
Benefits of Programmable Topological Routing
Policies in RINA-enabled Large-scale Datacenters

Sergio Leon, Jordi Perelló,
Davide Careglio

Universitat Politècnica de Catalunya (UPC)
 Barcelona (Spain)

Email: slgaixas@ac.upc.edu

Eduard Grasa
Fundació Privada i2CAT

Barcelona (Spain)
Email: eduard.grasa@i2cat.net

Diego R. López, Pedro A. Aranda
Telefónica I+D
Madrid (Spain)

Email: diego.r.lopez@telefonica.com

Abstract— With the proliferation of cloud computing and the
expected requirements of future Internet of Things (IoT) and 5G
network scenarios, more efficient and scalable Data Centers
(DCs) will be required, offering very large pools of
computational resources and storage capacity cost-effectively.
Looking at todays’ commercial DCs, they tend to rely on well-
defined leaf-spine Data Center Network (DCN) topologies that
not only offer low latency and high bisectional bandwidth, but
also enhanced reliability against multiple failures. However,
routing and forwarding solutions in such DCNs are typically
based on IP, thus suffering from its limited routing scalability.
In this work, we quantitatively evaluate the benefits that the
Recursive InterNetwork Architecture (RINA) can bring into
commercial DCNs. To this goal, we propose rule-based
topological routing and forwarding policies tailored to the
characteristics of publicly available Google’s and Facebook’s
DCNs. These policies can be programmed in a RINA-enabled
environment, enabling fast forwarding decisions in most
scenarios with merely neighboring node information. Upon DCN
failures, invalid forwarding rules are overwritten by exceptions.
Numerical results show that the scalability of our proposal
depends on the number of concurrent failures in the DCN rather
than its size (e.g., number of nodes/links), dramatically reducing
the total amount of routing and forwarding information to be
stored at nodes. Furthermore, as routing information is only
disseminated upon failures across the DCN, the associated
communication cost of our proposals largely outperforms that of
the traditional IP-based solutions.

Keywords— Data center network; RINA; topological routing

I. INTRODUCTION
Looking for superior efficiency, uptime and scalability,

nowadays’ commercial Data Centers (DCs) tend to rely on
well-defined leaf-spine Data Center Network (DCN)
topologies that not only offer low latency and ultra-high
bandwidth for server-to-server communications, but also
enhanced reliability against multiple concurrent failures.
Examples of this reliance are the Google’s and Facebook’s
DCN topologies available in [1] and [2], respectively Moving
toward future Internet of Things (IoT) and 5G network

scenarios, a plethora of emerging innovative cloud services are
expected to proliferate. This will put stress upon current DCs,
requiring them to grow even larger in terms of computing
resources. However, routing and forwarding solutions in
DCNs, typically based on TCP/IP, do not scale well, resulting
in large forwarding table (at least in the order of several tens
of thousands of entries in highly-optimized configurations
[3]), routing burden and communication cost (information
exchanged to populate routing tables and re-converge upon
failures). This problem was identified longtime ago, but the
TCP/IP protocol suite, not designed for cloud networking,
limited the improvements that achievable by the solutions
proposed in the literature [4].

In contrast to the rigidness of the TCP/IP protocol stack,
the clean-slate Recursive Internetwork Architecture (RINA)
[5] brings a programmable environment [6] where Quality of
Service (QoS), security, routing and forwarding policies in
forwarding devices can be fully configured by the network
administrator. This opens the door to the deployment of
policies tightly tailored to the specific DCN characteristics
inside a RINA-enabled DC, outperforming solutions based on
TCP/IP, whose protocols were optimized for the delivery of a
best-effort Internet with an arbitrary topology, a very different
environment to that of a DCN.

This work aims to quantify the benefits that topological
routing and forwarding policies can offer in a RINA-enabled
large-scale DCN. Our policies make use of the DCN topology
knowledge to forward packets to the closest neighboring
device to their destination based on rules. In the non-failure
scenario, this approach only requires the storage of forwarding
information per adjacent neighbor (compared to traditional
forwarding tables, which may contain up to one entry per
network node). Upon failures in the DCN, some forwarding
rules may not succeed to deliver packets to destination. In this
case, few exceptions overriding those rules are stored at
forwarding devices, the only time when additional forwarding
information is required.

