Towards accurate detection of obfuscated web tracking

Hoan Le, Federico Fallace and Pere Barlet-Ros
Universitat Politecnica de Catalunya, UPC-BarcelonaTech
Barcelona, Spain
{hoan, fallace, pbarlet} @ac.upc.edu

Abstract—Web tracking is currently recognized as one of the
most important privacy threats on the Internet. Over the last
years, many methodologies have been developed to uncover web
trackers. Most of them are based on static code analysis and
the use of predefined blacklists. However, our main hypothesis is
that web tracking has started to use obfuscated programming, a
transformation of code that renders previous detection method-
ologies ineffective and easy to evade. In this paper, we propose a
new methodology based on dynamic code analysis that monitors
the actual JavaScript calls made by the browser and compares
them to the original source code of the website in order to detect
obfuscated tracking. The main advantage of this approach is that
detection cannot be evaded by code obfuscation. We applied this
methodology to detect the use of canvas-font tracking and canvas
fingerprinting on the top-10K most visited websites according
to Alexa’s ranking. Canvas-based tracking is a fingerprinting
method based on JavaScript that uses the HTMLS5 canvas element
to uniquely identify a user. Our results show that 10.44% of
the top-10K websites use canvas-based tracking (canvas-font and
canvas fingerprinting), while obfuscation was used in 2.25% of
them. These results confirm our initial hypothesis that obfuscated
programming in web tracking is already in use. Finally, we argue
that canvas-based tracking can be more present in secondary
pages than in the home page of websites.

Index Terms—Fingerprinting; Canvas fingerprinting; Canvas-
based Tracking; Obfuscated tracking; Web tracking; JavaScript

I. INTRODUCTION

In the last years, several works have shown that many
services on the Internet systematically collect and use a large
amount of users’ personal information [1]. This phenomenon
is called web tracking and it is a fast-growing business that
counts hundreds of companies. The prevalence and pervasive-
ness of web tracking is considered as one of the most serious
problems on the current Internet [1]-[7].

The data collected by web trackers include information
of technical nature, such as the IP address or the browser
in use, but also more sensitive information, such as the list
of visited web sites or our favorite products and interests.
Some previous studies have demonstrated that this personal
information is used for many different purposes, including
targeted advertising [8], [9], price discrimination [10], [11],
or even the assessment of our health [12], [13] and financial
condition [14]-[16].

Another relevant aspect is that a large amount of web
tracking methods are not deployed directly by first-parties,
but by third-party trackers present on the visited websites
that load content from other domains, such as advertisers and
analytics companies. A recent work [6] showed that around

46% of the websites in the top-10K Alexa ranking contains
at least one third-party tracker. Third-party trackers are a
serious privacy threat, since they can collect information in
the background from many different websites and combine
them without explicit knowledge of the user.

Over the last few years, web tracking technologies rapidly
evolved from simple methods to more complex techniques that
try to overcome the privacy protection mechanisms provided
by modern browsers. Several tracking services also share user
identifiers, so there is a possible adoption of the Cookie
Matching practice that links and unifies user identifiers from
different trackers [17]. In addition, trackers have combined
JavaScript with other web technologies (e.g., Flash or Java),
making it more difficult to avoid being tracked.

In our recent survey [1], we reviewed the various techniques
currently used by web services in order to track users. They
were classified into different groups, depending on whether
they are based on session identifiers, client storage, client
caches, user fingerprinting or a combination of them. In this
paper, we focus on user fingerprinting techniques and, in par-
ticular, on the accurate detection of canvas-based fingerprinting
methods. Canvas fingerprinting is currently the most popular
and widespread fingerprinting method on the Internet [2], [5].

The main idea behind canvas-based tracking is to add an
HTMLS5 canvas element with particular fonts, text or shape in
the website and to take the user rendered value as a fingerprint,
due to the fact that the rendered value heavily depends on the
used hardware and software installed [18]. The strength of
this technique is that it does not depend on any client-based
storage, so it is almost impossible to avoid, even when using
the private browsing mode or anonymous networks (e.g., Tor,
VPN or 12P). Canvas fingerprinting is based on JavaScript, so
the source code has to be delivered to the user’s browser in
order to be executed. A simple approach to detect JavaScript-
based fingerprinting is by static code analysis on the client
side, looking for suspicious calls that are usually related to
tracking. However, this approach is very easy to evade by
using code obfuscation tools, which render code inspection
ineffective. Code obfuscation is a common method used to
hide and protect JavaScript code from its theft and reuse by
other developers. A myriad of tools to obfuscate JavaScript
code are easily available (e.g., [19]-[22]).

