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Abstract—Data center (DC) infrastructures are a key element 
for nowadays Internet and cloud services. However, due to the 
increase of traffic that DCs have to manage, optical-based network 
architectures are being investigated to overcome the limitations of 
nowadays electronic-based intra-DC network (DCN) 
architectures. In this regard, it becomes imperative to coordinate 
the allocation of very heterogeneous resources (IT and optical 
network) for the efficient provisioning of services inside the DC.
Such process is known as orchestration and allows the DC 
administrator to optimize the utilization of his physical 
infrastructure. In fact, resource orchestration has gained the 
interest of the industry and several software flavors have emerged 
to perform such operation. As a case of study, in this paper we 
focus on the provisioning of Virtual DC (VDC) instances belonging 
to different tenants over a shared DC infrastructure with optical 
DCN. To this end, an architecture for the orchestration and 
control of optically interconnected DCs in aims of efficient VDC 
provisioning is presented. The proposed solution is based on 
OpenStack for the orchestration and the concept of Software 
Defined Networking (SDN) for the control aspect of the network. 
To highlight the benefits of an orchestrated approach to DC 
resource management, several tests are performed, considering 
both static and dynamic VDC provisioning. The obtained results 
confirm the potential benefits of resource orchestration in DCs.
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I. INTRODUCTION

Nowadays cloud platforms are experiencing a huge increase 
on the amounts of data that they have to handle, mainly driven 
by the emergence of bandwidth-hungry applications and 
paradigms such as Big Data and Internet of Things (IoT). This 
fact, coupled with the increasing need to handle to the end-user 
connectivity anywhere, anytime, with any device, has driven the 
telecom industry to push for the development of new 
infrastructures able to handle these requirements. In this 
scenario, the role of DC infrastructures arises of paramount 
importance. DCs allow for an efficient realization of complex 
cloud and Internet services through the collaborative efforts of 
the thousands of servers hosted in their premises. Nevertheless, 
due to the aforementioned increase on the traffic in the global 
cloud arena, DCs have experienced an enormous growth on the 
data that they have to handle, with around 75% of the traffic 
being handled inside DC infrastructures [1]. In such situation,
current electronic-based intra-DCN network fabrics start to be a 

bottleneck in terms of scalability, latency and power 
consumption. For this reason, there is an increasing interest on 
bringing optical technologies inside the DCs due to their higher 
bandwidth and scalability as well as lower latencies and power 
consumption [2].

On the other hand, traditional telecom and cloud 
infrastructure owners have been focusing on offering services on 
top of the infrastructures that they own, with almost no control 
over the service from the user’s part. This has led to a very rigid 
architecture incapable to adapt to dynamic traffic patterns, with 
limited capabilities in terms of infrastructure management and 
operation. In such a context, the concept of Infrastructure as a 
Service (IaaS) has been introduced [3], [4]. The rationale behind 
IaaS is to offer physical infrastructures as a service for 
exploitation by third party entities, giving the possibility to fully 
configure and manage the rented infrastructures, as if they were 
owned by those external entities. Additionally, IaaS is 
envisioned as a way to compose highly customizable 
infrastructures by merging physical resources from diverse 
natures, such as network resources, storage or computational 
capacities. The key enabling technology is the virtualization of 
the physical infrastructures. Thanks to virtualization it is 
possible to slice an underlying physical infrastructure into 
multiple virtual elements. Then, by federating and composing 
such virtual elements it is possible to create virtual 
infrastructures with very specific requirements in terms of 
resource characteristics, management and control.

Such a paradigm has resulted in the emergence of the so 
called VDC service (e.g. [5]). Essentially, a VDC is a case of 
IaaS where multiple external entities (hereafter referred as 
tenants) request to a DC physical provider to lease them a 
portion of his physical infrastructure in order to develop their 
own business models and offer services to end users on top of 
the rented infrastructure. A VDC is usually composed with 
computational resources, such as Virtual Machines (VMs), with 
a virtual network fabric interconnecting them with the desired 
capacity. Tenants execute their services and applications in this 
virtual infrastructure. The provisioning of a VDC instance 
entails basically two operations: node mapping and link 
mapping. The node mapping refers to the placement of the VMs 
onto physical servers while the link mapping consists on finding 
the necessary network resources that allow for the desired 
communication between VMs.



Fig. 1. Example of basic (top) and enhanced (bottom) VDC service scenarios
[6].