The remainder of this paper continues as follows. Routing
solutions for DCNs available in the literature are reviewed in
section II. Next, in section III we introduce the assumed
RINA-enabled DC scenario based on Google’s and
Facebook’s DCNs characteristics. The configuration of the
routing and forwarding policies in both use cases are further
elaborated in Sections VI and V. In Section VI, we provide
numerical results comparing our forwarding and routing

This work is partly funded by the European Commission through the FP7
PRISTINE project (FP7-619305). Moreover, it has been partly funded by
the Spanish project SUNSET (TEC2014‐59583) that receives funding from
FEDER.

policies against current solutions based on TCP/IP. Finally,
Section VII draws up some conclusions.

II. RELATED WORK
Given the regular and known topology of a DCN,

deterministic routing [7] was the scheme initially deployed in
many DCs. In such a scheme, the addresses of nodes are based
on their topological properties, so that the route between any
pair of nodes is known beforehand and does not change over
time. The route is usually encoded in the packets in the form
of a bit-stream or coordinates (e.g., see [8]). While scalable,
this rigid scheme has two major drawbacks: the lack of
automation in defining addresses, and thus the setup of routes,
and no multipath support, preventing the recovery upon DCN
failures. The valiant routing scheme [9] was proposed as a
solution to overcome such deterministic routing shortcomings,
bringing multipath support and load balancing. For a
communication between any pair of nodes, a random
intermediate address i is selected first and the path is
composed by routing packets from source to i and then from i
to destination. This way, multipath support is enabled, but at
expenses of longer paths and still an automation process for
the naming.

The adopted routing scheme in many large DCs is today
based on IP because of the low-cost of IP-based commodity
servers. To mitigate the inherent limitations of routing
solutions initially designed for an Internet with arbitrary
topology, modifications to link-state and path-vector routing
have been introduced. For example, Facebook’s DCN uses
BGP-4 [10] to avoid the need for an address per interface (as
required by IP), assigning an ASN per node, routing to the
node instead of to the interface [11]. Nonetheless, BGP-4
suffers from many limitations, e.g., path exploration upon
failures, manual configuration of timers, TCP connections
between any pair of connected ASNs, etc. As a result, these
schemes imply a high communication cost and require many
entries in routing and forwarding tables to take optimal routing
decisions and allow route recovery upon failures.

A new trend in intra-DC routing is a Software Defined
Networking (SDN) approach centralizing all forwarding
decisions, where only a few nodes know the state of the full
DCN. For example, Google’s DCN uses its SDN-based
approach to control packet forwarding within the DCN [1].
Although this strategy allows taking efficient decisions at low
communication cost, the complexity of centralized decisions
increases with the network size, potentially imposing
scalability issues as the network grows larger.

III. SCENARIO UNDER STUDY
 RINA is a computer network architecture that unifies
distributed computing and telecommunications [5]. RINA's
fundamental principle is that computer networking is Inter-
Process Communication (IPC). RINA reconstructs the overall
structure of the Internet forming a model that comprises a
single repeating layer, the DIF (Distributed IPC Facility). Each
DIF instance implements the same functions and mechanisms,
which are configured via policies in order to adapt to the
specific scope (operating environment). In this paper we focus
on a RINA deployment inside a DC following the DIF setup
depicted in Fig. 1. Such a RINA-enabled DCN network is

partitioned into three main types of DIFs of different scopes: i)
a single DC-Fabric DIF, acting as a large distributed switch;
ii) a DC DIF that connects all servers in the DC together under
the same pool; and iii) multiple tenant DIFs, isolated and
customized as per the requirements of the different tenants.
Note that in the figure the underlying point-to-point links are
abstracted as “shim” DIFs, which allow the deployment of
RINA over legacy technologies or physical media [12].