Our research hypothesis is that web tracking is becoming
obfuscated. We refer to obfuscated tracking as a tracking code
that has been modified in a way it cannot be explicitly un-
derstood by a human nor easily detected by pattern-matching

methods. Thus, this kind of tracking is difficult to detect by
static analysis of the original source code.

In this paper, we propose a new methodology based on
dynamic code analysis in order to uncover obfuscated web
tracking. In particular, we monitor the actual JavaScript calls
made by the browser and compare them with the original
JavaScript code in order to detect obfuscated canvas-based
tracking, including canvas fingerprinting and canvas-font fin-
gerprinting. The main advantage of this approach is that the
detection of web tracking cannot be evaded by using code
obfuscation techniques.

The main contributions of our paper are as follows:

o We propose a novel methodology based on dynamic code

analysis that tracks the actual calls made by the JavaScript
API and compares them to the original HTML/JavaScript
code to uncover obfuscated web tracking.

e We apply our methodology to the top-10K websites
according to Alexa’s ranking as well as on the main links
of the top-100 Alexa ranking websites [23].

e« We show that at least 9.13% of websites use canvas
fingerprinting on the top-10K home pages, while 2.2%
obfuscate it. In addition, 1.65% of the analyzed websites
use canvas-font fingerprinting, from which 0.05% is ob-
fuscated.

o Overall, 10.44% of the analyzed websites use canvas-
based tracking, while obfuscation is detected on 2.25%
of them. Some of the sites were using both techniques.

e We proved our initial hypothesis that web tracking is
becoming obfuscated and proposed a promising direction
to uncover it. To the best of our knowledge, this is the
first work to study obfuscated web tracking and how to
uncover it.

The rest of the paper is organized as follows. Section II
presents the basic background on canvas fingerprinting and ob-
fuscated web tracking. Section III describes the methodology
we used. Our results and discussion on uncovering obfuscated
canvas fingerprinting are presented in Section IV. Section V
reviews the state-of-the-art in web fingerprinting. Finally, we
present our conclusions and future work in Section VI.

II. BACKGROUND

In this section, we present an introduction to canvas-based
fingerprinting and obfuscated web tracking.

A. Canvas fingerprinting

In the last years, the web browser has become the main
tool to access the content available on the Internet. In order
to provide a correct visualization of the online content, the
browser has to provide some information about the installed
software and the used hardware to web services, which is
needed in order to render contents or to serve device com-
patible media. The problem is that the APIs commonly used
for the correct visualization are flexible enough to be used
to obtain a fingerprint, which is unique for the device. This
practice is called web-based device fingerprinting and it has
important privacy and security implications.

A script on tmall.com from capturing the following
400px x 60px canvas (via toDataURL)

Cwm fjordbank -gl\}‘-z, -

Fig. 1. Example of the output of canvas fingerprinting on tmall.com

We can consider the Eckersley’s experiment in 2010 [4]
as the official discovery of the fingerprint. He argued that
the information provided by the browser, such as screen
dimensions or installed fonts, could be combined to create
a device-specific fingerprint. Different attributes were used
with different priorities depending on how common they are
among users and how stable they are in a device. The results
of the experiment were that 94.2% of the devices had a
unique fingerprint. These results are limited to devices using
JavaScript and Flash, but they are still worrisome if we think
that can be used to identify and track a user without stateful
client-side technologies. As a result, the trackers are able to
identify users also if they avoid the use of browser or Flash
cookies, circumventing users’ preferences about tracking and
limitations imposed on cookies by Europe and United States
regulations.

Web tracking companies are developing more complex and
advanced mechanisms, where canvas fingerprinting is one of
the last to be discovered. This type of fingerprinting uses
the HTMLS element <Canvas> that provides a drawable
screen area. The functioning is simple. The script lets the
browser draw a text or image in the canvas area and then
reads the rendered image back. The value will be different
depending on the installed software and used hardware and
it can be used to uniquely identify a user. Canvas finger-
printing uses mainly four JavaScript methods: £i11Text ()
and strokeText () are used to draw text with a given
font, size and background color. Then, toDataURL () or
getImageData () are used to send back a Base64 en-
coding of the PNG image that contains the whole content
of the canvas element [2], [18]. Other methods, such as
MozFetchAsStream () or ExtractData (), can be used
for this purpose, but they were not investigated in this paper.
An example of the output of canvas fingerprinting is given
in Fig. 1, while a sample of a canvas fingerprinting code is
provided in Fig. 2.