Thanks to this, multiple VDC instances can coexist in the 
same physical infrastructure, each one of them having their 
dedicated resources without interfering with the other tenants. 
Fig. 1 (top) exemplifies this scenario, where multiple VDC 
instances are mapped on top of a DC infrastructure with optical 
DCN. Besides the presented VDC scenario, more sophisticated 
VDC services may be required in order to satisfy the needs of a 
broad range of tenants. For instance, finer control on the
networking aspect of the VDC instance could be desirable as a 
way to optimize the utilization of the virtual slice. To achieve 
this purpose, it would be necessary to expose to the tenant the 
switching capabilities of the virtual slice, for instance, in the
form of virtual switches [6]. By exposing these capabilities, the 
tenant can decide on how to route the traffic on his slice not only 
from the layer 3 perspective (e.g. IP), but also from the 
infrastructure point of view, achieving a higher customization 
and efficiency. Fig. 1 (bottom) depicts this scenario, considering 
the presence of virtual Top of the Rack (ToR) and optical 
switches. The exposure of the switching capabilities can be 
achieved by means of proper virtualization and slicing of the 
network resources and exposing the control of the obtained 
virtual resources towards the tenant by means of dedicated APIs.

Both presented scenarios require the provisioning of 
different types of resources (computational and network 
resources). In order to achieve an optimized VDC deployment,
it is essential to coordinate both provisioning phases as well as 
to provide the necessary means to enforce programmatic control 
over the physical resources. This process, known as 
orchestration [7], is a primordial feature that modern DCs have 
to implement for efficient resource utilization. In fact, as 
reported in the last survey from Infonetics Research, during 

2016 over 50% of the DC environments in production are 
planning to deploy orchestration solutions for resource 
management [8]. Following this trend, in the next section we 
present an SDN-based DC architecture which encompasses both 
a control and an orchestration layer in aims of supporting the 
provisioning of VDC instances.

II. SDN-BASED DC ARCHITECTURE

The proposed DC architecture is depicted in Fig. 2. 
Basically, it consists of three differentiated layers: data plane 
(bottom), control plane (middle) and orchestration plane (top). 
In more details, the data plane consists in several servers 
arranged in racks, with each rack having an opto-electronic Top 
of the Rack (ToR) switch that enables for the communication of 
the servers within the same rack. At its turn, the ToRs are 
interconnected thanks to an Optical Circuit Switching (OCS)-
based network fabric. Thanks to the electronic capabilities of the 
ToRs, multiple communication flows may be groomed onto the 
same optical connection. Then, the optical connections are
transparently switched by means of the intermediate OCS 
switches. At the destination ToR, an optical-to-electrical (O/E) 
conversion is performed and traffic is delivered to the 
corresponding destination server.

The intermediate layer corresponds to the SDN controller, 
which is, in brief, responsible for configuring the devices of the 
data plane. Finally, the orchestrator resides in the upper layer of 
the architecture and provides functionalities such as coordinated 
service provisioning according to the status of the physical 
infrastructure and the requests coming from external users. Next, 
more details about the architecture of the orchestrator and the 
control layers are provided.

A. OpenStack-based Orchestrator Layer
The orchestrator layer is based on the OpenStack software 

platform [9]. OpenStack is an open source DC management 
platform that allows for the orchestration of storage, 
computational and network resources. To achieve such purpose, 
OpenStack integrates several software modules and services, 
each one dedicated to a concrete task in the overall orchestration 
process (e.g. resource monitoring, service request, etc.). Thanks 
to the modularity of the OpenStack components, it is up to the 
DC administrator which ones to use and how they collaborate in 
order to achieve the provisioning of complex cloud services. In
our proposed architecture, three OpenStack services are being 
employed, namely, Heat, Nova and Neutron.

Heat is the OpenStack orchestration service, which 
coordinates the overall provisioning process through 
communication with the different resource controllers (e.g. 
Nova, Neutron). Essentially, Heat is a template-driven service 
for describing and automating deployment of compute, storage 
and networking resources. Heat declarative mode takes form of 
a simple YAML template, a kind of markup language that allows 
specifying the parameters, resources and outputs of the request 
introduced in the template. When the template is deployed, a 
collection of infrastructure resources, known collectively as a
stack, is instantiated, in the correct order and using the correctly
inferred parameters. Depending on the type of resources Heat 
contacts the corresponding controller in order to instantiate 
them.



Fig. 2. SDN-enabled DC architecture.