Fig. 1. DIF setup inside a DC between Virtual Machines (VMs) running in
DC servers. The DC-Fabric DIF (violet color) is the focus of this work.

In this work, we focus on the DC-Fabric DIF, that is, the
one providing connectivity between Top-of-the-Rack (ToR)
switches and between edge routers and ToR switches. To
provide outcomes applicable to realistic DC scenarios, we
assume that the DC-Fabric DIF follows the topologies of the
large Google’s and Facebook’s DCNs shown in Fig. 2. As for
the Google’s DCN topology (Fig. 2, top), a unique plane of
spine switches interconnects all pods and edge planes in the
DCN, offering multiple equal cost paths between each pair of
ToRs and edges, even under multi-failure scenarios.
Regarding the Facebook’s DCN (Fig. 2, bottom), the fabric
switches of a pod connect each one to a distinct spine set that
provides connectivity to all other pods and to edge nodes.
Again, high redundancy is introduced to survive multiple
concurrent failures across the DCN.

Fig. 2. Google’s (top) and Facebook’s (bottom) DCN topologies, extracted
from references [1] and [2].

 A key benefit of RINA is its programmable behavior using
policies, as well as the automation of the enrollment and
naming processes of a new node in a DIF [6]. This allows to
get rid of the constraints imposed by both the conventional
deterministic routing and the IP-based solutions, opening an
opportunity for cheap customizable hardware. In the following
section we elaborate on topological routing and forwarding

policies particularly designed for a potential DC-Fabric DIF in
the Google’s DC premises, exploiting its DCN characteristics
for superior efficiency and scalability.

IV. RINA-ENABLED GOOGLE’S DCN USE CASE
Taking a look at Google’s DCN, we can see that the DC-

Fabric DIF can be described by only 6 parameters: Number of
spine nodes (s), number of pods (P), number of edge planes
(E), number of fabric nodes per pod/edge plane (f), number of
ToRs per pod (t) and number of edges per edge plane (e).
Moreover, given the regularity of the topology, we find that
only a few types of nodes exist. This becomes particularly
useful for performing topological forwarding, which depends
on the relations between node locations. Specifically, we have
spine switches (hereafter referred as R0 nodes), fabric
switches (R1 nodes) and ToR switches/edge routers (R2
nodes).

From now on, we are going to refer to pods and planes (of
spine or edge switches) indistinctly as groups. Taking
advantage of R0, R1 and R2 node groups in the DCN, we
propose a location-dependent but route-independent node-
addressing scheme A.B, where A identifies a group and B is
the identifier of the node within the group. Although simple,
this scheme allows inserting the topological location of any
node in the DCN in its address as follows:

 A = 0, B ∈ [1, s] → Spine B
 A ∈ [1, P+E], B ∈ [1, f] → Fabric B at pod/Edge Plane A
 A ∈ [1, P], B ∈ (f, f+t] → ToR B at pod A
 A ∈ (P, P+E], B ∈ (f, f+e] → Edge B at edge Plane A

A. Forwarding policy
A key requirement of any forwarding policy is the ability

to quickly decide the neighboring node to which a packet must
be forwarded to. Forwarding policies in RINA are not
restricted to be a traditional table. Instead, any forwarding
function capable to quickly perform accurate forwarding
decisions can be used. To this avail, we leverage on the
regular topology of Google’s DCN (Fig. 2, top) to design a
minimalistic forwarding function.

Being aware of the specific DCN topology (from the set of
parameters listed at the beginning of this section) and the
location of the node in it, only forwarding entries to adjacent
neighbors need to be stored at DCN nodes and simple
forwarding rules can be used (detailed in the next sub-section).
When failures occur across the DCN, however, it may happen
that primary forwarding rules fail in delivering a packet to its
destination. Thus, we require exceptions to overwrite the
erroneous decisions of primary rules. These exceptions are
similar to traditional forwarding table entries, but are only
required upon certain failure scenarios. Moreover, the total
number of exceptions tends to be considerably smaller than
the number of entries required in a traditional forwarding table
(at most the same in the very worst case), as many
communications across the DCN remain unaffected by
specific link or node failures. Therefore, only storing
exceptions to primary rules upon failures can yield a large
reduction in terms of memory usage compared to a traditional
forwarding table.

