Then the mean end-to-end delay is estimated during a finite time: 16k time units in
our experiments. As a result of using a finite number of samples, the variance results
in an irreducible error when training the regressors. This error can only be reduced
by increasing the number of samples.

Averaging time: In order to exemplify this effect we plot in figure 4.5 the influence of
the averaging time used in the simulation (equivalent to the amount of packets) with
the learning error. For this experiment we use a 10-node scale-free topology with a
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ρmax = 0.8. As we expect the figure shows a sharp decrease of the learning error
due to a reduction of the variance of the data. It is worth noting that this does not
hold true when self-similar traffic is present since they have infinite variance. The
main takeway from this is that, the measurement error of the data-set is propagated
as learning error by the regressors.

Variance vs. Traffic Intensity: We have established that the data-set contains a vari-
ance as a result of the measurement process, but figure 4.3 also shows that the vari-
ance depends on the traffic intensity, why?. This variance in the delay of the packets
is caused by two factors: (i) different transmissions times of the packets because of
have different sizes and (ii) different queuing times. As the network becomes more
saturated (ρmax > 1) packets suffer different queing delays and as a result, the delay
has larger variance. Once the network starts to approach full saturation (ρmax > 2)
a high percentage of packets find the queues full and as such, the resulting delay is
more constant and the variance lower.

Other traffic distributions:

Figure 4.6, 4.7 and 4.8 shows the accuracy of different regressors in the same 10-node
scale-free network with different traffic intensity and for other packet size distribu-
tion: a Poisson distribution, a deterministic distribution and constant packet lengths.
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Figures 4.6 and 4.7, which represent the Poisson and uniformly packet length distri-
bution, present a similar behavior than the binomial case. Note that in some points,
it can be observed a learning error lower than the variance. This is because the vari-
ance is approximated, and in some case it may be overestimated. In both cases, the
2 hidden layers network presents always a better performance.

Finally, the results obtained using a constant packet length, presented in Figure 4.8
are little different. The behavior when the network is not saturated is different. The
reason is that, in this case, the variance is only caused by the queuing time, whereas
in the other cases it is caused also by the different size of each packet. The other
difference is that, a priori, it can be observed a lower performance of the 2 layers
network. This may be explained by the fact that the function learned in the deter-
ministic case is more steep, which

Summary: With this we have established that:

• The training set contains variance that is the result of using a finite number of
packets to measure the delay.

• This variance results in an irreducible error when training regressors

• The variance of the delay depends mainly on the queuing time.

With this we have a better understanding of figure 4.3. The neural networks pro-
vide accurate estimates of the delay and deeper networks (with 2 layers) can result
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FIGURE 4.9: Scale-free topology

in a negligible error, almost matching the irreducible error resulting from the vari-
ance. The fact that deeper networks perform better suggests that the delay model
is enough complex to justify the use of DNN, and that with deeper networks, this
error can be reduced.

Figure 4.3 also shows that the polynomial regressor does not perform well, only in
the presence of low intensity traffic, when the queues are practically always empty,
they are able to estimate correctly the delay.

4.4.2 Topologies and Network Size

In this section we explore the accuracy of the neural network when estimating the
delay with different network topologies and sizes.

Figures 4.10 and 4.9 show the accuracy of the regressors when estimating the delay
in a ring and scale-free topology with different sizes, ranging from 3 to 15 nodes.
In this scenario the traffic intensity is set to (ρmax > 0.6). As the figure shows both
regressors (polynomial and neural network) are able to produce accurate estimates
with learning errors that match the variance. The main reason for this is that, with
this traffic intensity and topologies, traffic does not suffer severe queuing. This can
also be seen in the low variance of both scenarios. The exception is in some of the
scale-free networks, in which some link may be saturated, which lowers the perfor-
mance of the polynomial regression.
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FIGURE 4.10: Star topology
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TABLE 4.1: Learning error using different routing

NN Poly Variance

SP1 0.686% 0.722% 0.694%

SP2 0.683% 0.689% 0.674%

MAN 0.707% 0.703% 0.696%

POOR 2.241% 6.751% 2.314%

Figure 4.11 shows the accuracy for a ring topology with various network sizes, again
ranging form 3 to 15. As in the previous case the traffic intensity is set to (ρmax > 0.6).
As the figure shows in this case the polynomial regressors performs poorly with high
learning errors, on the other side the neural network shows an excellent accuracy,
again matching the variance. The reason behind this is that the ring topology is
easily saturated under different configurations, this results in higher variance and
more complex functions to characterize.

Both plots shows that, for the considered use-cases, the topology or the size has no
effect on the accuracy of the neural network estimates. The only impact of such
fundamental network characteristics is that depending on the specific topology this
may increase the saturation, which results in queuing and variance.

4.4.3 Routing

Finally and in the last set of experiments we explore the effect of the routing upon
the learning capabilities. Table 4.1 shows the learning error when using four differ-
ent routing policies in a scale-free network with 15 nodes and a traffic intensity of
ρmax = 0.5. For this we consider four different routing policies: ’SP1’ and ’SP2’ cor-
respond to two different routing policies that follows the shortest-path approach,
’MAN’ corresponds to manual designed routing policy, that may not follow the
shortest path approach, but tries to load balance the use of the links. Finally, the
’POOR’ configuration corresponds to a deliberately poor performance configura-
tion, in which a few links are saturated.

In this case we observer that, in the three first scenarios, again both regressors per-
form well and that as in the previous cases they match the variance. The reason
is that the traffic intensity is low and as such, the variance is also low. Please note
how the ’POOR’ routing policy performs worse since bottlenecks traffic through a
few links that produces queuing and increases the variance. In such case the neu-
ral netowrk is able to match the variance while the polynomial regressors performs
poorly.
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From this experiment we establish that the routing policy has no effect on the accu-
racy of the estimates except when it causes queuing, which results in variance and
higher errors.

4.5 Discussion

In this section we discuss our experimental results in order to have a better under-
standing of the use of neural networks for computer network modeling. Given the
high computational cost of the experiments depicted in this chapter our results are
limited to networks of 15 nodes, however we can extract several important lessons:

Neural networks can accurately model the average end-to-end delay as a function
of the input traffic matrix for the considered scenarios: In all the cases the neural
networks produced excellent performance. The main reason behind this is that, for
the routing and forwarding mechanisms considered in the experiments, networks
are deterministic complex systems with memory and can be learned with negligible
error. As a result, neural networks should be considered as a relevant tool in the
field of network modeling.