For this, on the one hand, Nova is employed. Through Nova 
it is possible to specify the details of the VMs to be deployed 
(cores, memory, local storage, network interface capacity, 
operating system image, etc.) as well as the placement of the 
VMs in specific hosts or zones in the DC infrastructure and 
instantiate them. On the other hand, once the VMs have been 
deployed, Neutron is utilized to configure the network slice 
connecting them. Neutron is designed to manage the logical 
networks and to completely isolate the cloud user from the 
physical network considerations. For our purposes, it becomes 
essential that the optical capabilities of the underlying physical 
infrastructure are taken into account when provisioning the 
virtual networks. To this end, some extensions are developed in 
the Neutron service. These extensions consist of several APIs 
that allow the communication between Neutron and the network 
infrastructure controller, i.e. the SDN controller. In this way, the 
orchestrator can tap on the capabilities of the optical network, 
allowing for the provisioning of optical connections that will 
satisfy the needs of the VDC instance.

Apart from OpenStack, the orchestrator implements a 
dashboard module, which is the entry point for requests from 
tenants. Through the dashboard, a tenant can specify the desired 
VDC instance. Once specified, the details are sent to Heat for 
instantiation. Additionally, for a better optimization of the 
resource provisioning of VDC instances, we developed a new 
algorithms module, which seats between the dashboard service 
and the OpenStack Heat module. The main functionality of this 
module is to decide on the concrete mapping of the VDC 
resources onto physical ones. To this end, it fetches information 
from the infrastructure controllers (Nova and the SDN controller 
for computational and network resources, respectively). Such 
information is utilized to perform the mapping. In order to 
enable a more agile mapping process, some of the information 
may be stored into a resource database for further reference.
Once the VDC mapping is decided, its details are fed to Heat in 
the form of a YAML template, which describes the 
characteristics of the VDC request and the desired placement for 
the requested resources. Some extensions on the template and on 

the Heat and Neutron modules are needed in order to cope with 
the provisioning of the virtual links of a VDC, since they are not 
a native OpenStack resource. For this, a new plug-in is designed
for the virtual link resource. The purpose of the plug-in is to 
define the core characteristics of the resource as well as to 
provide the means to handle its whole lifecycle from the 
orchestrator perspective, that is, to perform Create, Read, 
Update and Delete (CRUD) operations. 

B. SDN Controller Layer
The controller implementation is based on the OpenDaylight 

SDN platform in its Lithium release [10]. The OpenDaylight 
project is an initiative from the Linux Foundation that aims to 
develop an SDN-based control platform following the 
collaborative methods used by the open source community. 
From a functional perspective, the OpenDaylight controller is 
composed of a set of modules that cooperate to perform the set 
of tasks typically associated to the control layer (e.g. routing, 
signaling, etc.). More specifically, at the bottom of the 
controller, the Southbound (SB) interface implements the 
communication with the devices that compose the data plane. In 
a general case, this communication can be realized by means of 
different protocols such as OpenFlow (OF), NETCONF, SNMP, 
etc. Nonetheless, it is worth noting here that in our case all 
network devices can be configured through the OF protocol. The 
core of the controller relies on the SB interface to collect 
information about the data plane as well as to configure the 
requested network services over it. The basic functionalities 
implemented here are devoted to maintain the inventory of the 
network elements, the topology in which they are laid and 
interconnected, and the network services that are already 
deployed. The statistics collection service is also included here. 
The key entity in the core of the controller is the service
abstraction layer (MD-SAL), which utilizes a set of data stores 
to keep a representation of the network elements at the control 
level. Hence, the functional modules of the controller perform 
their tasks by interacting with the data plane through the MD-
SAL, which acts as a proxy. More advanced functionalities, such 
as network virtualization and monitoring, have been developed 
as well within the OpenDaylight project and can be dynamically 
installed in the controller. In the upper bound, OpenDaylight 
communicates with external applications and/or the 
orchestration layer through the Northbound (NB) interface, 
which is implemented by means of REST APIs.