1) Forwarding rules

In order to quickly access neighbor information, we assign
a locally unique identifier (Neighbor-Id) to every neighbor,
abstracting its real address. By using Neighbor-Ids as index,
we can store all neighbor nodes’ information, including port
address or status, in a direct access structure. These Neighbor-
Ids are assigned as follows:

 At R0: R1 → (A - 1) * f + B - 1
 At R1: R0 → B - 1, R2 → s + B - f – 1
 At R2: R1 → B - 1

Forwarding rules use Neighbor-Ids to easily define the set
of valid neighbors to reach any destination across the DCN.
Given the nature of the communications inside a DC (over the
DC-Fabric DIF in a RINA-enabled scenario), only end-to-end
flows between R2 nodes (ToR switches and edge routers) will
be established. Therefore, forwarding rules only need to
consider R2 nodes as possible destinations. These rules are
depicted in Fig. 3.

At R0: Rule (A.B) → [(A – 1) * f, A * f)
At R1: Rule (A.B) → [0, s)
At R2: Rule (A.B) → [0, f)
Fig. 3. Pseudo-code of primary forwarding rules in the Google’s DCN

Let us show how those rules work to reach any R2 node
A.B. At R0 nodes, any neighbor R1 node of the group A can
be used to reach the destination (an ECMP-like policy can be
chosen to load-balance the traffic). In an R1 node, we have
two possibilities: either we are in a different group than the
destination, so that we can use any R0 node to reach that
(again load-balancing can be used), or we are in the same
group (A), never reaching the rule as it is a direct neighbor.
Finally, at R2 nodes we can use any R1 neighbor to reach any
other R2 in the network.

In all cases we have a range of valid neighbors. Then, upon
having an unreachable neighbor, the rules would simply
remove it from the valid ones. This allows keeping most of the
rules still valid when failures affect the current node
(otherwise multiple exceptions could be necessary).

2) Forwarding exceptions
Focusing on the exceptions to reach R2 nodes, we find 3

kinds of them: to a specific node A.B, to a specific group A
and to all other groups. It should be noted that exceptions to
other groups are used neither in R0 nodes nor in R1 or R2
nodes for destinations in the same group.

Given the high number of neighbors that some nodes have,
an important point is how Neighbor-Ids are stored at the
exception entries. When encoding exceptions, we use two
different encoding modes, being the use of one or another
specified as a flag in the exception header. With the default
encoding, the stored Neighbor-Ids represent the valid
neighbors to reach the destination. When the number of valid
neighbors is high, an inverse encoding can alternatively be
used, where the stored Neighbor-Ids represent the invalid
neighbors to reach a destination. Jointly with inverse encoding
at R1 nodes, a direction flag is used to specify if that list
applies to only R0 nodes (UP), R2 nodes (DOWN) or both.
This proposal yields significant memory optimization, as most
exceptions can be described as “To reach X go UP/DOWN,
without using Y”.

3) Forwarding decision
Putting together direct routes to neighbors, exceptions and

rules, the full forwarding decision can be described by the
simple pseudo-code in Fig.4.

Forward (A.B)
If is Connected Neighbor (A.B) → Forward (A.B)
If A = 0 || B <= f → Unreachable
If is Exception (A.B) → Exception (A.B)
If is Exception (A) → Exception (A)
If (My A != A & is Exception ()) → Exception ()
Else → Rule (A.B)
Fig. 4. Forwarding pseudo-code with exceptions and primary rules

The forwarding function needs to be executed per packet.
DCN performance requirement will most probably impose
forwarding rules implementation to be on hardware. For this,
we first have that neighbors can be stored in a direct access
structure, making these last hops automatic. Then, taking
profit from the small number of exceptions, we can have them
ordered as R2 nodes, specific groups or other groups and
simply iterate them until finding the first match. Being
desirable for flows to maintain the same path during its
lifetime (to prevent packet reordering), both rule and
exception execution can use a fast hashing of the flow
identifier of the packet to decide on the next hop, instead of
deciding it randomly.

