
Resource Orchestration in SDN-based Future Optical
Data Centres

Salvatore Spadaro, Albert Pagès, Fernando Agraz, Rafael Montero, Jordi Perelló
Universitat Politècnica de Catalunya (UPC)

Advanced Broadband Communications Center (CCABA)
Barcelona, Spain

spadaro@tsc.upc.edu

Abstract—Data center (DC) infrastructures are a key element
for nowadays Internet and cloud services. However, due to the
increase of traffic that DCs have to manage, optical-based network
architectures are being investigated to overcome the limitations of
nowadays electronic-based intra-DC network (DCN)
architectures. In this regard, it becomes imperative to coordinate
the allocation of very heterogeneous resources (IT and optical
network) for the efficient provisioning of services inside the DC.
Such process is known as orchestration and allows the DC
administrator to optimize the utilization of his physical
infrastructure. In fact, resource orchestration has gained the
interest of the industry and several software flavors have emerged
to perform such operation. As a case of study, in this paper we
focus on the provisioning of Virtual DC (VDC) instances belonging
to different tenants over a shared DC infrastructure with optical
DCN. To this end, an architecture for the orchestration and
control of optically interconnected DCs in aims of efficient VDC
provisioning is presented. The proposed solution is based on
OpenStack for the orchestration and the concept of Software
Defined Networking (SDN) for the control aspect of the network.
To highlight the benefits of an orchestrated approach to DC
resource management, several tests are performed, considering
both static and dynamic VDC provisioning. The obtained results
confirm the potential benefits of resource orchestration in DCs.

Keywords—Data Center Networks; Virtualization;
Orchestration

I. INTRODUCTION

Nowadays cloud platforms are experiencing a huge increase
on the amounts of data that they have to handle, mainly driven
by the emergence of bandwidth-hungry applications and
paradigms such as Big Data and Internet of Things (IoT). This
fact, coupled with the increasing need to handle to the end-user
connectivity anywhere, anytime, with any device, has driven the
telecom industry to push for the development of new
infrastructures able to handle these requirements. In this
scenario, the role of DC infrastructures arises of paramount
importance. DCs allow for an efficient realization of complex
cloud and Internet services through the collaborative efforts of
the thousands of servers hosted in their premises. Nevertheless,
due to the aforementioned increase on the traffic in the global
cloud arena, DCs have experienced an enormous growth on the
data that they have to handle, with around 75% of the traffic
being handled inside DC infrastructures [1]. In such situation,
current electronic-based intra-DCN network fabrics start to be a

bottleneck in terms of scalability, latency and power
consumption. For this reason, there is an increasing interest on
bringing optical technologies inside the DCs due to their higher
bandwidth and scalability as well as lower latencies and power
consumption [2].

On the other hand, traditional telecom and cloud
infrastructure owners have been focusing on offering services on
top of the infrastructures that they own, with almost no control
over the service from the user’s part. This has led to a very rigid
architecture incapable to adapt to dynamic traffic patterns, with
limited capabilities in terms of infrastructure management and
operation. In such a context, the concept of Infrastructure as a
Service (IaaS) has been introduced [3], [4]. The rationale behind
IaaS is to offer physical infrastructures as a service for
exploitation by third party entities, giving the possibility to fully
configure and manage the rented infrastructures, as if they were
owned by those external entities. Additionally, IaaS is
envisioned as a way to compose highly customizable
infrastructures by merging physical resources from diverse
natures, such as network resources, storage or computational
capacities. The key enabling technology is the virtualization of
the physical infrastructures. Thanks to virtualization it is
possible to slice an underlying physical infrastructure into
multiple virtual elements. Then, by federating and composing
such virtual elements it is possible to create virtual
infrastructures with very specific requirements in terms of
resource characteristics, management and control.