Canvas fingerprinting brings Internet tracking to an entirely
new level of invasiveness. It is performed without the user’s
prior knowledge or consent, hence it is very difficult to know
when and where tracking happens. Moreover, it does not need
client-based storage, so removing it to create a new clean
profile is almost impossible.

B. Canvas-based font fingerprinting

Since the born of fingerprinting in [4], it was clear that the
list of the installed fonts was very useful to identify a specific

device. Although currently browsers do not provide so easily
this list, other alternative ways can be used to obtain it.

One method is to use Flash and, in particular, its scripting
language ActionScript that provides APIs and methods to
obtain this list. When Flash is not available, it is still possible
to use JavaScript. Some functions are able to retrieve the
dimension in pixels of a text, and consequently to understand
if a specific font is installed or not in the analyzed device.
Indeed browsers usually render a text with the default ”sans”
if the given font is not installed, so the size of “sans” for a
random sentence is taken and used as sample [24].

The specific function for canvas is measureText ().
Clearly, it should be used to correctly visualize the text, but if
the number of the calls is higher than normal, we can conclude
that it is used for fingerprinting. In [5] this number was set
to 50, so scripts with less than 50 calls of measureText ()
in the same text string were filtered out as false positives. We
followed also this criterion in our analysis.

C. Code obfuscation

Most modern tracking methods are based on JavaScript.
Therefore, a simple way to avoid detection of tracking code
when using static code analysis tools is the use of code
obfuscation.

Code obfuscation is the process of modifying the source
code, to avoid or delay the understanding of a program,
in a way it is very difficult to read, modify and reuse by
other programmers or competitors [25]. Indeed it can improve
security, prevent fraud and protect intellectual property; it is a
useful tool against reverse engineering attacks based on static
analysis and limits the impact of dynamic analysis.

A common misconception is that obfuscation is a kind
of encryption, but the former is still executable without any
decryption or deobfuscation, so the concepts are different.
Obfuscation could also be confused with minification, but
the second one has the only purpose of reducing the code
size to make the program smaller and faster, although some
techniques are equal or similar (removing unnecessary spaces
and new lines for example). When the source code has to
be distributed to be used, for instance by web services using
JavaScript, it can be a really powerful method to protect
programmers’ work. On the other hand, in the web tracking
context it could be easily used to hide tracking code and
avoid its uncovering and blocking (Internet is full of tools
to obfuscate code [19]-[22]).

III. METHODOLOGY

In this section, we describe our methodology to uncover
obfuscated canvas-based tracking using dynamic code analy-
sis. As stated above, it is not possible to detect obfuscated
tracking code by static analysis of the Javascript source code.
Fig. 2 illustrates this problem with two examples that, using
Javascript, extract a canvas fingerprint of the user. The first file
contains a plain-text fingerprinting script that we developed,
while the second one contains an obfuscated version that we
created using a free web service [22]. The fingerprints obtained

by the two scripts are exactly the same, but static analysis tools
are not able to detect the fingerprinting code in the obfuscated
version, as the original Javascript calls are not visible.

Our method uncovers obfuscated fingerprinting by compar-
ing the original JavaScript source code with the actual calls
made to the JavaScript engine of the browser. The actual API
calls are impossible to hide, since these functions are executed
directly by a JavaScript interpreter inside the user browser.
Intuitively, the API calls for obfuscated and non-obfuscated
tracking are exactly the same, although obfuscated tracking
code is modified in a way that cannot be easily recognized
by a human when looking at the source code or using pattern
matching methods.

In particular, we modified the source code of the Firefox
browser to log the API calls to the Javascript engine. All
the HTTP(s) communications are intercepted and collected
in a file using mitmdump (a SSL-capable HTTP proxy), as
shown in Fig. 3. The analysis of the mitmdump logs and the
intercepted API calls allow us to uncover obfuscated tracking
as follows:

1) If a particular API function is called (in the browser)
but it is not present in the original source code (in the
mitmdump log), it means that the JavaScript code is
obfuscated.

2) If the API function is present both in the mitmdump log
and in the log of the API calls made by the browser, it
means that the JavaScript is not obfuscated.