B. Routing policy
The previously described forwarding policy requires

knowing the affected routes to destinations upon failures and
how to alternatively reach them. Hence, the routing policy has
to provide enough information to populate such exceptions.
While a simple link-state or distance-vector routing protocol
could be used to obtain exceptions to the primary rules upon
failure scenarios, we can compute them more efficiently by
exploiting the complete DCN topology knowledge that nodes
have. Indeed, there is no need for nodes to propagate the state
of operational resources across the network, but only that of
those experiencing failures. To this end, we propose the link-
failure routing policy, a variation of link-state routing based on
failure propagation, where instead of having all nodes
propagating their full neighbor table, only failed links are
propagated while the rest is assumed to be working, resulting
in a large reduction of the information exchanged and stored at
network nodes.

Although we could use the DCN topology and failed links’
knowledge to compute the forwarding exceptions using a
Dijkstra’s routing algorithm, such an approach has a
significant computational cost and does not scale well. Instead,
we found that with a list of failures we could restrict our
search to problematic locations and compute the exceptions
directly, if some constraints on valid paths are considered.
Constraints on valid paths are, in fact, required to reduce the
complexity of the algorithms. Even so, those are thought
taking into account the high number of available paths towards
any R2 node, and that it is better to have unreachable
destinations (with possible movements of VMs) than filling
the network with traffic routed through sub-optimal paths. For
example, we consider the following two constraints at R0
nodes: 1) a group is reachable if it has at least one R1 neighbor

connected to at least one R2; 2) an R2 node is reachable if it
has at least one R1 neighbor for which there exists a 1 or 3
hops path to reach it in the group.

C. Computing the forwarding exceptions
Given the list of possible failures in the DC-Fabric DIF,

we parse and process them in order to compute the exceptions
to problematic destinations. For example, for R0 nodes, the
pseudo-code in Fig. 5 can be used.
Parsed data and functions used:
unreachableGroups ←groups with all R1 unreachable
unreachableNodes ←R2 disconnected from all R1
R2Fails ←R2 disconnected from some R1
R1notReachR2 ←R1 with problems reaching R2
Reachable (A.B) ← Check if neighbor A.B can be reached
reachableGroupR1(A) ← reachable A.* R1s
reachableR1At (A.B) ← reachable R1s from R2 (A.B)
reachableR2At(A.B) ← reachable R2s from R1 (A.B)
Algorithm:
Exceptions = Ø
if I am disconnected then return Exceptions
GroupsWithProblems = Ø
for each A.B in R1notReachR2 do
 if Reachable(A.B) then GroupsWithProblems .add(A)
for each (A) in GroupsWithProblems do
 validPorts = Ø
 for i = 1..f do
 if Reachable(A.i) and A.i ∉ R1notReachR2 then
 validPorts .add (A.i)
 if validPorts == Ø then unreachableGroups.add(A)
 else Exceptions.add(A, validPorts)
for each (A) in unreachableGroups do E.add(A.0, Ø)
for each (A.B) in unreachableNodes do
 if (A) ∉ unreachableGroups then Exceptions.add(A.B, Ø)
for each A.B in R2Fails do
 if A ∈ unreachableGroups then continue
 if (A.B) ∈ unreachableNodes then continue
 myReach = reachableGroupR1(A)
 dstReach = reachableGroupR1At(A.B)
 if myReach ⊆ dstReach then continue
 if myReach ∩ dstReach != Ø then
 Exceptions.add(A.B, myReach ∩ dstReach)
 continue
 reachDst = Ø
 for each node (A.B’) in dstReach do
 reachDst .add(reachableR2At (A.B’))
 reachNei = Ø
 for each node (A.B’) in myReach do
 reachNei .add(reachableR2At(A.B’))
 validPorts = Ø
 if reachNei ∩ reachDst != Ø then
 validPorts .add(A.B’)
 Exceptions.add(A.B, validPorts)
return Exceptions
Fig. 5. Pseudo-code for computing exceptions