Such a paradigm has resulted in the emergence of the so
called VDC service (e.g. [5]). Essentially, a VDC is a case of
IaaS where multiple external entities (hereafter referred as
tenants) request to a DC physical provider to lease them a
portion of his physical infrastructure in order to develop their
own business models and offer services to end users on top of
the rented infrastructure. A VDC is usually composed with
computational resources, such as Virtual Machines (VMs), with
a virtual network fabric interconnecting them with the desired
capacity. Tenants execute their services and applications in this
virtual infrastructure. The provisioning of a VDC instance
entails basically two operations: node mapping and link
mapping. The node mapping refers to the placement of the VMs
onto physical servers while the link mapping consists on finding
the necessary network resources that allow for the desired
communication between VMs.

Fig. 1. Example of basic (top) and enhanced (bottom) VDC service scenarios
[6].

Thanks to this, multiple VDC instances can coexist in the
same physical infrastructure, each one of them having their
dedicated resources without interfering with the other tenants.
Fig. 1 (top) exemplifies this scenario, where multiple VDC
instances are mapped on top of a DC infrastructure with optical
DCN. Besides the presented VDC scenario, more sophisticated
VDC services may be required in order to satisfy the needs of a
broad range of tenants. For instance, finer control on the
networking aspect of the VDC instance could be desirable as a
way to optimize the utilization of the virtual slice. To achieve
this purpose, it would be necessary to expose to the tenant the
switching capabilities of the virtual slice, for instance, in the
form of virtual switches [6]. By exposing these capabilities, the
tenant can decide on how to route the traffic on his slice not only
from the layer 3 perspective (e.g. IP), but also from the
infrastructure point of view, achieving a higher customization
and efficiency. Fig. 1 (bottom) depicts this scenario, considering
the presence of virtual Top of the Rack (ToR) and optical
switches. The exposure of the switching capabilities can be
achieved by means of proper virtualization and slicing of the
network resources and exposing the control of the obtained
virtual resources towards the tenant by means of dedicated APIs.

Both presented scenarios require the provisioning of
different types of resources (computational and network
resources). In order to achieve an optimized VDC deployment,
it is essential to coordinate both provisioning phases as well as
to provide the necessary means to enforce programmatic control
over the physical resources. This process, known as
orchestration [7], is a primordial feature that modern DCs have
to implement for efficient resource utilization. In fact, as
reported in the last survey from Infonetics Research, during

2016 over 50% of the DC environments in production are
planning to deploy orchestration solutions for resource
management [8]. Following this trend, in the next section we
present an SDN-based DC architecture which encompasses both
a control and an orchestration layer in aims of supporting the
provisioning of VDC instances.

II. SDN-BASED DC ARCHITECTURE

The proposed DC architecture is depicted in Fig. 2.
Basically, it consists of three differentiated layers: data plane
(bottom), control plane (middle) and orchestration plane (top).
In more details, the data plane consists in several servers
arranged in racks, with each rack having an opto-electronic Top
of the Rack (ToR) switch that enables for the communication of
the servers within the same rack. At its turn, the ToRs are
interconnected thanks to an Optical Circuit Switching (OCS)-
based network fabric. Thanks to the electronic capabilities of the
ToRs, multiple communication flows may be groomed onto the
same optical connection. Then, the optical connections are
transparently switched by means of the intermediate OCS
switches. At the destination ToR, an optical-to-electrical (O/E)
conversion is performed and traffic is delivered to the
corresponding destination server.

The intermediate layer corresponds to the SDN controller,
which is, in brief, responsible for configuring the devices of the
data plane. Finally, the orchestrator resides in the upper layer of
the architecture and provides functionalities such as coordinated
service provisioning according to the status of the physical
infrastructure and the requests coming from external users. Next,
more details about the architecture of the orchestrator and the
control layers are provided.

A. OpenStack-based Orchestrator Layer
The orchestrator layer is based on the OpenStack software

platform [9]. OpenStack is an open source DC management
platform that allows for the orchestration of storage,
computational and network resources. To achieve such purpose,
OpenStack integrates several software modules and services,
each one dedicated to a concrete task in the overall orchestration
process (e.g. resource monitoring, service request, etc.). Thanks
to the modularity of the OpenStack components, it is up to the
DC administrator which ones to use and how they collaborate in
order to achieve the provisioning of complex cloud services. In
our proposed architecture, three OpenStack services are being
employed, namely, Heat, Nova and Neutron.