The main source of error of the neural networks are the variance of the data-set:
The per-packet delay is a random process and estimating its mean with a finite
amount of samples results in an error that propagates to the learning error of the
regressors. This error can be reduced by using more samples, but longer measure-
ment times may result in losing the stationary condition of the measure. Self-similar
traffic also presents important challenges to reduce the measurement error.

This error is proportional to the variance of the delay process which in turn depend
on the amount of queuing suffered by the packets. It is well-known that queuing
depends on multiple factors: traffic intensity, routing, etc. This holds true not only
for the delay but for any random process related to networks.

With this, we conclude that the main source of error for neural network modeling is
the inherent error of estimating a random process with finite samples. For the par-
ticular case of the delay this is related to queuing. We have found that fitting error is
negligible and we have not identified any other sources of error in our experiments.
In addition, we have not found any inherent impact of fundamental network char-
acteristics (size, topology, routing and traffic characteristics) in the accuracy of the
neural networks, except when they result in additional queuing.

High traffic intensity requires deeper neural networks: Polynomial regressors have
resulted in good performance except when the traffic intensity is high (ρmax > 1). We
have found similar results with neural networks that use one single layer. Therefore,
networks that operate close to saturation require more sophisticated regressors. This
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suggests that saturated networks have more complex functions that require deeper
neural networks.

4.6 Conclusions

The main conclusion of this work is that the average end-to-end delay in communi-
cation networks can be accurately modeled using neural networks. We have found
that neural networks perform remarkably well with a neglibigle error which is close
to the irreductible measurement error.

The ultimate objective of this work is to lay the foundations for applying novel ML
techniques in the field of network modeling. Future work includes applying these
techniques in real scenarios with real traffic and protocols and develop ways to rep-
resent network-data (feature engineering).
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Chapter 5

Improving the traffic forecasting
with ML

5.1 Introduction

Within the context presented in this thesis, the traffic forecasting field plays an im-
portant role for the applications which are enabled by the KDN paradigm. Being
able to estimate the future traffic of the network helps scaling up or down the soft-
ware infrastructure to accommodate the load while providing efficient use of the
resources.

Traffic forecasting is a well-established field, with a large existing literature propos-
ing different models. Typically such models are based on time series mechanisms
(ARMA and ARIMA) and work well with linear dependencies. Since traffic forecast-
ing is not relevant only to computer network but to many other fields, considerable
research efforts have been devoted to this topic in other fields, a notable example is
in logistics (e.g., [37, 38]).

In this chapter we propose a methodology for traffic forecasting based on the com-
bination of ARIMA and neural networks using external information (e.g, weather).
Specifically, we use a traditional ARIMA model and we account for the outliers.
Such outliers cannot be fitted by ARIMA because they typically have non-linear de-
pendencies. However, such outliers are critical to the infrastructure, since these are
the values that can overload the infrastructure or make an inefficient use of the re-
sources. For this, we propose the use of a neural network to efficiently predict them.
To train this neural network we use external information (weather, popular events,
holidays, etc). The main hypothesis is that the traffic of the network depends on
the behavior of its end-users, which in turn depends on external factors. In order
to validate the proposed methodology we assess its performance using real-world
data from a 30.000 users campus network, specifically the bandwidth of the egress
Internet link averaged per day. Our results shows that our proposed methodology
improves a traditional ARIMA model and that performs remarkably well when pre-
dicting outlier values.
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FIGURE 5.1: Methodology scheme

5.2 Methodology

In this section we describe the proposed methodology to combine time series tech-
niques with Neural Networks to improve traffic forecasting, specifically to predict
the bandwidth of an egress Internet link that aggregates traffic from a population of
end-users. The Neural Network is used to improve the estimation done by the time
series techniques by predicting the outliers that incorporate non-linear dependen-
cies and that cannot be fitted by the time series techniques. The neural network is
trained with external information to predict such outliers.

5.2.1 Overview

The methodology presented in this chapter is based on ARIMA modeling and fore-
casting, adding a non-linear section based on Neural Networks for outlier detection.
An overview is shown in figure 5.1.

The first step to build the model is to obtain the traffic data. This data consists on
a time series of the network aggregated traffic. The next step is to model the In-
ternet traffic bandwidth data using an ARIMA model together with the Box-Jenkins
methodology [54]. After the first modeling, we extract the outliers, which represent
the traffic data that cannot be fitted using the ARIMA model. These outliers are pro-
cessed with neural networks to extract their correlation with external data. The last
step is to incorporate the information predicted by the neural networks, the outliers
pattern, into the modified ARIMA model. Finally, the resulting hybrid ARIMA-ANN
model is used to forecast the network traffic bandwidth taking into account historic
traffic and external events that influence the behavior of this traffic. In what follows
we describe each step in detail.
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FIGURE 5.2: Time Series Decomposition (X axis: Days, Y axis: Band-
width)

5.2.2 Time Series

The objective of the time series modeling is to predict the bandwidth of an Internet
link only as a function of temporal information. For this we use the well-known
ARIMA model. First we normalize the bandwidth data to ease its modeling and
reduce its standard deviation. The second step is to determine if the traffic data that
we are considering shows a significant volume growth over time. This growth is
a symptom of a progressive increment of the variance, and is analyzed using time-
dependent variances. In case traffic grows over time, the series is set to a logarithmic
scale in order to minimize the increase of the variance without affecting its model-
ing. Finally, following Box-Jenkins methodology restrictions, the series needs to be
stationary and of mean value equal to zero. These can be achieved using differenti-
ation techniques.The goal is to get the stationary series with the lowest mean value
(m ≈ 0) and the lowest variance.