Algorithms to compute exceptions like the one described
in Fig. 5 aim to direct the search toward failures that may

require an exception, while discarding the rest. An example
can be seen when failures between R0 and R1 nodes are only
considered for the current node, as other ones are not included
in feasible paths given the imposed constraints. Another case
is seen for failures between R1 and R2 nodes where the depth
of the search depends on the specific failures within the group,
avoiding for example a search in depth if there are some
shared R1 nodes between the current node and the one
affected by failures. While such algorithms are fully
dependent on the topology and require some constraints, they
yield a significant improvement both in time and memory
usage against the traditional route computation, as we do not
need to compute and store reachability information to all
destinations in the network, but only to problematic ones.

V. RINA-ENABLED FACEBOOK’S DCN USE CASE
Looking at the Facebook’s DCN in Fig. 2, we observe that

it can be described by only 5 parameters: Number of pods (P),
number of fabric nodes per pod and spine sets (f), number of
ToRs per pod (t), number of spine nodes per spine set (s) and
number of edges per spine set (e). Although this DCN can be
described by fewer parameters than the Google’s one, here we
have 4 types of distinct nodes: ToRs, fabric switches, spine
switches and edge routers. Hence, we propose the following
addressing scheme based on A.B.C addresses:

 ToR: 0.Pod-Id.Tor-Id
 Fabric: 1.Pod-Id.Spine-set
 Spine: 2.Spine-set.Spine-Id
 Edge: 3.Spine-set.Edge-Id

Like for the Google’s DCN, we also propose a forwarding
policy based on rules and exceptions. In this case, Neighbor-
Ids are defined as follows:

 At ToR: Fabric → C
 At Fabric switch: ToR → s + C, Spine → C
 At Spine switch: Fabric → A, Edge → P + C
 At Edge router: Spine → C
ToR: Rule (A.B.C)
 If A = 3 → {B}, Else → [0, f)
Fabric: Rule (A.B.C)
 If A = 3 & B != My B → [s, s+t), Else → [0, s)
Spine: Rule (A.B.C)
 If A = 0 → {P + C}, Else → [0, P)
Edge: Rule (A.B.C) → [0, s)
Fig. 6. Pseudo-code of primary forwarding rules in the Facebook’s DCN

 Fig. 6 details the pseudo-code of the primary forwarding
rules proposed for the Facebook’s DCN. With information of
the current failures, exceptions to overwrite those rules can be
computed in a similar way as in the Google’s DCN (not
detailed here due to the lack of space). Note in this case that
losing a fabric switch automatically multiplies the path length
to reach its pod from some edge routers. Therefore, when
computing the respective exceptions, we require either to have
less restrictive constraints in these cases, thus incrementing the
complexity of the algorithms to avoid unreachable areas
across the DCN, or more restrictive ones, reducing complexity
but at expenses of having unreachable areas.

VI. COMPARISON WITH CURRENT SOLUTIONS
Current routing and forwarding solutions for IP impose

multiple limitations that the RINA architecture already solves.
For example, for addressing DCN devices, we are not forced
to use 4 or 16-byte addresses as imposed by IPv4 or IPv6, but
can use scenario-specific addresses. Besides, public addresses
of servers/VMs are not propagated with routing updates, only
focusing on the smaller set of node addresses in the DCN.
While the benefits of RINA are enough to contemplate its
usage inside DCs, we also want to quantitatively evaluate the
performance of the proposed routing and forwarding policies
against that of currently available solutions for the same
purposes.

Aiming to analyze the number and size of traditional
Forwarding Table entries vs. Rules plus exceptions in our
policies, we have considered two different DC-Fabric DIFs.
The first one, named DIF-Go, reproduces the Google’s DCN
topology, whereas the second one, named DIF-FB, reproduces
that in the Facebook’s DCs. Table I depict the parametrization
of both DIFs, taking the number of pods (P) as base parameter.
The expressions to determine the rest of parameters (as a
function of P) allow us to obtain similar configurations as
those reported for the real DCNs.