3) If a call to an API function is present in the source code,
but the function does not appear in the log of the API
calls, it means that the fingerprinting code was present
but never executed.

In any case, when an API function was called, we can figure
out when it was exactly called (after which user’s action) by
looking at the execution log.

We used Selenium WebDriver to automatically perform the
crawling of a list of websites, and also to scroll down and up to
let the page show all dynamic contents. We considered those
API calls that are typically used for tracking purposes and
that were already employed in several previous works based
on static code analysis [1]. We analyzed and crawled the most
popular top-10K websites according to Alexa’s ranking.

By collecting and analyzing most invoked JavaScript calls,
we uncover websites using obfuscated canvas tracking. In a
second experiment, we also scraped around 3000 links present
in the home pages of the top-100 Alexa websites for a deeper
analysis of canvas and obfuscated tracking. In particular, we
hypothesize that canvas tracking methods and obfuscation
could be more present in secondary pages different than the
home page for two reasons. The first is that useful information
about our interests, our searched objects and so on, are more
likely to be exposed in secondary pages than on the home
pages. The second is that most of the previous works that
analyzed the presence of web tracking (e.g., [2], [5]), focused
only in the home pages, so the presence of web tracking on
2nd or 3rd level domain links is still unknown and could also

Plain-text version

Your fingerprint is:
 SWAAA
CWCAYAAABKWTXSAAAZYOIEQVR4Xu2dediU1Z3Hv2ecumcIMJ...
var canvas = document.createElement("canvas");

var ctx = canvas.getContext("2d");

{I https:/www browserleaks.com/canvas#how-does-it-work

wvar txt = "Cwm fjordbank glyphs vext quiz, https://github_com/valve a%z ";
cix textBaseline = "top";

cbx.font = "70px "Arial™;

cix textBaseline = "alphabetic”;

ctx fillStyle = "#f60";

ctx fillRect(125, 1, 62, 20);

cix fillStyle = "#069":

cix fillText(txt, 2, 15);

ctx fillStyle = "rgba(102, 204, 0, 0.7)";

chx fill Text(txt, 4, 17);

return canvas.toDataURLY();

Fig.

mitmdump

é —_
&l

API calls raw HTTP traffic

Fig. 3. Main components of our framework

be moved as a consequence of the results made public from

these previous works.

IV. EXPERIMENTS AND DISCUSSION

Obfuscated version

Your fingerprint is:
data:image/png:base6d,iVBORWIKGgoAAAANSUREUgAAASWAAACWCAYAAABKWTXSAAAZYOIEQV
Rd4Xu2de3iU1Z3Hv2cumcIMJ...

var _0x1f5a=["w63'w6 1 xEEWTE'wE 17 3",

63720656 17 4'x6 5d BB C 6 56 DG E W6 ENT 4",

326",

"B T G574 W4 3B FWEEWT ' E5 W7 8T 4",

"oed 37 ToE D2 0uBE B ANE F T 2B 406 236 1WEEWE B2 06 ToE Co7 JuT 058\ 7 302 D W T BB 5\ 7 Bo7 4'0 207
17O NEIUTANZCZ0NE BT 4T 4T 0NT7 I NIANZFHZ PG 7 HEINT 426307 D62 W2EWE 3 EF 6D W2 P07 6iG 1
BCWTEwE5w20W1FE0",

T ANEEOT BT 40 2' 6 107 3B 5B CoB S WBE'WB5",

"X74\x6F 70",

"KEEXEFWEEWT4",

"X3T N30T 0T G202 T4 1 N7 2696 16 Cw2T",

"6 1 RECIXTOXE8 X6 162\ 657 4 \x69'xE3",

"NEEXEINECREC O ATINECNED",

"x2366'%3630",

"HEEXEINECHEC S 2 NG5 NE3 T 4",

231300 36'x39",

"HEEEINECINECHEA KBS TENT 4",

"HT2WETHE2WE 1283 130 W3 2w 2C 20323034 w2 C 2030w 2C 2 0u3E0W2E X3 T 29",
"7 ANEF A 46T 461 w5 HE 24T,

var a1=document]_Ox1fSa[1]]{_0x1f5a[0]);

var ctx=a1[_0x1fSa[3])_0x1f3a[2]);

var txt=_0x1f5a[4];

cix[_Ox1f5a[5]]=_0x1f5a[6];

e Ox1f5a[7])=_Ox1f5a[8];

chd_Ox1f3a[5])=_0x1f5a[a];

et Ox1f5a[10]]= Ox1f5a[11];

cix[_Ox1f5a[12])(125,1,62.20);

et Ox1f5a[10]]=_0x1f5a[13];

ot Ox1fSa[14]](be,2,15);

cix[_0x1f5a[10]]=_0x1f5a[15];

cix[_Ox1f5a[14]](bet.4,17):

return a1[_Ox1f5a[16]]();