The second part of the modeling is to find the ARIMA coefficients to produce the
ARIMA(p,d,q)(P,D,Q)s model that best fits the series. For this, the first step is to
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determine the seasonality of the series. This is accomplished by observing the se-
ries plot and elaborating the series decomposition (see figure 5.2). The study of the
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PCF) allows
us to determine the degree of the ARIMA model and Seasonal ARIMA model [55].
The degree of the model can be detected by the Autocorrelation Function lags that
overpass a threshold located at ±2/

√
N in simple MA models. The degree of an AR

model can be determined by the waveform of the autocorrelation function and the
higher value lags of the Partial Autocorrelation Function. The components of the
seasonal ARIMA model follow the same rules as the non-seasonal ones, applying
them on multiples of S lags (being S the period of the time series). The Integrated
Model (I) model degree marks the differentiation that lower the variance of the se-
ries the most and cannot generate a mathematical model of a time series by itself. It
is applied to correct the stationarity of the series.

After the ARIMA model fits the time series, the residues provide information about
the outliers present in the data. There are three main types of outliers: Additive Out-
liers (AO), Transitory Changes (TC), and Level Shifts (LS).However, in this study,
only AO and TC outliers are considered, since LS outliers are caused by global
changes in behavior of the time series and they usually imply a remodeling of the
series.

The process required to extract the outliers from a time series is based on transform-
ing the ARIMA pattern to an infinite AR one and comparing the residues between
the model and the time series with the effect that the different type of outliers have
on the time series.

For this we need to check for unusual high values in the residues, which indicates an
outlier, and then find the corresponding outlier type that best fits them. The ARIMA
model and the characteristics of the outlier determines its impact on the series. To
obtain the final model, we subtract these outlier from the time series to increase the
forecast precision. The next subsection exemplifies this process in a MA(1) to AR(∞)
conversion.

Example of Outliers Detection (MA(1) to AR(∞))

In what follows we exemplify the outlier extraction process:

yt = εt − θεt−1 = εt − θLεt (5.1)

Equation (5.1) defines the expression for a MA(1) model with mean value 0, which
can be rewritten as a function of L, the delay of the samples.
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εt =
yt

1− θL
→

∞∑
k=0

ark =
a

1− r
(5.2)

The objective is to express yt as an infinite sum dependent of y previous values from
yt−1 to y0. To accomplish this, we isolate εt from (5.1), and by using geometric series
formula for |k| < 1 (see equation (5.2)) we obtain (5.3).

εt =

∞∑
k=0

yt(θL)
k = yt + ytθL+ yt(θL)

2 + · · · =

= yt + yt−1θ + yt−2θ
2 + · · ·

(5.3)

Finally, in (5.4) we express yt as εt minus the infinite sum of its previous values. This
expression determines the AR model that allows for outliers detection in this time
series.

zt = yt = −
∞∑
k=1

yt(θL)
k + εt = εt − yt − yt−1θ − yt−2θ2 − · · · (5.4)

5.2.3 Neural Networks

The objective of the Neural Network (NN) module is to find correlations between
the outliers detected in the time series and external data. The external dataset needs
to contain temporal dependent features with possible impact on the network traf-
fic. External data features are preprocessed to represent each value with a binary
or ternary variable. The NN module has three functionalities: (i) detect when an
outlier will appear in the future prediction, (ii) classify it on Additive Outliers (AO)
or Transitory Changes (TC), and (iii) quantify its impact on the ARIMA model. To
accomplish these objectives with precision and good performance, this module is
structured with three levels of NN models that work in series, acting as data filters,
as shown in figure 5.3. The first NN is a binary neural network that classifies the
data as possible outliers or regular data. Only the set of values corresponding to
possible outliers continues in this process to the second NN. This NN is a classifier
that groups the samples in TC outliers, AO outliers or discards them. The last level
of the NN module is composed by two NN that calculate the impact value of the
different outliers classes. This last step also acts as a filter by applying zero to the
non-outliers.
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FIGURE 5.3: Neural Network Structure with three levels

5.2.4 Incorporating the Neural Network to the ARIMA model

The final step of the proposed methodology consists on incorporating the Neural
Network (NN) models which predicts the outliers by using external data to the
ARIMA model. For this, we need to subtract the original outliers from the time se-
ries before applying the ARIMA model to avoid the distortion caused by the outliers.
This method increases the prediction accuracy and provides more precise forecasts
when no outliers are present within the prediction range. By combining the predic-
tion of the time series model with the NN module, we can prevent the error caused
by any deviation that could be originated by external events. The impact of outliers,
calculated by the NN model, is applied to the time series data once the forecast is
made.

5.3 Experimental Evaluation

In this section we assess the validity of the proposed methodology proposed in sec-
tion 5.2 experimentally. For this we compare the accuracy of a standard ARIMA
model with our hybrid ARIMA+NN augmented with external information using a
real-world dataset of a campus network.

5.3.1 Dataset

The dataset used for experimentation contains over 700 samples (2 years from 20/06/2014
to 18/05/2016) of the averaged daily bandwidth of the egress Internet link of a cam-
pus network with over 30.000 users. In order to correlate with external informa-
tion we use the following features: precipitations and humidity, holidays, relevant
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FIGURE 5.4: Outliers impact on the series

sportive and festive events hold both in campus and in the city, exam schedule, etc.
The entire data-set is public and can be found at [12].

The time series samples are first normalized by 106, set into logarithmic scale and
set stationary with a multiple differentiation of the samples at 1 and 7 lags (degree
of the I model). The ARIMA model that best fits the series is an ARIMA(0,1,2) model
with ARIMA(0,1,2)7 seasonal components. It is implemented with Matlab R©, using
the library Econometrics Toolbox 1. This series presents strong outliers that can be
appreciated in figure 5.4. In total 79 outliers are detected: 55 AO and 24 TC.

5.3.2 Neural Network

The Neural Network (NN) structure includes 3 different levels for outlier prediction
(section 5.2.3) and in order to obtain each level we evaluate different NN config-
urations, this is implemented using Matlab R©, making use of the Neural Network
Toolbox library 2. The NN structure is trained with 520 samples of the time series
(≈ 75% of the total). In what follows we describe the process that we use to optimize
the NN of each level.