For our purposes, an extended version of the OpenDaylight 
controller is required. First of all, extended versions of the OF 
protocol and plug-in able to cope with the specific requirements 
of the optical data plane are needed. In this way, the optical 
devices can be abstracted at the core of the controller (by means 
of the MD-SAL), so that the functional modules, such as the 
topology and inventory managers, can access them. In the same 
line, the topology and the inventory managers are extended to 
support the optical data plane infrastructure. Besides this, to 
implement the VDC allocation procedure, some network 
services have to be extended and new ones need to be 
implemented. First, an extended version of the Virtual Tenant 
Network (VTN) module is needed. In its current version, the 
VTN provides tools to virtualize packet-based electronic 
networks. However, due to the characteristics of the considered 
data plane scenario, the VTN needs to be extended to support 



and virtualize pure optical transmission devices (i.e. OCS
switches). To this end, the Optical Resource Virtualization 
Manager (ORVM) module has been developed and integrated 
with the VTN. The ORVM is responsible for creating and 
managing the virtual instances associated to the optical data 
plane devices. In particular, the ORVM keeps instances of 
virtual optical nodes and links. While a virtual optical node is
defined as a subset of optical ports of the physical OCS switch,
a virtual optical link is basically an optical path that connects 
two virtual nodes. In order to create a virtual link, the ORVM 
contacts the newly implemented Optical Provisioning Manager 
(OPM) module, which is responsible for creating optical paths 
over the physical data plane. Once created, the virtual optical 
resources are assigned to a single tenant who can further operate 
them.

C. VDC Provisioning Workflow
Having introduced the orchestrator and the control layer 

software architectures, we now detail the full workflow for the 
provisioning of VDC instances. The specific steps are as 
follows:

1. The tenant specifies the VDC request to be instantiated 
through the dashboard service of the orchestrator, giving the 
details about the desired resources: number of VMs, 
capacity of the VMs, virtual network topology and capacity 
of the virtual links. The VDC request is sent to the 
algorithms module (e.g., in a JSON file format).

2. Upon reception of the request, the algorithms module fetches 
information about the current status of the physical 
infrastructure. In concrete, it fetches server resource 
availability from Nova and network resource availability 
from the topology manager at the SDN controller.

3. With such information, the algorithms module executes an 
optimization algorithm in order to find the mapping of the 
VDC instance. Several algorithms may be available. The 
selection of the most proper one is performed by means of 
a set of policies, which are integrated in the orchestration 
platform.

4. Once the resource mapping is decided, the physical details 
of the virtual link mapping are stored in the resource 
database for further reference. The overall description of the 
VDC instance to be deployed is fed to Heat in the form of a 
YAML template. Heat contacts Nova and Neutron in order 
to configure the desired resources.

5. Nova creates the VMs as specified in the YAML template.

6. Neutron contacts the SDN controller which is the responsible 
to manage the creation and configuration of the virtual 
network infrastructure. This configuration is done in two 
phases. First, the ORVM is contacted to configure the 
virtual optical network. More precisely, the ORVM 
receives the optical path configuration associated to the 
virtual links to be created from Neutron. Afterwards, the 
ORVM contacts the OPM, which actually configures the 
optical paths in the data plane through the MD-SAL and the 
OF plug-in of the SB interface. Second, the VTN module is 
requested to create the virtual network infrastructure 
associated to the electrical network (i.e., the ToR switches).

7. When both phases are successfully finished, the controller 
updates the status of the network, which is kept in the 
inventory and topology managers. As a result, end-to-end
connectivity between VMs is achieved and the whole 
virtual infrastructure is assigned to the tenant.

III. VDC PROVISIONING: A CASE STUDY

As a case of study, in this section we present an optimization 
algorithm to decide the optimal mapping of VDC requests. The 
proposed algorithm is executed within the algorithms module of
the orchestrator layer. Thanks to it, it is possible to jointly map 
both the virtual nodes (VMs) and virtual links of the VDC 
instances, increasing the acceptance ratio of the requests.

Before detailing the algorithm, let us specify the problem 
under consideration. We consider a DC infrastructure with a set 
of servers arranged in a set of racks . We assume that each 
server has a capacity in terms of VMs that can host equal to 
and a Network Interface Card (NIC) capacity equal to , while 
each rack holds a total number of servers equal to . The racks 
are interconnected through an optical DCN represented by the 
graph = ( , ), with the set of network nodes and the 
set of fiber links. Specifically, is composed by a set of ToRs 

, one per rack, and a set of OCS switches . We consider that 
each ToR is equipped with opto-electronic conversion 
capabilities, with electronic ports working at a bit-rate equal to 

while optical ports work at a bit-rate equal to . In this 
regard, we denote as as the total number of ports of a ToR 
while we denote as the number of optical ports of the same 
ToR. As for the OCS switches, we assume that each one of them 
has a port limit equal to . Finally, we define as as the set 
of wavelength channels per optical port at a ToR switch.