2. Example of canvas fingerprinting script and its obfuscated version

number of links to be analyzed increases significantly when
going deeper into the website hierarchy. Our first results indi-
cate that web tracking can be more present on the secondary
pages than in the home pages, but we leave the confirmation
with larger datasets as future work. Our experiments were
performed in April 2016.

A. Canvas-based fingerprinting on the top-10K home pages

In Fig. 4 we observe that 9.13% of the analyzed websites
were using canvas fingerprinting (Canvas FP); 6.93% used
plain-text code (the functions were also present in the source
code), while 2.2% used obfuscated canvas tracking (they made
JavaScript calls in the browser, but the methods were not
present in the original source code). We also observed canvas-
font tracking, but the percentages were relatively low; 1.65%
of the websites used plain-text canvas-font tracking, while
only 0.05% used obfuscation. Overall, at least 10.44% of
the analyzed websites used canvas-based tracking on their

In this section, we analyze the presence of canvas-
based tracking on the Internet using the methodology de-
scribed in Sec. III. Firstly, we automatically crawled the
top-10K home pages according to Alexa and detected
which of them make calls related to canvas-based track-
ing (e.g., fillText (), strokeText (), toDataURL (),
getImageData ()). Then, we analyzed this dataset to un-
cover the use obfuscated programming and to validate our
hypothesis on the use of obfuscated web tracking. Finally, we
compared the tracking ratios observed in the home pages with
those found in the other links present in the website using a
smaller sample (top-100 from Alexa’s ranking), given that the

home pages, while 2.25% of which used obfuscated canvas-
based tracking. Note that some of the websites were using
both canvas-font and canvas fingerprinting. These results show
that more than 2% of the websites that use canvas-based
fingerprinting could not be detected by previous methods
based on static code analysis or pattern matching. In Table I,
we can also observe that the presence of canvas fingerprinting
in the first top-100, 1K and 10K websites is different, while the
percentage of obfuscation increases for less visited websites.

In order to filter out false positives (i.e., legit usage of
the HTMLS5 canvas element) we implemented similar rules
to those proposed in [5]. In particular, we did not consider

Tracking on the top-10K Alexa

005%| 185%

Canvas-font

Canvas FP

Canvas-based

4% 2% 0% 2% 4% 6% 8% 10%

‘ m% obfuscated tracking m% non-obfuscated tracking

Fig. 4. Canvas-based fingerprinting on the top-10K Alexa websites

TABLE I
CANVAS FINGERPRINTING RATIOS IN THE TOP-100, 1K AND
10K HOME PAGES

% tracking on the top-100 Alexa

45% 43%

25% 24% 23%

10%

10%
- .
0%

Obfuscation

Non-obfuscation Not executed No tracking

Fig. 5. Canvas-based tracking on the top-100 Alexa websites

TABLE I
CANVAS FINGERPRINTING RATIOS IN THE TOP-100

[Tracking [[Top-100 [[Top-IK [Top-10K | Canvas tracking Obfuscated canvas
[Non-obfuscated] 7% i 5% i 6.93% | tracking
l Obfuscated H 1% H 1% H 22% l Top-100 home 8/100 1/100
pages only
Top-100 47/100 24/100
websites

canvas elements with properties of height or width larger than
16 pixels because they are less likely to be used for tracking
purposes. Note that the default canvas size is 300x150px. In
the case of canvas-font fingerprinting, we also discarded scripts
with less than 50 calls to measureText () as described in
Section II.

Although [5] showed a decrease of the use of canvas fin-
gerprinting compared to previous results reported in 2014 [2],
according to some of our experiments with second level pages
(see Table II), we observed that part of canvas fingerprinting
could have moved from the home pages to inner pages in the
website. Although our study may not be directly comparable
to these previous works due to the differences in methodology,
results also differ because we also consider obfuscated tracking
code. As a consequence, our results show a larger percentage
of websites that use canvas fingerprinting. In addition, the tests
were made in different moments of time. It is also worth noting
that some websites, especially Chinese ones, are difficult to
reach and need more minutes to be completely loaded. The
timeout used when crawling a website in our study is 200
seconds, while in [5] it was 90 seconds. As consequence, the
ratio of websites that could not be loaded in our study is 1.2%
instead of 8.2%.