TABLE I. DETAILS OF THE DCN-FABRIC DIFS
Pods (P) P
ToRs per pod (t) P/2
Fabric switches per pod/edge plane (f) Log3(P)

DIF-Go
Edge planes (E) P/4
Edge routers per edge plane (e) P/2
Spine switches (s) P

DIF-FB Edge routers per spine set (e) P2/8f
Spine switches per spine set (s) P/2
Total number of servers P2/2
Total number of edges P2/8

 As a first objective, we compare the number of entries in a
forwarding table against the number of neighbor entries plus
exceptions for large-scale DCNs. For this, we fix in our first
tests P=100, resulting in DCNs with 5000 ToR switches.
Being our approach dependent of the number of concurrent
failures across the DCN, we perform our tests for 0, 1, 2, 5 and
10 concurrent ones, being those either link or node failures
(randomly chosen). We perform 50000 tests for each DIF and
number of failures, averaging the obtained results.

TABLE II. AVG. ENTRIES VS. MAX ENTRIES (%) GIVEN N FAILURES
Method\Failures 0 1 2 5 10
Exceptions 0.21 0.22 0.23 0.24 0.27
DIF-Go FWT 11.6 11.9 12.3 13.2 14.8
DIF-FB FWT 11.4 12.1 12.8 14.8 18.1

 In Table II we can see the relative number (in %) of
required entries in each case against the total number of DCN
nodes. With our policies (named as Exceptions in the table),
we require at most one exception per failure (as expected),
thus being most of the stored entries related to adjacent
neighbors’. With traditional forwarding tables (FWT), we
assume that ToR and edge addresses can be aggregated at
pods and edge planes/spines. With this, the number of entries
can be lowered by 11 to 18% compared to the trivial FWT
solution where one entry per destination node is stored. While

this represents a noticeable reduction, it cannot approach by
far the scalability of our proposals.
 In addition to the number of entries, we are also interested
in comparing the amount of forwarding data stored. For this
purpose, we focus on the amount of stored ports in the
forwarding entries and exceptions rather than on their
encoding, so as to become independent from specific data
structures. Fig. 7 shows the average number of entries and
stored ports in DIF-Go and DIF-FB for different P sizes
(number of pods in the DCN), in scenarios from 0 to 10
concurrent link/node failures. With forwarding tables, we also
limit the number of stored ports per destination to 16, a
common limit in ECMP implementations. In the figure, we
can see how, the number of forwarding entries and their size
grow steadily with P. In contrast, our proposed solution only
needs to store adjacent neighbors’ information plus
exceptions, remaining the number of forwarding entries
almost constant as the size of the DIFs grows up.

Fig. 7. Avg. number of entries and stored ports given the number of pods

 Although the benefits of our proposals against the
traditional forwarding tables are good enough to justify
topology dependent policies, the benefits on the computational
and communication cost of searching exceptions, given a
specific number of failures, should also be investigated.
Regarding the latter, we have a clear improvement in the sense
that, as we know the topology, we can take some knowledge
as granted. Given this knowledge of the topology, we can
avoid the initial routing information flooding that any
common on link-state or distance-vector routing protocol
needs for populating nodes’ routing and forwarding tables.
Besides, most IP solutions require some type of refresh of
routing information to ensure that the knowledge is updated.
In our case, RINA DIFs can provide reliable communications
between nodes, which can be configured in a DC-Fabric DIF
as well. This makes routing information refreshes
unnecessary.
 Finally, in terms of computation cost, in order to validate
our proposed approach to compute forwarding exceptions, we
compare its complexity against a traditional solution based on
link-state routing and Dijkstra’s routing algorithm. For this
purpose, we take the pseudo-code proposed for R0 nodes in
the Google DCN in Fig. 5. Moreover, to simplify the results
we consider the same parametrization described in Table I,
and use the number of pods (P) and failures R as the two only
parameters. With the traditional link-state solution, computing
either exceptions or a forwarding table has a complexity lower
bound of o(P2*Log(P)). Conversely, with our approach we
find a complexity upper bound of O(R*P). Note that this upper
bound will never be reached, as it would require the same
failures to affect R2 nodes in all groups. Since the number of
concurrent failures in this type of networks is small by design,
we found a lower upper bound, ensured for the cases where R

