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Abstract— With the proliferation of cloud computing and the 
expected requirements of future Internet of Things (IoT) and 5G 
network scenarios, more efficient and scalable Data Centers 
(DCs) will be required, offering very large pools of 
computational resources and storage capacity cost-effectively. 
Looking at todays’ commercial DCs, they tend to rely on well-
defined leaf-spine Data Center Network (DCN) topologies that 
not only offer low latency and high bisectional bandwidth, but 
also enhanced reliability against multiple failures. However, 
routing and forwarding solutions in such DCNs are typically 
based on IP, thus suffering from its limited routing scalability. 
In this work, we quantitatively evaluate the benefits that the 
Recursive InterNetwork Architecture (RINA) can bring into 
commercial DCNs. To this goal, we propose rule-based 
topological routing and forwarding policies tailored to the 
characteristics of publicly available Google’s and Facebook’s 
DCNs. These policies can be programmed in a RINA-enabled 
environment, enabling fast forwarding decisions in most 
scenarios with merely neighboring node information. Upon DCN 
failures, invalid forwarding rules are overwritten by exceptions. 
Numerical results show that the scalability of our proposal 
depends on the number of concurrent failures in the DCN rather 
than its size (e.g., number of nodes/links), dramatically reducing 
the total amount of routing and forwarding information to be 
stored at nodes. Furthermore, as routing information is only 
disseminated upon failures across the DCN, the associated 
communication cost of our proposals largely outperforms that of 
the traditional IP-based solutions. 
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I.  INTRODUCTION 
Looking for superior efficiency, uptime and scalability, 

nowadays’ commercial Data Centers (DCs) tend to rely on 
well-defined leaf-spine Data Center Network (DCN) 
topologies that not only offer low latency and ultra-high 
bandwidth for server-to-server communications, but also 
enhanced reliability against multiple concurrent failures. 
Examples of this reliance are the Google’s and Facebook’s 
DCN topologies available in [1] and [2], respectively Moving 
toward future Internet of Things (IoT) and 5G network 

scenarios, a plethora of emerging innovative cloud services are 
expected to proliferate. This will put stress upon current DCs, 
requiring them to grow even larger in terms of computing 
resources. However, routing and forwarding solutions in 
DCNs, typically based on TCP/IP, do not scale well, resulting 
in large forwarding table (at least in the order of several tens 
of thousands of entries in highly-optimized configurations 
[3]), routing burden and communication cost (information 
exchanged to populate routing tables and re-converge upon 
failures). This problem was identified longtime ago, but the 
TCP/IP protocol suite, not designed for cloud networking, 
limited the improvements that achievable by the solutions 
proposed in the literature [4]. 

In contrast to the rigidness of the TCP/IP protocol stack, 
the clean-slate Recursive Internetwork Architecture (RINA) 
[5] brings a programmable environment [6] where Quality of 
Service (QoS), security, routing and forwarding policies in 
forwarding devices can be fully configured by the network 
administrator. This opens the door to the deployment of 
policies tightly tailored to the specific DCN characteristics 
inside a RINA-enabled DC, outperforming solutions based on 
TCP/IP, whose protocols were optimized for the delivery of a 
best-effort Internet with an arbitrary topology, a very different 
environment to that of a DCN.  

This work aims to quantify the benefits that topological 
routing and forwarding policies can offer in a RINA-enabled 
large-scale DCN. Our policies make use of the DCN topology 
knowledge to forward packets to the closest neighboring 
device to their destination based on rules. In the non-failure 
scenario, this approach only requires the storage of forwarding 
information per adjacent neighbor (compared to traditional 
forwarding tables, which may contain up to one entry per 
network node). Upon failures in the DCN, some forwarding 
rules may not succeed to deliver packets to destination. In this 
case, few exceptions overriding those rules are stored at 
forwarding devices, the only time when additional forwarding 
information is required. 

The remainder of this paper continues as follows. Routing 
solutions for DCNs available in the literature are reviewed in 
section II. Next, in section III we introduce the assumed 
RINA-enabled DC scenario based on Google’s and 
Facebook’s DCNs characteristics. The configuration of the 
routing and forwarding policies in both use cases are further 
elaborated in Sections VI and V. In Section VI, we provide 
numerical results comparing our forwarding and routing 
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policies against current solutions based on TCP/IP. Finally, 
Section VII draws up some conclusions. 