The first level of the NN is the binary classifier, which needs to accomplish a high
specificity rate in order not to filter out possible outliers. To find the optimal NN,
each set of tested parameters has been trained 100 times to avoid anomalies. The
data is distributed in training, validation and testing sets with the following per-
centages 80%, 10% and 10% respectively. The weight for the false negatives penal-
ization while training is increased from 5% to 20%. The number of hidden layers

1MATLAB and Econometrics Toolbox, The MathWorks, Inc., Natick, Massachusetts, United States
2NMATLAB and Neural Network Toolbox, The MathWorks, Inc., Natick, Massachusetts, United

States
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is set in multiples of 10 from 50 to 100. The selected training functions are Conju-
gate Gradient [56], Levenberg-Marquadt [57] and Gradient Descent with Momen-
tum Backpropagation [58]. The best NN obtained in this experiment is a Neural Bi-
nary Classifier with 100 hidden neuron layers, Gradient Descend with Momentum
Backpropagation as training function and a penalization increase of 5%. This NN is
able to discard more than half of the samples as non outliers with 0 false negatives.

The NN of the second level needs to be more restrictive and provide the least Transi-
tory Changes (TC) and Additive Outliers (AO) false negatives. Following the same
methodology as in the previous level the penalization increase tested for false neg-
atives goes from 5% to 20%, the number of hidden layers ranges form 50 to 100
and the functions used for training are Levenberg-Marquadt and Gradient Descent
with Momentum Backpropagation. The NN that achieves the best performance in
this experiment is a NN Classifier of 90 hidden layers, Gradient Descend with mo-
mentum as training function and penalization of 5% more on false negatives. The
performance of this network is similar to the previous one, only 2 of all the Addi-
tive Outliers are missed. After this step, the 86.35% of the non outlier samples is
discarded.

The final level uses two NNs and aims to prioritize the correct weighting of AO
and TC outliers in its impact on the time series. In this case, the parameters to test
are the training function, that is chosen between Levenberg-Marquadt and Gradient
Descent with Momentum Backpropagation, and the number of hidden layers, from
50 to 120. For both AO and TC outliers, the NN that achieves the best performance
has 100 hidden neurons and uses Levenberg-Marquadt as training function. The
output of the NN structure has a relative MSE of 1.6708 from the real outliers.

It is important to take into account that the performance of this structure could im-
prove with a better data mining process for the external data and a deeper study of
each layer of the module.

5.3.3 Results

In order to evaluate the accuracy of our novel methodology we first analyze its per-
formance over a week, and we compare its performance with that of a standard
ARIMA model. The standard ARIMA model does not incorporate the information
of the external events, but we subtract the outliers before generating the model and
we add them afterwards to increase its accuracy.

To exemplify the prediction differences between both models we present two exam-
ples of predicted samples affected by outliers. Figure 5.5 shows the data for 30 days
and the forecasting for 7 days, both for the ARIMA model with Artificial Neural
Networks (ARIMA-ANN) and the standard ARIMA model. In both cases the last
days include an outlier and we can observe that the ARIMA-ANN model exhibits a
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FIGURE 5.5: Forecast of 7 days using the standard ARIMA model
and the modified one. Top: Forecast with an AO outlier. Bottom:

Forecast with a TC outlier.
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better performance. Particularly, figure 5.5 (top) shows a negative Additive Outlier
(AO). The standard ARIMA model is not able to predict this deviation and the real
data falls out of the confidence intervals (set to contain all prediction up to an ac-
curacy of the 95%). The NN module predicts the AO with a considerably precision
improvement. The confidence interval narrows in comparison with the standard
model, which shows a higher prediction accuracy. Figure 5.5 (bottom) also shows a
Transitory Change (TC) the week before of the prediction and an Additive Outlier at
the end of the forecast week. The standard ARIMA model is able to adjust from the
decrease of the previous week, but it cannot follow the shape of the real data. The
ARIMA-ANN model can predict better the behavior of the traffic data.

The first full set of experiments aims at comparing the overall performance between
the standard ARIMA model and the ARIMA model modified with NNs. It is based
on the forecast of 25% of the samples of the time series, that is over 161 days of
prediction. In this experiment the forecasting time is set to a week because longer
estimations start deviating too much from real data and the comparison between
both models lacks of relevance in such cases. The relative error (εr =

∑n
i=1 εi∑n
i=1 zi

), during
the 161 days of forecasting is 28.32% for the ARIMA model and reduced to 17.58%

for our model. For this same period of time, the Mean Squared Error (MSE =
1
n

∑n
i=1(Ẑi − Zi)

2) of the standard model is 980.076. In the combined model, the
MSE decreases 63.93% to 353.486. To better understand the impact of this MSE we
highlight that the time series mean value is 73.8478, once normalized by 106.

Finally, in the second set of experiments we compare the performance of both mod-
els taking only into account its accuracy when predicting the outliers. Typically net-
work infrastructures are dimensioned for the standard load and, as a consequence,
forecasting outliers is important since it may overload the infrastructure.

For these experiments we calculate the cumulative density function (CDF) of the
normalized Mean Square Error (MSE) between the prediction and the real data for
both models on the outliers not used for training the model (figure 5.6). An error
equal to one refers to the maximum MSE of the standard ARIMA, which presents a
higher error. As the CDF shows, our methodology works remarkably well, particu-
larly for high error values which are significantly related with extreme outliers. This
is caused by the better performance of the NN module for detecting high impact
outliers. This experiment demonstrate that our model consistently outperforms the
standard ARIMA being able to accurately predict outliers.

5.4 Discussion and Conclusions

In this chapter we have introduced a novel methodology for traffic forecasting, com-
bining an ARIMA model with a neural network. The goal is that the neural network
improves the prediction of outliers using external information (e.g., weather, sports
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FIGURE 5.6: Prediction Error Cumulative Density Function

events, etc.). The methodology has been validated using real-world data from an
egress Internet link of a campus network.

The main hypothesis behind this work is that the traffic depends on the users of the
network, which in turn depend on external factors. This is a reasonable assumption
for end-user networks, this is validated by our experimental results since we were
able to identify and represent a set of features that were relevant for the users of the
network under study.