The optimization problem at hand consists on maximizing 
the number of VDCs to be mapped over a DC infrastructure with 
constrained capacity given a known set of VDC requests. For 
this, we define as the request set. Each VDC is characterized 
by a virtual graph = ( , ), with the set of virtual 
nodes and the set of virtual links. Each virtual node requests 
for a capacity in terms of VMs equal to while each virtual 
links requests for a bit-rate equal to . In this regard, we follow 
a joint mapping approach to the VDC mapping, coordinating 
both node and link mapping phases. The benefits of a joint 
mapping approach have been demonstrated in the literature (e.g.
[11], [12]), increasing the acceptance of the VDCs. In this 
regard, it is the role of the orchestrator not to only provide the 
joint mapping of the VDCs but to also coordinate all the 
involved software services to achieve the desired deployment.
Next, we proceed on detailing the algorithm utilized for the 
mapping computation. 

A. Optimization Algorithm for VDC Provisioning
The proposed algorithm takes as input the DC infrastructure, 

considering both server and network resources as well as the 
whole demand set and outputs the number of successfully 
deployed VDC instances as well as their corresponding 
mapping. Essentially, the algorithm applies an adaptive iterative 
procedure, trying to fit a VDC request per iteration. At the end, 
the obtained solution is returned. Let us note that we impose the 
restriction that the virtual nodes of a VDC request have to be 
mapped over different racks. This is done in order to achieve 



some degree of robustness against server and rack failures. 
Nevertheless, the VMs of the same virtual node are mapped over 
servers belonging to the same rack. Additionally, we consider 
the possibility to aggregate several virtual links that have the 
same source and destination ToRs onto the same optical 
connection (lightpath) thanks to the electronic capabilities of the 
ToR switches.

With these, the steps of the algorithm are as follows:

1. Calculate all the candidate lightpaths from every pair of 
source and destination ToRs in the DCN, employing a 
K-shortest path strategy for the route computation.

2. Sort the demands in the demand set in descending order 
according to the following metric:

| | + | |
In this way, the algorithm tries to serve first the 
demands that request more resources respect their 
number of nodes and links.

3. Once sorted, it proceeds with the mapping of the VDCs 
in an iterative fashion. The procedure ends once every 
VDC has been tested for a successful mapping.

4. Start with the virtual node mapping. For this, the 
algorithm sorts the racks in the DC in descending order 
according to the Cartesian product between the 
normalized difference of the requested VMs and the 
server with the highest available capacity in the rack,
and the normalized difference with the aggregated bit-
rate incoming/outgoing from the virtual node and the 
available NIC capacity of the same server. If one of the 
two differences is equal to 0, it is set to 1 for the purpose 
of the metric. If both of them are negative, the resulting 
product will be set to negative. In this regard, the 
algorithm introduces network availability status 
awareness in the node mapping.

5. Select the first rack and map the VMs onto the servers 
having the highest previously described metric inside 
the rack. Update the capacities of the servers. Proceed 
with the next virtual node.

6. For the link mapping, the algorithm first checks if there 
is a currently established lightpath from the same source 
to the same destination ToR. If not, a new lightpath is 
created, selecting the first candidate lightpath that has 
enough room to support the virtual link. If yes, the 
lightpaths sharing the same source and destination are 
sorted in descending order according to their remaining 
capacity. The first lightpath with enough room to fit the 
virtual link is selected.

7. Update the capacity of the servers’ NICs, network links 
and established lightpaths. Proceed with the next virtual 
link.

8. If the VDC has been fully served, its mapping is added 
to the full solution. Contrarily, the mapping is 
disregarded and the status of the DC resources is 
restored prior to the VDC mapping.

9. Proceed with the mapping of the next VDC starting 
from Step 4.

Note that the presented algorithm can be also applied for the 
dynamic provisioning of VDC instances, where requests arrive 
at the DC infrastructure one by one and no knowledge of the 
whole demand set can be achieved. For this, the algorithm is 
applied to a single demand, considering its characteristics and 
the actual status of the DC infrastructure. By coordinating both 
the node and the link mapping of the VDC requests, it is possible 
to minimize the blocking probability (BP) given a dynamic 
arrival and departure process.