B. Canvas-based fingerprinting on secondary pages

According to [5], canvas-based tracking was present on the
home page of 3 websites in the top-100. In our analysis, we
found 8 websites in the top-100 that use canvas fingerprinting
to track users on the home page, including obfuscated and
non-obfuscated versions (see Table III). Although [5] only
analyzed the use of canvas fingerprinting in the home pages,
fingerprinting code could also be present in pages deeper in
the website hierarchy. For this reason, in April 2016, we
performed a small experiment on the top-100 most visited
websites, crawling over 3000 links, including those present

in the home pages of the visited websites as well as some
important third-level domains links. In Table II and Fig. 5,
we show the results of this experiment. When analyzing other
links and not only the home pages, we found 47 websites in
the top-100 using canvas fingerprinting (39 of them were not
in the home page); 24 of these 47 websites were obfuscated,
while 23 were in plain-text.

Although our tests were not systematic and did not cover
all the links present on the home pages because the number
of links quickly explodes, our results seem to indicate that
canvas fingerprinting is more present in the secondary pages.
We leave the confirmation of this finding with the top-10K
Alexa’s websites as future work.

V. RELATED WORK

Several works have recently studied the web tracking prob-
lem from different perspectives [1]-[7]. These previous studies
showed that a large number of websites collect personal infor-
mation from the users when browsing the web. In our recent

TABLE III
WEBSITES IN THE TOP-100 USING CANVAS FINGERPRINTING
IN THE HOME PAGE

Canvas/ Name Canvas by

Obfuscation websites OpenWPM
Yes/No taobao.com Yes
Yes/No qq.com No
Yes/No sina.com.cn No
Yes/No haol23.com No
Yes/No sohu.com No
Yes/No tmall.com Yes
Yes/Yes microsoft.com No
Yes/No espn.com No

survey [1], we reviewed the existing tracking mechanisms,
their implications and some possible defenses.

A particularly interesting framework to identify and analyze
fingerprinting is FPDetective [3], proposed in 2013. They
analyzed the presence of tracking on the home pages, using
JavaScript-based font probing. The findings suggested that
tracking is more widespread than previously thought.

In a remarkable paper [2], Acar et al. analyzed the pop-
ularity of canvas fingerprinting on the Internet. They found
that canvas fingerprinting is the most commonly used finger-
printing method, present in more than 5.5% of the top-100K
Alexa websites. The study discovered a total of 20 canvas
fingerprinting provider domains, active on 5542 of the top-
100K websites.

S. Englehardt and A. Narayanan in 2016 [5] presented the
largest and most detailed measurement of online tracking on
the top 1 million websites. They analyzed several tracking
techniques, including canvas fingerprinting, canvas-font finger-
printing, WebRTC-based fingerprinting, AudioContext finger-
printing and Battery API fingerprinting. The authors found out
that 1.6% of the top-1M websites use canvas fingerprinting.
On the top-10K home pages, they found 403 websites (4.03%)
using canvas fingerprinting. The measurement was made with
OpenWPM, an open source software, already used as the basis
of several studies on web privacy and security.

The main difference between our study and these previous
works is that we analyze and report the use of obfuscated
tracking. To the best of our knowledge, this is the first work
to consider the use of code obfuscation in web tracking.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the first results of our investi-
gation on the use of obfuscated web tracking. We proposed
a new methodology to uncover the use of obfuscated canvas-
based tracking and to efficiently detected canvas fingerprinting
on the Internet. Our results confirm the existence of obfus-
cated canvas-based fingerprinting in the top-10K most visited
websites. We also showed that tracking methods can be more
present in secondary pages than in home pages.

We conducted a measurement study to determine how often
obfuscated tracking is used in the most visited websites. The
results show that at least 10.44% of the analyzed websites use
canvas-based fingerprinting and 2.25% of them obfuscate it.

As part of future work, we plan to crawl the secondary
pages of the top-10K Alexa’s ranking to further investigate
the problem of obfuscated canvas fingerprinting. In addition,
we are currently working on a machine learning solution to
automatically detect obfuscated web tracking from passive
network measurements without the need of instrumenting the
code of the user browser.