As a consequence, in order to successfully apply this methodology to other net-
works, we need to identify the set of features that explains the behavior of the net-
work under study. This may be difficult for networks that massively aggregate traf-
fic, such as transit networks, since their population is very large and can be very
heterogeneous. The same applies for networks that provide connectivity to data-
centers with a wide variety of services.
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Chapter 6

Complex network elements
modeling

6.1 Introduction

Traditional computer networks are built from a large number of network elements
(switches, routers, firewalls, load balancers...). The configuration of all these ele-
ments is a complex task and it makes the management of the network a really chal-
lenging task. Moreover, each network element may use different languages and
tools to be configured, adding complexity to the network operator. Another impor-
tant challenge in traditional networks is the “Internet ossification”, which refers to
the problematic caused by the infrastructure, since it is extremely difficult to evolve,
either in therms of the physical infrastructure as well as the protocols operating in
the network [22]. For all these reasons, novel approaches to computer networks are
being developed, such as Software-Defined Networking (SDN).

SDN decouples the data plane and the control plane, in order to facilitate the man-
agement of the network through the abstraction of the physical elements. It also
makes possible the idea of programmable networks, which simplify the manage-
ment of the network. Moreover, it offers a centralized control point of the network,
the SDN controller, which is connected to all the network elements and it is aware
of the network configuration, topology and traffic. The SDN controller is the ab-
straction layer between the language of the network programmable elements and a
higher-level language, but it is not responsible of the “intelligence” of the network; it
is still requires software applications or the human intervention to manage network.

Within this context, we want to present our vision to simplify the management of
the network and to achieve higher levels of optimization. We propose to build a net-
work model by taking advantage of the centralization offered by the SDN paradigm.
It can be built by using the centralized information to learn the behavior of the net-
work. This network model can be used to predict different performance metrics,
such as latency or energy consumption of the network in order to go towards an
autonomous management of the network. State-of-the-art ML techniques are able to
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learn difficult models to obtain good predictions. The fact of modeling the network
behavior and being able to predict certain performance metrics can be extremely use-
ful to increase the capabilities of SDN applications or to improve the performance of
the network.

In this chapter, we explore the requisites, the applications and the viability of this
vision. In Section 6.2, we present the problem we study and the questions we want
to answer in this chapter. We present the methodology followed in the experiments
performed in this chapter in Section 6.3. In Section 6.4, we present the experiments
performed validate the hypothesis presented in the problem statements. Finally, we
conclude the article in Section 6.5.

6.2 Problem Statement

In this section we describe the problem statement that we address in this chapter. We
follow a similar approach that the followed in other chapters. Figure 6.1 summarizes
the problem statement using three layers. The bottom layer represents the real-world
VNF that we aim to model. The behavior of this VNF depends on its configuration,
which in this work, we assume that it is constant.
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The middle layer represents the system abstraction where the VNF is assumed as
a black box, traffic ingresses the box and egresses it, altering the consumption of
the VNF. In this scenario, we only have one source traffic, which is described my
different features that describe its characteristics. In Section 6.3.2, these features are
detailed. As in the network modeling scenario, the VNF can be abstracted as a de-
terministic complex system with memory, when random process such as physical
errors are not taken into account. Additionally, its behavior, and consequently, its
performance can be altered by changing its configuration.

Finally, the top layer represents the neural network that models the VNF perfor-
mance. The neural network is able to produce estimates of CPU performance con-
sidering the input traffic, represented with the selected set of features. The VNF
characteristics (exact function, configuration, ...) are hidden from the neural net-
work, and hence the neural network is trained only for one particular configuration
of the VNF.

The main questions that we aim to address in this chapter are:

• Can we train a neural network to produce accurate estimates of the CPU con-
sumption of different VNF considering only the input traffic represented by
features?

• Which is the impact of the features representing the traffic? Which ones are
relevant? How many of them do we need?

6.3 Methodology

In this section we detail the methodology used to understand if a neural network
can estimate the CPU consumption of a VNF as a function of the input traffic char-
acteristics.

6.3.1 Overview

Figure 5.1 shows an overview of the methodology. In order to experimentally eval-
uate the accuracy of the neural network modes we use real traffic traces, which we
reproduce in a controlled environment to be processed in the different VNFs. This
traffic is continuously processed in the VNFs, in which we measure the average CPU
consumption in time batches of 20 seconds. The traffic features of the traffic are also
processed in the same 20 seconds batches. The data set is formed by these traffic
features as the input features and the CPU consumption as the output features.

Once we have generated the data set we use them to train a a neural network, then
we evaluate its accuracy using the cross-validation technique. We split the data set
into three sets, the training set with 70% of the samples, the validation set with 15%
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of the samples and the test set with the remaining 15% of the samples. Finally the
training set is used to optimize the ML model, the validation set is used to evaluate
the model during the training phase and the test set is used to provide an indepen-
dent evaluation of the mode . With this we compare the CPU consumption estimated
by the regressors with the one measured in our experiment.

6.3.2 Traffic

We have tested the different VNF with real traffic, captured in an on-campus link [36].
Particularly, we have used two 5 min long traces of traffic, captured in two differ-
ent moments of the day in a 10 Gbps campus interconnection link (both ingress and
egress). Then, this traffic is reproduced in the test environment and sent to the VNF
to measure the CPU consumption in this scenario.

Since the speed of the link is too high to reproduce the traffic, we have scaled it by
dividing the rate per 10 and by 40 (night traffic and day traffic respectively), in order
to obtain around 2,000 packets per second.

To describe the traffic in this particular experiment, we have used a set of 86 features
which describe network, transport and application level attributes. You can find the
complete set of features in table 6.1

6.3.3 VNFs

This experiment is implemented with real VMs implementing two different VNF:
OVS [59] and SNORT [60]. Open vSwitch (OVS) is an open-source implementation
of a virtual SDN multilayer switch, which is used nowadays in multiple hypervisors.
SNORT is a network intrusion prevention system (NIPS) and network intrusion de-
tection system (NIDS), which is able to analyze real-time traffic.
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TABLE 6.1: Complete set of features used to describe the traffic

Batch number Num. of different source
ports in TCP packets

Average inter-arrival time
between consecutive TCP
flows

TimeStamp (in us) of the
last packet

Num. of different destina-
tion ports in TCP packets

Std of the inter-arrival time
between consecutive TCP
flows

Number of packets Num. of different source
ports in UDP packets

Average inter-arrival time
between consecutive UDP
flows

Transmitted bytes Num. of different source
ports in TCP packets

Std of the inter-arrival time
between consecutive UDP
flows

Average inter-arrival time
between consecutive pack-
ets

Num. of different pairs
ipSrc-PortSrc

Average inter-arrival
time between consecutive
"Other" flows

Std of the inter-arrival time
between consecutive pack-
ets

Num. of different pairs
ipDst-PortDst

Std of the inter-arrival
time between consecutive
"Other"