II. RELATED WORK 
Given the regular and known topology of a DCN, 

deterministic routing [7] was the scheme initially deployed in 
many DCs. In such a scheme, the addresses of nodes are based 
on their topological properties, so that the route between any 
pair of nodes is known beforehand and does not change over 
time. The route is usually encoded in the packets in the form 
of a bit-stream or coordinates (e.g., see [8]). While scalable, 
this rigid scheme has two major drawbacks: the lack of 
automation in defining addresses, and thus the setup of routes, 
and no multipath support, preventing the recovery upon DCN 
failures. The valiant routing scheme [9] was proposed as a 
solution to overcome such deterministic routing shortcomings, 
bringing multipath support and load balancing. For a 
communication between any pair of nodes, a random 
intermediate address i is selected first and the path is 
composed by routing packets from source to i and then from i 
to destination. This way, multipath support is enabled, but at 
expenses of longer paths and still an automation process for 
the naming. 

The adopted routing scheme in many large DCs is today 
based on IP because of the low-cost of IP-based commodity 
servers. To mitigate the inherent limitations of routing 
solutions initially designed for an Internet with arbitrary 
topology, modifications to link-state and path-vector routing 
have been introduced. For example, Facebook’s DCN uses 
BGP-4 [10] to avoid the need for an address per interface (as 
required by IP), assigning an ASN per node, routing to the 
node instead of to the interface [11]. Nonetheless, BGP-4 
suffers from many limitations, e.g., path exploration upon 
failures, manual configuration of timers, TCP connections 
between any pair of connected ASNs, etc. As a result, these 
schemes imply a high communication cost and require many 
entries in routing and forwarding tables to take optimal routing 
decisions and allow route recovery upon failures.   

A new trend in intra-DC routing is a Software Defined 
Networking (SDN) approach centralizing all forwarding 
decisions, where only a few nodes know the state of the full 
DCN. For example, Google’s DCN uses its SDN-based 
approach to control packet forwarding within the DCN [1]. 
Although this strategy allows taking efficient decisions at low 
communication cost, the complexity of centralized decisions 
increases with the network size, potentially imposing 
scalability issues as the network grows larger. 

III. SCENARIO UNDER STUDY 
 RINA is a computer network architecture that unifies 
distributed computing and telecommunications [5]. RINA's 
fundamental principle is that computer networking is Inter-
Process Communication (IPC). RINA reconstructs the overall 
structure of the Internet forming a model that comprises a 
single repeating layer, the DIF (Distributed IPC Facility). Each 
DIF instance implements the same functions and mechanisms, 
which are configured via policies in order to adapt to the 
specific scope (operating environment). In this paper we focus 
on a RINA deployment inside a DC following the DIF setup 
depicted in Fig. 1. Such a RINA-enabled DCN network is 

partitioned into three main types of DIFs of different scopes: i) 
a single DC-Fabric DIF, acting as a large distributed switch; 
ii) a DC DIF that connects all servers in the DC together under 
the same pool; and iii) multiple tenant DIFs, isolated and 
customized as per the requirements of the different tenants. 
Note that in the figure the underlying point-to-point links are 
abstracted as “shim” DIFs, which allow the deployment of 
RINA over legacy technologies or physical media [12]. 

 
Fig. 1. DIF setup inside a DC between Virtual Machines (VMs) running in 
DC servers. The DC-Fabric DIF (violet color) is the focus of this work. 

In this work, we focus on the DC-Fabric DIF, that is, the 
one providing connectivity between Top-of-the-Rack (ToR) 
switches and between edge routers and ToR switches. To 
provide outcomes applicable to realistic DC scenarios, we 
assume that the DC-Fabric DIF follows the topologies of the 
large Google’s and Facebook’s DCNs shown in Fig. 2. As for 
the Google’s DCN topology (Fig. 2, top), a unique plane of 
spine switches interconnects all pods and edge planes in the 
DCN, offering multiple equal cost paths between each pair of 
ToRs and edges, even under multi-failure scenarios. 
Regarding the Facebook’s DCN (Fig. 2, bottom), the fabric 
switches of a pod connect each one to a distinct spine set that 
provides connectivity to all other pods and to edge nodes. 
Again, high redundancy is introduced to survive multiple 
concurrent failures across the DCN. 

 

 
Fig. 2. Google’s (top) and Facebook’s (bottom) DCN topologies, extracted 
from references [1] and [2]. 