Heat is the OpenStack orchestration service, which
coordinates the overall provisioning process through
communication with the different resource controllers (e.g.
Nova, Neutron). Essentially, Heat is a template-driven service
for describing and automating deployment of compute, storage
and networking resources. Heat declarative mode takes form of
a simple YAML template, a kind of markup language that allows
specifying the parameters, resources and outputs of the request
introduced in the template. When the template is deployed, a
collection of infrastructure resources, known collectively as a
stack, is instantiated, in the correct order and using the correctly
inferred parameters. Depending on the type of resources Heat
contacts the corresponding controller in order to instantiate
them.

Fig. 2. SDN-enabled DC architecture.

For this, on the one hand, Nova is employed. Through Nova
it is possible to specify the details of the VMs to be deployed
(cores, memory, local storage, network interface capacity,
operating system image, etc.) as well as the placement of the
VMs in specific hosts or zones in the DC infrastructure and
instantiate them. On the other hand, once the VMs have been
deployed, Neutron is utilized to configure the network slice
connecting them. Neutron is designed to manage the logical
networks and to completely isolate the cloud user from the
physical network considerations. For our purposes, it becomes
essential that the optical capabilities of the underlying physical
infrastructure are taken into account when provisioning the
virtual networks. To this end, some extensions are developed in
the Neutron service. These extensions consist of several APIs
that allow the communication between Neutron and the network
infrastructure controller, i.e. the SDN controller. In this way, the
orchestrator can tap on the capabilities of the optical network,
allowing for the provisioning of optical connections that will
satisfy the needs of the VDC instance.

Apart from OpenStack, the orchestrator implements a
dashboard module, which is the entry point for requests from
tenants. Through the dashboard, a tenant can specify the desired
VDC instance. Once specified, the details are sent to Heat for
instantiation. Additionally, for a better optimization of the
resource provisioning of VDC instances, we developed a new
algorithms module, which seats between the dashboard service
and the OpenStack Heat module. The main functionality of this
module is to decide on the concrete mapping of the VDC
resources onto physical ones. To this end, it fetches information
from the infrastructure controllers (Nova and the SDN controller
for computational and network resources, respectively). Such
information is utilized to perform the mapping. In order to
enable a more agile mapping process, some of the information
may be stored into a resource database for further reference.
Once the VDC mapping is decided, its details are fed to Heat in
the form of a YAML template, which describes the
characteristics of the VDC request and the desired placement for
the requested resources. Some extensions on the template and on

the Heat and Neutron modules are needed in order to cope with
the provisioning of the virtual links of a VDC, since they are not
a native OpenStack resource. For this, a new plug-in is designed
for the virtual link resource. The purpose of the plug-in is to
define the core characteristics of the resource as well as to
provide the means to handle its whole lifecycle from the
orchestrator perspective, that is, to perform Create, Read,
Update and Delete (CRUD) operations.

B. SDN Controller Layer
The controller implementation is based on the OpenDaylight

SDN platform in its Lithium release [10]. The OpenDaylight
project is an initiative from the Linux Foundation that aims to
develop an SDN-based control platform following the
collaborative methods used by the open source community.
From a functional perspective, the OpenDaylight controller is
composed of a set of modules that cooperate to perform the set
of tasks typically associated to the control layer (e.g. routing,
signaling, etc.). More specifically, at the bottom of the
controller, the Southbound (SB) interface implements the
communication with the devices that compose the data plane. In
a general case, this communication can be realized by means of
different protocols such as OpenFlow (OF), NETCONF, SNMP,
etc. Nonetheless, it is worth noting here that in our case all
network devices can be configured through the OF protocol. The
core of the controller relies on the SB interface to collect
information about the data plane as well as to configure the
requested network services over it. The basic functionalities
implemented here are devoted to maintain the inventory of the
network elements, the topology in which they are laid and
interconnected, and the network services that are already
deployed. The statistics collection service is also included here.
The key entity in the core of the controller is the service
abstraction layer (MD-SAL), which utilizes a set of data stores
to keep a representation of the network elements at the control
level. Hence, the functional modules of the controller perform
their tasks by interacting with the data plane through the MD-
SAL, which acts as a proxy. More advanced functionalities, such
as network virtualization and monitoring, have been developed
as well within the OpenDaylight project and can be dynamically
installed in the controller. In the upper bound, OpenDaylight
communicates with external applications and/or the
orchestration layer through the Northbound (NB) interface,
which is implemented by means of REST APIs.