Average length of the pack-
ets

Num. of SYN-TCP packets Average length (in bytes) of
a TCP flow

Standard deviation of the
length of the packets

Num. of FIN-TCP packets Standard deviation of the
length of a TCP flow

Num. of different IP source
addresses

Num. of RES-TCP packets Average length (in bytes) of
a UDP flow

Num. of different IP desti-
nation addresses

Num. of different flows Std of the length of a UDP
flow

Num. of different pairs
IP source-destination ad-
dresses,Num. of different
IP destination addresses

Num. of different TCP
flows

Average length (in bytes) of
a "Other" flow

Num. of IPv4 packets Num. of different UDP
flows

Std of the length of a
"Other" flow

Num. of IPv6 packets Num. of unidentified TCP
or UDP packets

Num. of flows with only
one packet

Num. of the ICMP packets
over IPv4

Num. of "othersL4" flows Num. of http packets, iden-
tified by the source or desti-
nation port (80, 8080, 8008,
443)

Num. of the ICMP packets
over IPv6

Average number of packets
in a TCP flow

Num. of http flows, iden-
tified by the source or des-
tination port (80,8080, 8008,
443)

Num. of different IP source
addresses mask 30..16 [15
different features values]

Std of the number of pack-
ets in a TCP flow

Num. of ssl packets, identi-
fied by the source or desti-
nation port (22)

Num. of different IP
destination addresses mask
30..16 [15 different features
values]

Average number of packets
in a UDP flow

Num. of ssl flows, identi-
fied by the source or desti-
nation port (22)

Num. of TCP packets Std of the number of pack-
ets in a UDP flow

Num. of smtp packets,
identified by the source or
destination port (25, 465,
587, 2525, 3535)

Num. of UDP packets Average number of packets
in "Other" flow

Num. of smtp flows, iden-
tified by the source or des-
tination port (25, 465, 587,
2525, 3535)

Num. of other packets Std of the number of pack-
ets in “Other” flow
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Two different configurations are used in the OVS. The first configuration is the com-
mon behavior of an SDN switch. It implements some rules which are able to forward
most of the packets, but some of them needs to be sent to the controller. In this case,
the controller installs a new rule in the OVS, which matches and forwards similar
packets. This rules expires after 10 seconds, in order to keep limited the number of
rules in the OVS. The second configuration of the OVS consist on implementing a
large number of rules (around 300) that act as a firewall. These rules can forward,
discard or modify the packets going through the OVS. The controller is not used in
this configuration, but the complexity and the number of predefined rules is con-
siderably increased. A single configuration is used in the SNORT VNF, the default
configuration. This detects the most common attacks and undesirable traffic.

6.3.4 Set Up

All the components needed to complete the experiment are deployed in the same
physical machine using different VM under the same hypervisor and interconnected
with virtual network links from the hypervisor. Each VNF is installed in a different
VM and the CPU consumption of the complete VM is measured by using the perfor-
mance monitoring tool of the hypervisor, which gives the average CPU performance
in 20 seconds batches. The traffic is generated in a second VM and sent through the
virtual network to the VFN, which process it. A third VM is used as an SDN con-
troller and to receive the traffic. The complete diagram is shown in Fig. 6.2.

The traffic features are calculated off-line, in the same 20 seconds batches that offers
the monitoring tool of the hypervisor; and the CPU consumption is collected for all
the traces. Once the data is collected, it is used to train the ML algorithm. The total
number of training examples obtained with the all the traces is 1359 points.

This experiment consists in predicting the CPU consumption of different VNF only
from the network traffic. The network topology is constant and we only explore two
VNFs and three different configurations. The CPU consumption of a VNF depends
on the own VNF (the network function that it executes and the implementation),
the configuration of the VNF and the traffic load that it handles. Therefore, for a
certain VNF implementation and for a known configuration, the CPU consumption
depends only on the traffic.

6.3.5 Machine Learning training

The ML technique chosen is Artificial Neural Network (ANN), and we have used
the MATLAB Neural Network Toolbox library 1. Particularly, we use one hidden
level with five neurons and one neuron in the output level. The MATLAB toolbox

1NMATLAB and Neural Network Toolbox, The MathWorks, Inc., Natick, Massachusetts, United
States
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FIGURE 6.3: Model built using two different features for two different
VNF (only the relevant feature is shown)

divides the training set randomly in three independent sets: training, validation
and test, in order to optimize and evaluate the training and the training parameters.
The Levenberg-Marquardt algorithm is used in the training process and the mean
squared error is used as the error metric.

6.4 Experimental results

6.4.1 Results and discussion

The first step consists on observing the dependence of the CPU consumption as a
function of different features for different VNFs. We choose two relevant features,
the number of packets and the number of flows and we train the model only with
these two features. Fig. 6.3 shows the observation points and the model built with
these features. For the OVS configured with firewall rules, we observe that the model
is built only from the number of packets (as shown in Fig. 6.3 left), and the number of
packets is considered irrelevant (no CPU consumption independently of the number
of packets, not shown in the figure). For the SNORT VNF, the opposite occurs, the
CPU consumption is modeled using only the number of packets and not the number
of flows (see Fig. 6.3 right). This is mainly because the SNORT has to inspect each
packet individually, whereas the OVS configured with firewall rules has to decide
what to do which each flow. However, as can be seen in the figure, the model build
with these two features is not good enough and the error in the prediction is big. For
this reason, a bigger set of features describing the traffic is needed.

When we train the model with all the 86 traffic features, the CPU consumption of
these three configurations can be predicted with a small error. Fig. 6.4 represents
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FIGURE 6.4: Predicted value vs actual value in the three different con-
figurations

the predicted CPU consumption as a function of the real CPU consumption. The
closer to the diagonal, the better the prediction is. In this figure, we observe that the
prediction is good and all predicted values are close to the diagonal. In this case,
it is not possible to represent the model as a function of the features, since they are
correlated and a single feature by itself is not relevant.