 A key benefit of RINA is its programmable behavior using 
policies, as well as the automation of the enrollment and 
naming processes of a new node in a DIF [6]. This allows to 
get rid of the constraints imposed by both the conventional 
deterministic routing and the IP-based solutions, opening an 
opportunity for cheap customizable hardware. In the following 
section we elaborate on topological routing and forwarding 



policies particularly designed for a potential DC-Fabric DIF in 
the Google’s DC premises, exploiting its DCN characteristics 
for superior efficiency and scalability. 

IV. RINA-ENABLED GOOGLE’S DCN USE CASE 
Taking a look at Google’s DCN, we can see that the DC-

Fabric DIF can be described by only 6 parameters: Number of 
spine nodes (s), number of pods (P), number of edge planes 
(E), number of fabric nodes per pod/edge plane (f), number of 
ToRs per pod (t) and number of edges per edge plane (e). 
Moreover, given the regularity of the topology, we find that 
only a few types of nodes exist. This becomes particularly 
useful for performing topological forwarding, which depends 
on the relations between node locations. Specifically, we have 
spine switches (hereafter referred as R0 nodes), fabric 
switches (R1 nodes) and ToR switches/edge routers (R2 
nodes). 

From now on, we are going to refer to pods and planes (of 
spine or edge switches) indistinctly as groups. Taking 
advantage of R0, R1 and R2 node groups in the DCN, we 
propose a location-dependent but route-independent node-
addressing scheme A.B, where A identifies a group and B is 
the identifier of the node within the group. Although simple, 
this scheme allows inserting the topological location of any 
node in the DCN in its address as follows: 

    A = 0, B ∈ [1, s] → Spine B  
    A ∈ [1, P+E], B ∈ [1, f] → Fabric B at pod/Edge Plane A 
    A ∈ [1, P], B ∈ (f, f+t] → ToR B at pod A 
    A ∈ (P, P+E], B ∈ (f, f+e] → Edge B at edge Plane A 

A. Forwarding policy 
A key requirement of any forwarding policy is the ability 

to quickly decide the neighboring node to which a packet must 
be forwarded to. Forwarding policies in RINA are not 
restricted to be a traditional table. Instead, any forwarding 
function capable to quickly perform accurate forwarding 
decisions can be used. To this avail, we leverage on the 
regular topology of Google’s DCN (Fig. 2, top) to design a 
minimalistic forwarding function. 

Being aware of the specific DCN topology (from the set of 
parameters listed at the beginning of this section) and the 
location of the node in it, only forwarding entries to adjacent 
neighbors need to be stored at DCN nodes and simple 
forwarding rules can be used (detailed in the next sub-section). 
When failures occur across the DCN, however, it may happen 
that primary forwarding rules fail in delivering a packet to its 
destination. Thus, we require exceptions to overwrite the 
erroneous decisions of primary rules. These exceptions are 
similar to traditional forwarding table entries, but are only 
required upon certain failure scenarios. Moreover, the total 
number of exceptions tends to be considerably smaller than 
the number of entries required in a traditional forwarding table 
(at most the same in the very worst case), as many 
communications across the DCN remain unaffected by 
specific link or node failures. Therefore, only storing 
exceptions to primary rules upon failures can yield a large 
reduction in terms of memory usage compared to a traditional 
forwarding table. 

1) Forwarding rules 

In order to quickly access neighbor information, we assign 
a locally unique identifier (Neighbor-Id) to every neighbor, 
abstracting its real address. By using Neighbor-Ids as index, 
we can store all neighbor nodes’ information, including port 
address or status, in a direct access structure. These Neighbor-
Ids are assigned as follows:  

    At R0: R1 → (A - 1) * f  + B - 1  
    At R1: R0 → B - 1, R2 → s + B - f – 1 
    At R2: R1 → B - 1 

Forwarding rules use Neighbor-Ids to easily define the set 
of valid neighbors to reach any destination across the DCN. 
Given the nature of the communications inside a DC (over the 
DC-Fabric DIF in a RINA-enabled scenario), only end-to-end 
flows between R2 nodes (ToR switches and edge routers) will 
be established. Therefore, forwarding rules only need to 
consider R2 nodes as possible destinations. These rules are 
depicted in Fig. 3.  