For our purposes, an extended version of the OpenDaylight
controller is required. First of all, extended versions of the OF
protocol and plug-in able to cope with the specific requirements
of the optical data plane are needed. In this way, the optical
devices can be abstracted at the core of the controller (by means
of the MD-SAL), so that the functional modules, such as the
topology and inventory managers, can access them. In the same
line, the topology and the inventory managers are extended to
support the optical data plane infrastructure. Besides this, to
implement the VDC allocation procedure, some network
services have to be extended and new ones need to be
implemented. First, an extended version of the Virtual Tenant
Network (VTN) module is needed. In its current version, the
VTN provides tools to virtualize packet-based electronic
networks. However, due to the characteristics of the considered
data plane scenario, the VTN needs to be extended to support

and virtualize pure optical transmission devices (i.e. OCS
switches). To this end, the Optical Resource Virtualization
Manager (ORVM) module has been developed and integrated
with the VTN. The ORVM is responsible for creating and
managing the virtual instances associated to the optical data
plane devices. In particular, the ORVM keeps instances of
virtual optical nodes and links. While a virtual optical node is
defined as a subset of optical ports of the physical OCS switch,
a virtual optical link is basically an optical path that connects
two virtual nodes. In order to create a virtual link, the ORVM
contacts the newly implemented Optical Provisioning Manager
(OPM) module, which is responsible for creating optical paths
over the physical data plane. Once created, the virtual optical
resources are assigned to a single tenant who can further operate
them.

C. VDC Provisioning Workflow
Having introduced the orchestrator and the control layer

software architectures, we now detail the full workflow for the
provisioning of VDC instances. The specific steps are as
follows:

1. The tenant specifies the VDC request to be instantiated
through the dashboard service of the orchestrator, giving the
details about the desired resources: number of VMs,
capacity of the VMs, virtual network topology and capacity
of the virtual links. The VDC request is sent to the
algorithms module (e.g., in a JSON file format).

2. Upon reception of the request, the algorithms module fetches
information about the current status of the physical
infrastructure. In concrete, it fetches server resource
availability from Nova and network resource availability
from the topology manager at the SDN controller.

3. With such information, the algorithms module executes an
optimization algorithm in order to find the mapping of the
VDC instance. Several algorithms may be available. The
selection of the most proper one is performed by means of
a set of policies, which are integrated in the orchestration
platform.

4. Once the resource mapping is decided, the physical details
of the virtual link mapping are stored in the resource
database for further reference. The overall description of the
VDC instance to be deployed is fed to Heat in the form of a
YAML template. Heat contacts Nova and Neutron in order
to configure the desired resources.

5. Nova creates the VMs as specified in the YAML template.

6. Neutron contacts the SDN controller which is the responsible
to manage the creation and configuration of the virtual
network infrastructure. This configuration is done in two
phases. First, the ORVM is contacted to configure the
virtual optical network. More precisely, the ORVM
receives the optical path configuration associated to the
virtual links to be created from Neutron. Afterwards, the
ORVM contacts the OPM, which actually configures the
optical paths in the data plane through the MD-SAL and the
OF plug-in of the SB interface. Second, the VTN module is
requested to create the virtual network infrastructure
associated to the electrical network (i.e., the ToR switches).