< P/2. In these cases, if we use the known failures to check
reachability between R1 nodes instead of a brute force
approach, our complexity can be bounded to O(R*Log(R)*
Log(P)), representing a big improvement in performance, still
without considering that in the non-failure scenario we only
have the constant cost of checking that there are no failures in
the network.

VII. CONCLUSIONS
In this paper, we proposed rule-based topological routing

and forwarding policies for RINA-enabled large-scale DCNs,
based on those recently made publicly available by Google
and Facebook. These policies use the knowledge of the DCN
topological characteristics for superior efficiency and
scalability, achieving fast and 100% successful forwarding
decisions in the non-failure scenario with merely neighboring
node information. Upon DCN link or node failures,
forwarding exceptions are computed and stored at DCN nodes
to override the possible invalid forwarding decisions of
primary rules. To minimize the size of the stored exceptions,
only the invalid neighbors (instead of all valid ones) are
contemplated, something that gives a great improvement,
given the large number of redundant paths to any destination.
Regarding the proposed routing policy, only failed link
information is disseminated, reducing the communication cost
to a large extent. The obtained results in large-scale DCNs
illustrate the perfect scalability of our routing and forwarding
policies.

REFERENCES
[1] Arjun Singh, et al., “Jupiter Rising: A Decade of Clos Topologies and

Centralized Control in Google’s Datacenter Network”. In SIGCOMM,
London, United Kingdom, August 2015.

[2] Alexey Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network”, available online at:
https://code.facebook.com/posts/360346274145943/introducing-data-
center-fabric-the-next-generation-facebook-data-center-network/ .

[3] D. Arora, T. Benson, J. Rexford, “ProActive routing in scalable
datacentres with PARIS”. In DCC 2014, Proceedings of the 2014 ACM
SIGCOMM Workshop on Distributed Cloud Computing.

[4] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, M. F. Zhani; “Data Center Network Virtualization:
A survey”.

[5] J. Day, I. Matta, and K. Mattar. “Networking is IPC: A Guiding
Principleto a Better Internet”. In CoNEXT’08: Proceedings of the 2008
ACMCoNEXT Conference, pages 1 6, New York, NY, USA, 2008.
ACM.

[6] V. Maffione, F. Salvestrini, E. Grasa, et al. “A Software Development
Kit to exploit RINA programmability”. In IEEE ICC 2016, Kuala
Lumpur, May 2016.

[7] M.E. Gómez, P. López, J. Duato. “A Memory-Effective Routing
Strategy for Regular Interconnection Networks”. In IPDPS’05
conference, 2005.

[8] S. Habib, F. S. Bokhari, and S. U. Khan, "Routing Techniques in Data
Center Networks," in Handbook on Data Centers, S. U. Khan and A. Y.
Zomaya, Eds., Springer-Verlag, New York, USA, 2015, ISBN 978-1-
4939-2091-4, Chapter 16.

[9] K. Chen, et al. “Survey on routing in data centers: insights and future
directions”, IEEE Network, vol. 25, no. 4, pp. 6-10, July 2011.

[10] Y. Rekhter, T. Li, S. Hares. “A Border Gateway Protocol 4 (BGP-4)”.
RFC 4271, January 2006.

[11] P. Lapukhov, A. Premji, J. Mitchell. “Use of BGP for routing in large-
scale data centers”. IETF Network Working Group, draft-lapukhov-
bgp-routing-large-dc-07, February 2014.

[12] S. Vrijders, E. Trouva, J. Day, E. Grasa, et al. “Unreliable IPC in
Ethernet: migrating to RINA with the shim DIF”. ICUMT 2013,
Almaty.