At R0: Rule (A.B)    → [(A – 1) * f, A * f) 
At R1: Rule (A.B)    → [0, s) 
At R2: Rule (A.B)    → [0, f) 
Fig. 3. Pseudo-code  of primary forwarding rules in the Google’s DCN 

Let us show how those rules work to reach any R2 node 
A.B. At R0 nodes, any neighbor R1 node of the group A can 
be used to reach the destination (an ECMP-like policy can be 
chosen to load-balance the traffic). In an R1 node, we have 
two possibilities: either we are in a different group than the 
destination, so that we can use any R0 node to reach that 
(again load-balancing can be used), or we are in the same 
group (A), never reaching the rule as it is a direct neighbor. 
Finally, at R2 nodes we can use any R1 neighbor to reach any 
other R2 in the network. 

In all cases we have a range of valid neighbors. Then, upon 
having an unreachable neighbor, the rules would simply 
remove it from the valid ones. This allows keeping most of the 
rules still valid when failures affect the current node 
(otherwise multiple exceptions could be necessary).  

2) Forwarding exceptions 
Focusing on the exceptions to reach R2 nodes, we find 3 

kinds of them: to a specific node A.B, to a specific group A 
and to all other groups. It should be noted that exceptions to 
other groups are used neither in R0 nodes nor in R1 or R2 
nodes for destinations in the same group.  

Given the high number of neighbors that some nodes have, 
an important point is how Neighbor-Ids are stored at the 
exception entries. When encoding exceptions, we use two 
different encoding modes, being the use of one or another 
specified as a flag in the exception header. With the default 
encoding, the stored Neighbor-Ids represent the valid 
neighbors to reach the destination. When the number of valid 
neighbors is high, an inverse encoding can alternatively be 
used, where the stored Neighbor-Ids represent the invalid 
neighbors to reach a destination. Jointly with inverse encoding 
at R1 nodes, a direction flag is used to specify if that list 
applies to only R0 nodes (UP), R2 nodes (DOWN) or both. 
This proposal yields significant memory optimization, as most 
exceptions can be described as “To reach X go UP/DOWN, 
without using Y”.  



3) Forwarding decision 
Putting together direct routes to neighbors, exceptions and 

rules, the full forwarding decision can be described by the 
simple pseudo-code in Fig.4. 

Forward (A.B) 
If is Connected Neighbor (A.B) → Forward (A.B) 
If A = 0 || B <= f   → Unreachable 
If is Exception (A.B)   → Exception (A.B) 
If is Exception (A)   → Exception (A) 
If (My A != A & is Exception ())   → Exception () 
Else   → Rule (A.B) 
Fig. 4. Forwarding pseudo-code with exceptions and primary rules 

The forwarding function needs to be executed per packet. 
DCN performance requirement will most probably impose 
forwarding rules implementation to be on hardware. For this, 
we first have that neighbors can be stored in a direct access 
structure, making these last hops automatic. Then, taking 
profit from the small number of exceptions, we can have them 
ordered as R2 nodes, specific groups or other groups and 
simply iterate them until finding the first match. Being 
desirable for flows to maintain the same path during its 
lifetime (to prevent packet reordering), both rule and 
exception execution can use a fast hashing of the flow 
identifier of the packet to decide on the next hop, instead of 
deciding it randomly. 

B. Routing policy 
The previously described forwarding policy requires 

knowing the affected routes to destinations upon failures and 
how to alternatively reach them. Hence, the routing policy has 
to provide enough information to populate such exceptions. 
While a simple link-state or distance-vector routing protocol 
could be used to obtain exceptions to the primary rules upon 
failure scenarios, we can compute them more efficiently by 
exploiting the complete DCN topology knowledge that nodes 
have. Indeed, there is no need for nodes to propagate the state 
of operational resources across the network, but only that of 
those experiencing failures. To this end, we propose the link-
failure routing policy, a variation of link-state routing based on 
failure propagation, where instead of having all nodes 
propagating their full neighbor table, only failed links are 
propagated while the rest is assumed to be working, resulting 
in a large reduction of the information exchanged and stored at 
network nodes. 