7. When both phases are successfully finished, the controller
updates the status of the network, which is kept in the
inventory and topology managers. As a result, end-to-end
connectivity between VMs is achieved and the whole
virtual infrastructure is assigned to the tenant.

III. VDC PROVISIONING: A CASE STUDY

As a case of study, in this section we present an optimization
algorithm to decide the optimal mapping of VDC requests. The
proposed algorithm is executed within the algorithms module of
the orchestrator layer. Thanks to it, it is possible to jointly map
both the virtual nodes (VMs) and virtual links of the VDC
instances, increasing the acceptance ratio of the requests.

Before detailing the algorithm, let us specify the problem
under consideration. We consider a DC infrastructure with a set
of servers arranged in a set of racks . We assume that each
server has a capacity in terms of VMs that can host equal to
and a Network Interface Card (NIC) capacity equal to , while
each rack holds a total number of servers equal to . The racks
are interconnected through an optical DCN represented by the
graph = (,), with the set of network nodes and the
set of fiber links. Specifically, is composed by a set of ToRs

, one per rack, and a set of OCS switches . We consider that
each ToR is equipped with opto-electronic conversion
capabilities, with electronic ports working at a bit-rate equal to

while optical ports work at a bit-rate equal to . In this
regard, we denote as as the total number of ports of a ToR
while we denote as the number of optical ports of the same
ToR. As for the OCS switches, we assume that each one of them
has a port limit equal to . Finally, we define as as the set
of wavelength channels per optical port at a ToR switch.

The optimization problem at hand consists on maximizing
the number of VDCs to be mapped over a DC infrastructure with
constrained capacity given a known set of VDC requests. For
this, we define as the request set. Each VDC is characterized
by a virtual graph = (,), with the set of virtual
nodes and the set of virtual links. Each virtual node requests
for a capacity in terms of VMs equal to while each virtual
links requests for a bit-rate equal to . In this regard, we follow
a joint mapping approach to the VDC mapping, coordinating
both node and link mapping phases. The benefits of a joint
mapping approach have been demonstrated in the literature (e.g.
[11], [12]), increasing the acceptance of the VDCs. In this
regard, it is the role of the orchestrator not to only provide the
joint mapping of the VDCs but to also coordinate all the
involved software services to achieve the desired deployment.
Next, we proceed on detailing the algorithm utilized for the
mapping computation.

A. Optimization Algorithm for VDC Provisioning
The proposed algorithm takes as input the DC infrastructure,

considering both server and network resources as well as the
whole demand set and outputs the number of successfully
deployed VDC instances as well as their corresponding
mapping. Essentially, the algorithm applies an adaptive iterative
procedure, trying to fit a VDC request per iteration. At the end,
the obtained solution is returned. Let us note that we impose the
restriction that the virtual nodes of a VDC request have to be
mapped over different racks. This is done in order to achieve

some degree of robustness against server and rack failures.
Nevertheless, the VMs of the same virtual node are mapped over
servers belonging to the same rack. Additionally, we consider
the possibility to aggregate several virtual links that have the
same source and destination ToRs onto the same optical
connection (lightpath) thanks to the electronic capabilities of the
ToR switches.

With these, the steps of the algorithm are as follows:

1. Calculate all the candidate lightpaths from every pair of
source and destination ToRs in the DCN, employing a
K-shortest path strategy for the route computation.

2. Sort the demands in the demand set in descending order
according to the following metric:

| | + | |
In this way, the algorithm tries to serve first the
demands that request more resources respect their
number of nodes and links.

3. Once sorted, it proceeds with the mapping of the VDCs
in an iterative fashion. The procedure ends once every
VDC has been tested for a successful mapping.

4. Start with the virtual node mapping. For this, the
algorithm sorts the racks in the DC in descending order
according to the Cartesian product between the
normalized difference of the requested VMs and the
server with the highest available capacity in the rack,
and the normalized difference with the aggregated bit-
rate incoming/outgoing from the virtual node and the
available NIC capacity of the same server. If one of the
two differences is equal to 0, it is set to 1 for the purpose
of the metric. If both of them are negative, the resulting
product will be set to negative. In this regard, the
algorithm introduces network availability status
awareness in the node mapping.