IV. RESULTS AND DISCUSSION

In this section we will evaluate the performance of the 
proposed algorithm and the benefits of a joint mapping of the 
VDC resources both from static and dynamic provisioning 
perspectives. For benchmark purposes, we also implemented a 
variation of the mapping algorithm where the node mapping is 
performed solely considering the status of the IT resources, that 
is, the server capacity, balancing the load of the servers and the 
aggregated capacity of the racks. Before discussing the obtained 
results, we detail the considered scenario for the tests.

A. Considered Scenario
We consider a DC scenario composed of 6 racks with each 

rack consisting of 48 servers. Each server has a VM capacity 
equal to 10 and a NIC capacity equal to 1 Gb/s. As for the 
network, we consider a spine-leaf topology, where each ToR is 
connected simultaneously to several OCS switches. Particularly, 
we consider that each ToR has a radix of 64x64, with 48 
electronic ports at 1 Gb/s dedicated to the connection of the 
servers within the rack, and 6 optical ports with 12 wavelength 
channels each at 10 Gb/s dedicated to the interconnection with 
the OCS switches, accounting for a total capacity of 72 
wavelength channels for the inter-rack communication. As for 
the OCS switches, we consider 2 OCS switches with a radix of 
384x384, with each of the ToRs connected through 3 of their 
optical ports to each OCS switch, accounting for a total of 36 
wavelength channels for the interconnection between a 
particular pair of ToR-OCS switch.

Focusing on the demand set, we generate the VDC requests 
following a 2-step procedure. First, between 2 and 5 virtual 
nodes are randomly generated per demand. For simplicity, we 
assume that each virtual node requests for a single VM, that is, = 1. Next, the virtual nodes are randomly connected,
preventing the generation of non-connected graphs. Each virtual 
link requests for a bit-rate in the range [100, 1000] Mb/s, in steps 
of 100 Mb/s. In order to consider a realistic scenario, we 
generate the bit-rate of the virtual links considering that the 
traffic generated by a VM cannot not surpass the NIC capacity 
of a server (1 Gb/s). With such scenario and parameters, the next 
section presents the results obtained during the evaluation of the 
presented algorithm.

B. Results
First, we will evaluate the benefits of a joint resource 

orchestration when facing the allocation of a known set of VDC 
requests (static scenario). To this end, we evaluated the number 
of successfully allocated VDC requests as a function of the 



Fig. 3. Comparison between no joint and joint VDC mapping strategies for 
both static (top) and dynamic (bottom) scenarios.

number of offered VDCs. Fig. 3 (top) depicts the obtained 
results. All the data points have been obtained averaging 100 
random problem instances. It can be appreciated how a joint 
mapping of the VDC instances allows for a higher number of 
accepted requests, up to around 47% more when compared with 
a mapping strategy that does not coordinate both mapping 
phases. This is due to the network awareness of the node 
mapping phase in the joint approach, which lowers the chances 
of blocking due to the lack of network resources during the link 
mapping phase.

To further evaluate the benefits of an orchestrated approach 
to VDC mapping, we also performed some tests considering a 
dynamic scenario, where VDC arrive at the DC following a 
random arrival and departure process. For this, we consider a 
Poisson arrival process, with exponentially distributed inter-
arrival times (IATs) and holding times (HTs). We evaluated the 
blocking probability of the VDC requests considering increasing 
loads. For this, we have fixed the average IAT to one time unit 
and increased the average value of HT. Fig. 3 (bottom) depicts 
the obtained results. All the data points have been extracted 
considering 2·105 random VDC arrivals. The obtained results 

further confirm the benefits of a joint mapping, achieving 
blocking figures with at least 50% reductions when compared to 
the non-joint approach.

V. CONCLUSIONS

With the emergence of optical technologies inside DC 
infrastructures and the increasing interest of enabling them with 
the capacity to provision virtual slices, i.e. VDCs, for 
exploitation by external tenants, resource orchestration and 
virtualization has raised as a primordial feature that modern DCs 
have to implement. In this paper we presented a DC architecture 
that encompasses both an orchestrator platform, based on 
OpenStack, and a control layer, based on SDN, for efficient
VDC provisioning and deployment.

To assess the benefits of resource orchestration in DC 
resource management, we also presented an algorithm for 
optimizing the resource mapping of VDC instances. The 
obtained results confirm that a joint orchestration is beneficial 
when deploying complex cloud services, such as VDCs,
resulting in around a 50% increase on the accepted requests 
when compared to no orchestrated resource mapping strategies.
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