Although we could use the DCN topology and failed links’ 
knowledge to compute the forwarding exceptions using a 
Dijkstra’s routing algorithm, such an approach has a 
significant computational cost and does not scale well. Instead, 
we found that with a list of failures we could restrict our 
search to problematic locations and compute the exceptions 
directly, if some constraints on valid paths are considered. 
Constraints on valid paths are, in fact, required to reduce the 
complexity of the algorithms. Even so, those are thought 
taking into account the high number of available paths towards 
any R2 node, and that it is better to have unreachable 
destinations (with possible movements of VMs) than filling 
the network with traffic routed through sub-optimal paths. For 
example, we consider the following two constraints at R0 
nodes: 1) a group is reachable if it has at least one R1 neighbor 

connected to at least one R2; 2) an R2 node is reachable if it 
has at least one R1 neighbor for which there exists a 1 or 3 
hops path to reach it in the group. 

C. Computing the forwarding exceptions 
Given the list of possible failures in the DC-Fabric DIF, 

we parse and process them in order to compute the exceptions 
to problematic destinations. For example, for R0 nodes, the 
pseudo-code in Fig. 5 can be used. 
Parsed data and functions used: 
unreachableGroups ←groups with all R1 unreachable 
unreachableNodes ←R2 disconnected from all R1  
R2Fails ←R2 disconnected from some R1  
R1notReachR2 ←R1 with problems reaching R2  
Reachable (A.B) ← Check if neighbor A.B can be reached  
reachableGroupR1(A) ← reachable A.* R1s 
reachableR1At (A.B) ← reachable R1s from R2 (A.B) 
reachableR2At(A.B) ← reachable R2s from R1 (A.B) 
Algorithm: 
Exceptions = Ø 
if I am disconnected then return Exceptions 
GroupsWithProblems  = Ø 
for each A.B in  R1notReachR2 do 
    if Reachable(A.B) then GroupsWithProblems .add(A) 
for each (A) in  GroupsWithProblems do 
    validPorts = Ø 
    for i = 1..f do 
        if  Reachable(A.i) and A.i ∉ R1notReachR2 then 
            validPorts .add (A.i) 
    if validPorts == Ø then unreachableGroups.add(A) 
    else Exceptions.add(A, validPorts ) 
for each (A) in unreachableGroups do E.add(A.0, Ø)  
for each (A.B) in unreachableNodes do 
    if (A) ∉ unreachableGroups then Exceptions.add(A.B, Ø) 
for each A.B in  R2Fails do 
    if A ∈ unreachableGroups then continue 
    if (A.B) ∈ unreachableNodes then continue 
    myReach = reachableGroupR1(A) 
    dstReach =  reachableGroupR1At(A.B) 
    if myReach ⊆ dstReach then continue 
    if myReach ∩ dstReach != Ø then 
        Exceptions.add(A.B, myReach ∩ dstReach) 
        continue 
    reachDst = Ø 
    for each node (A.B’) in dstReach do 
        reachDst .add(reachableR2At (A.B’))  
    reachNei = Ø 
    for each node (A.B’) in myReach do 
        reachNei .add(reachableR2At(A.B’))  
    validPorts = Ø 
    if reachNei ∩ reachDst != Ø then 
        validPorts .add(A.B’) 
    Exceptions.add(A.B, validPorts ) 
return Exceptions 
Fig. 5. Pseudo-code  for computing exceptions 

Algorithms to compute exceptions like the one described 
in Fig. 5 aim to direct the search toward failures that may 



require an exception, while discarding the rest. An example 
can be seen when failures between R0 and R1 nodes are only 
considered for the current node, as other ones are not included 
in feasible paths given the imposed constraints. Another case 
is seen for failures between R1 and R2 nodes where the depth 
of the search depends on the specific failures within the group, 
avoiding for example a search in depth if there are some 
shared R1 nodes between the current node and the one 
affected by failures. While such algorithms are fully 
dependent on the topology and require some constraints, they 
yield a significant improvement both in time and memory 
usage against the traditional route computation, as we do not 
need to compute and store reachability information to all 
destinations in the network, but only to problematic ones. 