5. Select the first rack and map the VMs onto the servers
having the highest previously described metric inside
the rack. Update the capacities of the servers. Proceed
with the next virtual node.

6. For the link mapping, the algorithm first checks if there
is a currently established lightpath from the same source
to the same destination ToR. If not, a new lightpath is
created, selecting the first candidate lightpath that has
enough room to support the virtual link. If yes, the
lightpaths sharing the same source and destination are
sorted in descending order according to their remaining
capacity. The first lightpath with enough room to fit the
virtual link is selected.

7. Update the capacity of the servers’ NICs, network links
and established lightpaths. Proceed with the next virtual
link.

8. If the VDC has been fully served, its mapping is added
to the full solution. Contrarily, the mapping is
disregarded and the status of the DC resources is
restored prior to the VDC mapping.

9. Proceed with the mapping of the next VDC starting
from Step 4.

Note that the presented algorithm can be also applied for the
dynamic provisioning of VDC instances, where requests arrive
at the DC infrastructure one by one and no knowledge of the
whole demand set can be achieved. For this, the algorithm is
applied to a single demand, considering its characteristics and
the actual status of the DC infrastructure. By coordinating both
the node and the link mapping of the VDC requests, it is possible
to minimize the blocking probability (BP) given a dynamic
arrival and departure process.

IV. RESULTS AND DISCUSSION

In this section we will evaluate the performance of the
proposed algorithm and the benefits of a joint mapping of the
VDC resources both from static and dynamic provisioning
perspectives. For benchmark purposes, we also implemented a
variation of the mapping algorithm where the node mapping is
performed solely considering the status of the IT resources, that
is, the server capacity, balancing the load of the servers and the
aggregated capacity of the racks. Before discussing the obtained
results, we detail the considered scenario for the tests.

A. Considered Scenario
We consider a DC scenario composed of 6 racks with each

rack consisting of 48 servers. Each server has a VM capacity
equal to 10 and a NIC capacity equal to 1 Gb/s. As for the
network, we consider a spine-leaf topology, where each ToR is
connected simultaneously to several OCS switches. Particularly,
we consider that each ToR has a radix of 64x64, with 48
electronic ports at 1 Gb/s dedicated to the connection of the
servers within the rack, and 6 optical ports with 12 wavelength
channels each at 10 Gb/s dedicated to the interconnection with
the OCS switches, accounting for a total capacity of 72
wavelength channels for the inter-rack communication. As for
the OCS switches, we consider 2 OCS switches with a radix of
384x384, with each of the ToRs connected through 3 of their
optical ports to each OCS switch, accounting for a total of 36
wavelength channels for the interconnection between a
particular pair of ToR-OCS switch.

Focusing on the demand set, we generate the VDC requests
following a 2-step procedure. First, between 2 and 5 virtual
nodes are randomly generated per demand. For simplicity, we
assume that each virtual node requests for a single VM, that is, = 1. Next, the virtual nodes are randomly connected,
preventing the generation of non-connected graphs. Each virtual
link requests for a bit-rate in the range [100, 1000] Mb/s, in steps
of 100 Mb/s. In order to consider a realistic scenario, we
generate the bit-rate of the virtual links considering that the
traffic generated by a VM cannot not surpass the NIC capacity
of a server (1 Gb/s). With such scenario and parameters, the next
section presents the results obtained during the evaluation of the
presented algorithm.

B. Results
First, we will evaluate the benefits of a joint resource

orchestration when facing the allocation of a known set of VDC
requests (static scenario). To this end, we evaluated the number
of successfully allocated VDC requests as a function of the

Fig. 3. Comparison between no joint and joint VDC mapping strategies for
both static (top) and dynamic (bottom) scenarios.

number of offered VDCs. Fig. 3 (top) depicts the obtained
results. All the data points have been obtained averaging 100
random problem instances. It can be appreciated how a joint
mapping of the VDC instances allows for a higher number of
accepted requests, up to around 47% more when compared with
a mapping strategy that does not coordinate both mapping
phases. This is due to the network awareness of the node
mapping phase in the joint approach, which lowers the chances
of blocking due to the lack of network resources during the link
mapping phase.