Fig. 6.5 shows the CDF of the absolute value of error (deviation) in percentage. It
can be observed that the CPU consumption can be predicted with less than 2 % of
error in half of the observations, and less than 10 % of error in almost all the obser-
vations. Moreover, the relative error is similar, keeping in mind that the absolute
CPU consumption of the three configurations is different. In addition, we can con-
sider the mse (mean squared error) to confirm the validity of these models. A higher
mse error, implies either that the average consumption is higher or that the predic-
tion is worse, for this reason we also give the mean CPU consumption. The OVS
using a controller presents a mse around 250, which corresponds to a std of ≈ 16
MHz (mean CPU ≈ 450). The OVS behaving as a firewall presents a mse around
180, which corresponds to a std of ≈ 13 MHz (mean CPU ≈ 375 MHz). Finally, the
SNORT application presents a mse of 55, which corresponds to a std of ≈ 8 MHz
(mean CPU ≈ 191 MHz).

During the training process, the ML algorithm learns and discover the relationship
between the features and the CPU consumption. Some features may be more rele-
vant, less relevant or completely irrelevant for some VNFs and have a different rele-
vance for a different VNFs. Fig. 6.6 shows the average error (in %, normalized by the
absolute cpu consumption) of applying the ML algorithm into single features. The
error is sorted to facilitate the analysis of the graphic, thus, the points on the x-axis
do not represent the same feature. We can observe than a small group of features
can be used to predict the CPU consumption with a small error, the vast majority
present a certain correlation but with a bigger error, and some of them cannot be
used to predict the CPU consumption. Which features are important or det depend
on the VNF and on the configuration. The ML technique is able to discover the rela-
tionship among the relevant features and with the CPU consumption and ignore the
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FIGURE 6.5: Cumulative distribution function of the error as a func-
tion of the percentual error

irrelevant ones. The case showed previously (Fig. 6.3) exemplifies this.

In this experiment, similar results can be obtained with simpler regression mod-
els, such as multiple linear regression (using higher degree polynomials if needed).
However, the main advantages of ML is that can easily incorporate not linear behav-
iors in the same ML model. For example, the same ML model can be used to predict
the CPU consumption of these three configurations of VNF, by only adding one fea-
ture indicating each configuration. We foresee that some of the features that describe
the topology and the configuration of the network cannot be used in simpler lineal
models.

We conclude that a ML-based model can be used to predict a performance metric,
in this experiment the CPU consumption, in a certain network, in this experiment a
single network element. With these results, we envision that the proposed network
model can be built in more complex networks and to predict other performance
metrics.

6.5 Summary and Concluding Remarks

In this chapter we have modeled the performance of different Virtual Network Func-
tions (VNF), specifically we have focused on the CPU performance of the VNF ob-
served by the hypervisor. We have modeled this behavior as a black-box, and only
as a function of the incoming traffic. The main challenge here is how the accurately
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FIGURE 6.6: Sorted training error of single features

represent the traffic, which clearly determines the behavior of this functions. We
used a big set of features representing different characteristics of the different net-
work layers.

We have demonstrated that this behavior can be learned, that the function we are
learning is neither trivial or linear, and that this function depends on different fea-
tures for different functions. Future work includes how to represent the configura-
tion of the VNF to be used in the learning process, to be able to use the same model
for different configurations.
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Chapter 7

Conclusions and future work

In this chapter, we conclude the work presented in this thesis and we present the
future work and open research challenges on the deployment of the KDN paradigm.

7.1 Conclusions

In this thesis, we first introduced the concept of Knowledge-Defined Networking
(KDN), a novel paradigm that combines Software-Defined Networking, Network
Analytics and Machine Learning to ultimately provide automated network control.
We also presented a set of use-cases that illustrate the feasibility and advantages of
the proposed paradigm. KDN relies heavily on the use of ML techniques to learn
network models, with the ultimate goal of providing automated network control.
We also discussed some important challenges that need to be addressed before com-
pletely achieving this vision. We advocate that addressing such challenges requires
a truly inter-disciplinary effort between the research fields of Artificial Intelligence,
Network Science and Computer Networks.

Afterwards, we have studied the performance of two different models to character-
ize the delays in a network given the traffic load. We have demonstrated that simple
neural network based estimators performs remarkably well. However, these estima-
tors models the network as a black-box and do not provide insides of the behavior of
the network. For comparison, we implemented a M/M/1-inspired estimator, which
could provide more information of the network, but it has leaded to poor results.

Consequently, we have focused on the black-box network modeling. We verified
that the average end-to-end delay in communication networks can be accurately
modeled using artificial neural networks. Specifically, we have studied the modeling
capabilities, under different traffic characteristics, and for different network topolo-
gies, network sizes and routing configurations. We have found that neural networks
perform remarkably well with a negligible error which is close to the irreducible
measurement error. The ultimate objective of this work is to lay the foundations for
applying novel ML techniques in the field of network modeling.
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In this thesis, we have also studied the application of ML techniques in other sce-
narios. We introduced a novel methodology for traffic forecasting, combining an
ARIMA model with an artificial neural network. The goal is that the neural network
improves the prediction of outliers using external information (e.g., weather, sports
events, etc.). The methodology has been validated using real-world data from an
egress Internet link of a campus network. The main hypothesis behind this work is
that the traffic depends on the users of the network, which in turn depend on exter-
nal factors. This is a reasonable assumption for end-user networks, this is validated
by our experimental results since we were able to identify and represent a set of
features that were relevant for the users of the network under study.

Finally, we have studied the application of the KDN architecture in a novel network-
ing paradigm, the Network Function Virtualization (NFV). We have modeled the
performance (specifically the CPU performance) of different Virtual Network Func-
tions (VNF) as a black-box, and only as a function of the incoming traffic. The main
challenge here is how the accurately represent the traffic, which clearly determines
the behavior of this functions. We used a big set of features representing different
characteristics of the different network layers.

The main conclusion of this thesis, is that the use of Machine Learning techniques in
the networking field presents a promising future, enabling a new set of applications
and simplifying the control and the management of current and future networks.

7.2 Future work

The work presented in this thesis has shown how ML techniques and the KDN ar-
chitecture can be useful in different applications and scenarios. However, there is
still work to be done and important research challenges that need to be addressed
before use them.