V. RINA-ENABLED FACEBOOK’S DCN USE CASE 
Looking at the Facebook’s DCN in Fig. 2, we observe that 

it can be described by only 5 parameters: Number of pods (P), 
number of fabric nodes per pod and spine sets (f), number of 
ToRs per pod (t), number of spine nodes per spine set (s) and 
number of edges per spine set (e). Although this DCN can be 
described by fewer parameters than the Google’s one, here we 
have 4 types of distinct nodes: ToRs, fabric switches, spine 
switches and edge routers. Hence, we propose the following 
addressing scheme based on A.B.C addresses: 

        ToR:     0.Pod-Id.Tor-Id 
        Fabric: 1.Pod-Id.Spine-set 
        Spine:   2.Spine-set.Spine-Id 
        Edge:    3.Spine-set.Edge-Id 

Like for the Google’s DCN, we also propose a forwarding 
policy based on rules and exceptions. In this case, Neighbor-
Ids are defined as follows:  

        At ToR:  Fabric   → C  
        At Fabric switch: ToR   → s + C, Spine   → C 
        At Spine switch:   Fabric   → A, Edge   → P + C 
        At Edge router:    Spine   → C 
ToR: Rule (A.B.C) 
    If A = 3   → {B},   Else   → [0, f) 
Fabric: Rule (A.B.C) 
    If A = 3 & B != My B   → [s, s+t),   Else   → [0, s)  
Spine: Rule (A.B.C) 
    If A = 0   → {P + C},   Else   → [0, P) 
Edge: Rule (A.B.C)   → [0, s) 
Fig. 6. Pseudo-code  of primary forwarding rules in the Facebook’s DCN 

 Fig. 6 details the pseudo-code of the primary forwarding 
rules proposed for the Facebook’s DCN. With information of 
the current failures, exceptions to overwrite those rules can be 
computed in a similar way as in the Google’s DCN (not 
detailed here due to the lack of space). Note in this case that 
losing a fabric switch automatically multiplies the path length 
to reach its pod from some edge routers. Therefore, when 
computing the respective exceptions, we require either to have 
less restrictive constraints in these cases, thus incrementing the 
complexity of the algorithms to avoid unreachable areas 
across the DCN, or more restrictive ones, reducing complexity 
but at expenses of having unreachable areas. 

VI. COMPARISON WITH CURRENT SOLUTIONS 
Current routing and forwarding solutions for IP impose 

multiple limitations that the RINA architecture already solves. 
For example, for addressing DCN devices, we are not forced 
to use 4 or 16-byte addresses as imposed by IPv4 or IPv6, but 
can use scenario-specific addresses. Besides, public addresses 
of servers/VMs are not propagated with routing updates, only 
focusing on the smaller set of node addresses in the DCN. 
While the benefits of RINA are enough to contemplate its 
usage inside DCs, we also want to quantitatively evaluate the 
performance of the proposed routing and forwarding policies 
against that of currently available solutions for the same 
purposes.  

Aiming to analyze the number and size of traditional 
Forwarding Table entries vs. Rules plus exceptions in our 
policies, we have considered two different DC-Fabric DIFs. 
The first one, named DIF-Go, reproduces the Google’s DCN 
topology, whereas the second one, named DIF-FB, reproduces 
that in the Facebook’s DCs. Table I depict the parametrization 
of both DIFs, taking the number of pods (P) as base parameter. 
The expressions to determine the rest of parameters (as a 
function of P) allow us to obtain similar configurations as 
those reported for the real DCNs. 

TABLE I.  DETAILS OF THE DCN-FABRIC DIFS 
Pods (P) P 
ToRs per pod (t) P/2 
Fabric switches per pod/edge plane (f) Log3(P) 

DIF-Go 
Edge planes (E) P/4 
Edge routers per edge plane (e) P/2 
Spine switches (s) P 

DIF-FB Edge routers per spine set (e) P2/8f 
Spine switches per spine set (s) P/2 
Total number of servers P2/2 
Total number of edges P2/8 

 As a first objective, we compare the number of entries in a 
forwarding table against the number of neighbor entries plus 
exceptions for large-scale DCNs. For this, we fix in our first 
tests P=100, resulting in DCNs with 5000 ToR switches. 
Being our approach dependent of the number of concurrent 
failures across the DCN, we perform our tests for 0, 1, 2, 5 and 
10 concurrent ones, being those either link or node failures 
(randomly chosen). We perform 50000 tests for each DIF and 
number of failures, averaging the obtained results. 