To further evaluate the benefits of an orchestrated approach
to VDC mapping, we also performed some tests considering a
dynamic scenario, where VDC arrive at the DC following a
random arrival and departure process. For this, we consider a
Poisson arrival process, with exponentially distributed inter-
arrival times (IATs) and holding times (HTs). We evaluated the
blocking probability of the VDC requests considering increasing
loads. For this, we have fixed the average IAT to one time unit
and increased the average value of HT. Fig. 3 (bottom) depicts
the obtained results. All the data points have been extracted
considering 2·105 random VDC arrivals. The obtained results

further confirm the benefits of a joint mapping, achieving
blocking figures with at least 50% reductions when compared to
the non-joint approach.

V. CONCLUSIONS

With the emergence of optical technologies inside DC
infrastructures and the increasing interest of enabling them with
the capacity to provision virtual slices, i.e. VDCs, for
exploitation by external tenants, resource orchestration and
virtualization has raised as a primordial feature that modern DCs
have to implement. In this paper we presented a DC architecture
that encompasses both an orchestrator platform, based on
OpenStack, and a control layer, based on SDN, for efficient
VDC provisioning and deployment.

To assess the benefits of resource orchestration in DC
resource management, we also presented an algorithm for
optimizing the resource mapping of VDC instances. The
obtained results confirm that a joint orchestration is beneficial
when deploying complex cloud services, such as VDCs,
resulting in around a 50% increase on the accepted requests
when compared to no orchestrated resource mapping strategies.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish National
project SUNSET (TEC2014-59583-C2-1-R) with FEDER
contribution.

REFERENCES

[1] Cisco Global Cloud Index: Forecast and Methodology, 2014,
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/global-cloud-index-gci/Cloud_Index_White_Paper.html

[2] C. Kachris, I. Tomkos, “A Survey on Optical Interconnects for Data
Centers”, IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp.
1021-1036, 2012.

[3] K.-K. Nguyen, M. Cheriet and M. Lemay, “Enabling infrastructure as a
service (IaaS) on IP networks: from distributed to virtualized control
plane”, IEEE Communications Magazine, vol. 51, no. 1, pp. 136-144,
January 2013.

[4] G. Kandiraju, H. Franke, M.D. Williams, M. Steinder and S.M. Black,
“Software defined infrastructures”, IBM Journal of Research and
Development, vol. 58, no. 2, pp. 1-13, March 2014.

[5] Interoute VDC service, https://cloudstore.interoute.com/
[6] COSIGN Deliverable D4.2, “COSIGN orchestrator low level architecture

and prototype design”, http://www.fp7-cosign.eu/
[7] A. Mayoral et al., “Integrated IT and network orchestration using

OpenStack, OpenDaylight and active stateful PCE for intra and inter data
center connectivity”, European Conference on Optical Communication
(ECOC), September 2014.

[8] Infonetics Research, “Orchestration software is the new battleground in
the data center”, http://www.infonetics.com/pr/2014/Data-Center-
Strategies-Enterprise-Survey-Highlights.asp

[9] OpenStack, https://www.openstack.org/
[10] OpenDaylight, https://www.opendaylight.org
[11] S. Peng et al., “Multi-Tenant Software-Defined Hybrid Optical Switched

Data Centre”, Journal of Lightwave Technology, vol. 33, no. 15, pp. 3224-
3233, August 2015.

[12] A. Pagès et al., “Optimal virtual slice composition toward multi-tenancy
over hybrid OCS/OPS data center networks”, IEEE/OSA Journal of
Optical Communications and Networking, vol.7, no.10, pp. 974-986,
October 2015.