VII. ACKNOWLEDGEMENTS

This work was funded by the Spanish Ministry of Econ-
omy and Competitiveness and EU FEDER under grant
TEC2014-59583-C2-2-R (SUNSET project) and by the Cata-
lan Government (ref. 2014SGR-1427). Hoan Le was sup-
ported by an Erasmus Mundus AREAS+ Mobility scholarship,

while Federico Fallace was supported by the project ERAS-
MUS+/PROGRAMME COUNTRIES to stay one year at UPC.
Authors would also like to thank Marco Mellia and Stefano
Traverso from Politecnico di Torino for very useful discussions
on web tracking.

REFERENCES

[1] Tomasz Bujlow, Valentin Carela, Josep Sole-Pareta, and Pere Barlet-
Ros. A survey on web tracking: Mechanisms, implications, and defenses.
Proceedings of the IEEE, 105(8), 2017.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS * 14, pages
674-689, New York, NY, USA, 2014. ACM.

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gurses,
Frank Piessens, and Bart Preneel. Fpdetective: Dusting the web for
fingerprinters. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS *13, pages 1129-1140,
New York, NY, USA, 2013. ACM.

[4] Peter Eckersley. How unique is your web browser? In Proceedings of
the 10th International Conference on Privacy Enhancing Technologies,
PETS’10, pages 1-18, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages
1388-1401, New York, NY, USA, 2016. ACM.

[6] Tai-Ching Li, Huy Hang, Michalis Faloutsos, and Petros Efstathopoulos.
TrackAdvisor: Taking Back Browsing Privacy from Third-Party Trackers,
pages 277-289. Springer International Publishing, Cham, 2015.

[7] Nick Nikiforakis. Web fingerprinting: Who, how and why? In
Proceedings of the OWASP AppSec Research, Hamburg, Germany, 2013.

[8] Lisa Arthur. Finally! new capabilities for more accurate targeting of
facebook ads. Forbes, http://www.forbes.com, 2015.

[9] Microsoft. Donot get scroogled by gmail
https://news.microsoft.com, 2013.

[10] Tony Mecia. Credit card issuers watch online how you shop, customize
offers. Creditcards, http://www.creditcards.com, 2011.

[11] Jakub Mikians, L. Gyarmati, Vijay Erramilli, and Nikolaos Laoutaris.
Detecting price and search discrimination on the internet. In Proceedings
of the 11th ACM Workshop on Hot Topics in Networks, HotNets-XI,
pages 79-84, New York, NY, USA, 2012. ACM.

[12] The Economist. Insurance data: Very personal finance. The Economist,
http://www.economist.com, 2012.

[13] Leslie Scism and Mark Maremont. Insurers test data profiles to identify
risky clients. WSJ, http://www.wsj.com, 2010.

[14] Katie Lobosco. Facebook friends could change your credit score. CNN,
http://money.cnn.com, 2013.

[15] Chris Cuomo et al. Gma gets answers: Some credit card companies
financially profiling customers. ABCNews, http://abcnews.go.com, 2009.

[16] David Mayer. Outrage as credit agency plans to mine facebook data.
Gigaom, https://gigaom.com, 2012.

[17] H. Metwalley, S. Traverso, and M. Mellia. Unsupervised detection
of web trackers. In 2015 IEEE Global Communications Conference
(GLOBECOM), pages 1-6, Dec 2015.

[18] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting
canvas in HTMLS. In Matt Fredrikson, editor, Proceedings of W2SP
2012. IEEE Computer Society, May 2012.

[19] Online JavaScript Obfuscator. http://www.javascriptobfuscator.com,
2016.

[20] JavaScript Obfuscator. http://packer.50x.eu, 2016.

[21] Jscrambler. https://jscrambler.com/en/, 2016.

[22] Javascript Obfuscate and Encoder. http://www.jsobfuscate.com, 2016.

[23] Alexa. Alexa top global sites, https://www.alexa.com/topsites, 2016.

[24] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster:
Exploring the ecosystem of web-based device fingerprinting. In Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy, SP *13,
pages 541-555, Washington, DC, USA, 2013. IEEE Computer Society.

[25] Pedro Fortuna. Protecting javascript source code using obfuscation. In
OWASP Europe Tour 2013 Lisbon, 2013.

Microsoft,