TABLE II. AVG. ENTRIES VS. MAX ENTRIES (%) GIVEN N FAILURES 
Method\Failures 0 1 2 5 10 
Exceptions 0.21 0.22 0.23 0.24 0.27 
DIF-Go FWT 11.6 11.9 12.3 13.2 14.8 
DIF-FB FWT 11.4 12.1 12.8 14.8 18.1 

 In Table II we can see the relative number (in %) of 
required entries in each case against the total number of DCN 
nodes. With our policies (named as Exceptions in the table), 
we require at most one exception per failure (as expected), 
thus being most of the stored entries related to adjacent 
neighbors’. With traditional forwarding tables (FWT), we 
assume that ToR and edge addresses can be aggregated at 
pods and edge planes/spines. With this, the number of entries 
can be lowered by 11 to 18% compared to the trivial FWT 
solution where one entry per destination node is stored. While 



this represents a noticeable reduction, it cannot approach by 
far the scalability of our proposals. 
 In addition to the number of entries, we are also interested 
in comparing the amount of forwarding data stored. For this 
purpose, we focus on the amount of stored ports in the 
forwarding entries and exceptions rather than on their 
encoding, so as to become independent from specific data 
structures. Fig. 7 shows the average number of entries and 
stored ports in DIF-Go and DIF-FB for different P sizes 
(number of pods in the DCN), in scenarios from 0 to 10 
concurrent link/node failures. With forwarding tables, we also 
limit the number of stored ports per destination to 16, a 
common limit in ECMP implementations. In the figure, we 
can see how, the number of forwarding entries and their size 
grow steadily with P. In contrast, our proposed solution only 
needs to store adjacent neighbors’ information plus 
exceptions, remaining the number of forwarding entries 
almost constant as the size of the DIFs grows up. 
 

 
Fig. 7. Avg. number of entries and stored ports  given the number of pods 

 Although the benefits of our proposals against the 
traditional forwarding tables are good enough to justify 
topology dependent policies, the benefits on the computational 
and communication cost of searching exceptions, given a 
specific number of failures, should also be investigated. 
Regarding the latter, we have a clear improvement in the sense 
that, as we know the topology, we can take some knowledge 
as granted. Given this knowledge of the topology, we can 
avoid the initial routing information flooding that any 
common on link-state or distance-vector routing protocol 
needs for populating nodes’ routing and forwarding tables. 
Besides, most IP solutions require some type of refresh of 
routing information to ensure that the knowledge is updated. 
In our case, RINA DIFs can provide reliable communications 
between nodes, which can be configured in a DC-Fabric DIF 
as well. This makes routing information refreshes 
unnecessary. 
 Finally, in terms of computation cost, in order to validate 
our proposed approach to compute forwarding exceptions, we 
compare its complexity against a traditional solution based on 
link-state routing and Dijkstra’s routing algorithm. For this 
purpose, we take the pseudo-code proposed for R0 nodes in 
the Google DCN in Fig. 5. Moreover, to simplify the results 
we consider the same parametrization described in Table I, 
and use the number of pods (P) and failures R as the two only 
parameters. With the traditional link-state solution, computing 
either exceptions or a forwarding table has a complexity lower 
bound of o(P2*Log(P)). Conversely, with our approach we 
find a complexity upper bound of O(R*P). Note that this upper 
bound will never be reached, as it would require the same 
failures to affect R2 nodes in all groups. Since the number of 
concurrent failures in this type of networks is small by design, 
we found a lower upper bound, ensured for the cases where R 

< P/2. In these cases, if we use the known failures to check 
reachability between R1 nodes instead of a brute force 
approach, our complexity can be bounded to O(R*Log(R)* 
Log(P)), representing a big improvement in performance, still 
without considering that in the non-failure scenario we only 
have the constant cost of checking that there are no failures in 
the network. 

VII.  CONCLUSIONS 
In this paper, we proposed rule-based topological routing 

and forwarding policies for RINA-enabled large-scale DCNs, 
based on those recently made publicly available by Google 
and Facebook. These policies use the knowledge of the DCN 
topological characteristics for superior efficiency and 
scalability, achieving fast and 100% successful forwarding 
decisions in the non-failure scenario with merely neighboring 
node information. Upon DCN link or node failures, 
forwarding exceptions are computed and stored at DCN nodes 
to override the possible invalid forwarding decisions of 
primary rules. To minimize the size of the stored exceptions, 
only the invalid neighbors (instead of all valid ones) are 
contemplated, something that gives a great improvement, 
given the large number of redundant paths to any destination. 
Regarding the proposed routing policy, only failed link 
information is disseminated, reducing the communication cost 
to a large extent. The obtained results in large-scale DCNs 
illustrate the perfect scalability of our routing and forwarding 
policies. 
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