7.2.1 KDN challenges

The novel KDN paradigm represents a new networking paradigm, but it presents
many challenges introduced in Chapter 1, and summarized hereunder.

KDN enable new set of applications for ML and as such, requires either adapting ex-
isting ML mechanisms or developing new ones. A notable example graphs, which are
used in networking to represent topologies, which determine the performance and
features of a network. Moreover, the combination of modern ML techniques, such
as Q-learning techniques, convolutional neural networks and other deep learning
techniques, may be essential to make a step further in this area.



7.2. Future work 79

In contrast of traditional models and techniques, models produced by ML tech-
niques do not provide deterministic results and are difficult to understand by humans.
This also means that manual verification is usually impractical when using ML-
derived models. Nevertheless, ML models work well when the training set is repre-
sentative enough. Then, what is a representative training set in networking? This is an
important research question that needs to be addressed. In some use-cases a train-
ing phase that tests the network under various representative configurations can be
required. In this scenario, it is necessary to analyze the characteristics of such loads
and configurations in order to address questions such as: does the normal traffic
variability occurring in networks produce a representative training set? Does ML
require testing the network under a set of configurations that may render it unus-
able?

Finally, we need a standardized high-quality training datasets to test, develop and bench-
mark new ML algorithms, since focusing on the dataset rather than on the algorithm
may be a more straightforward approach. The publication of datasets is already a
common practice in several popular ML application. In this thesis, we advocate that
we need similar initiatives for the computer network AI field. For this reason, all
datasets used in this thesis are public and can be found at [12]..

7.2.2 Network and traffic modeling challenges

In the experiments presented in this thesis, we have demonstrated that the end to
end delay of relatively small networks can be modeled. However, an important
challenge is the ML field is how to deal with the high dimensionality of the data
needed to model a network. Indeed, to completely model the end-to-end delay of
a network, we need to represent: 1) K features to model a flow, 2) F flows to be
model among each pair of nodes, 3) N2 pairs of nodes (in N represents the number
of nodes).

These problem may be addressed in two different ways: 1) From a ML point of
view, we need to study models able to deal with all these features. A possibility is to
use the idea of the auto-encoders to reduce the dimensionality of the data. 2) From
a feature engineering point of view, we need to study if we can represent all this
information in a different way. A possibility is to study patrons among real traffic
features which may suggest a small set of features to represent the traffic.

7.2.3 Traffic forecasting challenges

In this thesis, we have demonstrated that the use of external information can im-
prove the detection of outliers when forecasting traffic. However, in order to suc-
cessfully apply this methodology to other networks, we need to identify the set of
external features that explains the behavior of the network under study. This may
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be difficult for networks that massively aggregate traffic, such as transit networks,
since their population is very large and can be very heterogeneous. The same ap-
plies for networks that provide connectivity to data-centers with a wide variety of
services.

7.2.4 Complex network elements modeling challenges

Complex networks, with virtual elements, may be more complex to model, specially
when these functions depends on specific traffic characteristics. It is an important
challenge to verify is the same set of features needed to represent “conventional”
networks is enough to model these “advanced” networks.

7.2.5 Topology and configuration challenges

In this thesis, we have focused on models for networks or elements with a con-
stant topology or configuration. However, real networks or elements may change
its topology or its configuration. Being able to capture and learn this changes in
the models we presented is an important challenge. The main difficulty is how the
represent these information as a ML-understandable features.
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Appendix A

Network Simulator

In this appendix, we describe in detail the simulator used in most of the experiments
performed in this thesis. The objective of the simulator is to obtain useful datasets to
be used to test the Machine Learning (ML) capabilities under different conditions.

A.1 Simulator requirements

The function of the simulator is to simulate the basic behavior of a computer network
and to compute the end-to-end delay among each pair of nodes with random traffic
following specified statistical characteristics.

There are some network simulator available, such as ns or mininet. We have dis-
carded them due to the computation speed. They are too complex for our needs,
which increases considerably the simulation time. Note that we need to obtain,
many different datasets, which lots of samples each one.

The main requirements are:

• Fast: We need to do many repetitions of each simulation, as well as many
different simulations. Therefore, the execution time is a key requirement.

• Realistic: We need to obtain realistic results, which discards the fluid simu-
lator approach and makes necessary the use of packets. The minimum that
the simulator has to emulate are the queues and the routing through a defined
topology.

• Configurable: We need to perform many different simulations, such as: modi-
fying the topology, the traffic characteristics or the routing. This changes have
to be easy to simulate.

• Traffic generation: The simulator has to generate random traffic following dif-
ferent statistical distribution.
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• Configurable output: We need to obtain different results, such as the average
end-to-end delay, the variance, the number of packets lost... It has to be easy
to change the results generated by the simulator

A.2 Design

We decided to implement the simulator on top of Omnet++ simulation framework [omnet],
which is a discrete-event simulation, primary built for network simulators. We did
not use any existing framework to implement only the needed feature in order to
speed up the simulation process.

We took advantage of the modularity offered by Omnet++ to implement different
modules and to interconnect them.

The basic modules of the simulator are:

• TrafficController: Generate the distribution of traffic of a node for each differ-
ent destination

• Application: Generates the traffic as a function of the characteristics received
from the TrafficController

• Routing: Routes the packets only as a function of the destination according to
the routing table read from a file.

• Balancer: Routes the packets to balance the usage of the links which are con-
nected to the balancer.

• NodeQueue: Represents one port. Sends the packet when the channel is empty
and queues the packet when not. The size of the queue is finite, so when the
queue is full, the packet is discarded.

• Node: It represents a node in an overlay-underlay network, which can send
and receive traffic. This implies that it routes the traffic to the different ports of
the underlay network according to the overlay routing policy.

• Router In represents a node of the network that does not send and receive
traffic. It only routes traffic according to its own routing table,

• Server In represents a node of the network that sends and receives traffic. It
routes its own traffic and the and the incoming traffic according to its own
routing table.

• Receiver In represents a node of the network does not generate traffic but it
receives traffic. It routes its own traffic and the and the incoming traffic ac-
cording to its own routing table.
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A.3 Use of the simulator

We have perform many simulators to obtain all datasets used in this work. To do so,
we use the cluster of our department.

All datasets used in this thesis are publicly available on www.knowledgedefinednetworking.net.
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