
Prediction-Based Routing in IP-MPLS Networks

Eva Marín-Tordera, Xavier Masip-
Bruin, Sergio Sánchez-López,

Jordi Domingo-Pascual

Advanced Broadband Communications Lab
Universitat Politècnica de Catalunya, UPC
Vilanova i la Geltrú, Barcelona, Catalunya,

Spain
{eva, xmasip, sergio}@ac.upc.edu

Ariel Orda

Department of Electrical Engineering
 Technion I.T.T., Haifa, Israel

ariel@ee.technion.ac.il

Abstract: There are many problems closely involved with the QoS deployment in the current
Internet. One of significant relevance focuses on the Qos routing scalability concerns. In this
paper we propose a new QoS routing mechanism, named Prediction-Based Routing, mainly based
on a precomputation scheme. The main characteristic of such a precomputation scheme is the
prediction concept introduced to reduce the scalability issues. Because of this prediction concept
links and routes availability are predicted according to a processing system which take routing
decisions regardless of the link state information allocated in the nodes databases. As a
consequence, updating messages are not required, so overhead is reduced and scalability is
enhanced.

Keywords: QoS Routing, Prediction-Based Routing, updating mechanism, routing inaccuracy

1. INTRODUCTION
One of the most significant problems when talking about QoS routing is in fact the

scalability. Some of the proposals dealing with this problem are mainly based on either
implementing better QoS routing algorithms, introducing a hierarchical structure or
using a precomputation approach. There are many contributions in the literature using a
precomputation scheme to address such scalability issues. The well known hot potato
routing [1] ‘predicts’ which will be the best route to a destination based on the delay
information coming from such destination node. Authors in [2] propose to predict the
future traffic load in a link, based on past measured samples of the traffic load in that
link. In [3] authors present a dynamic variation of the hot potato routing. Unlike these
proposals our contribution focusses on predicting link and route availability instead of
predicting incoming traffic load. The Prediction-Based Routing (PBR) mechanism has
already been presented in [4] as a Routing and Wavelength Assignment (RWA)
mechanism to be applied to optical transport networks.

Qos routing algorithms look for the “optimal” route between source-destination
nodes pair based on the network state information obtained from the network state
databases. Despite the fact that some update policies are included in the routing protocol
to keep updated routing information, in highly dynamic networks it is extremely
difficult to maintain accurate routing information on all network nodes. It has been
widely shown in the literature the main causes motivating this inaccuracy, such as the
non-negligible delay in propagating the update messages, the aggregation process
inherent to hierarchical networks and the mechanisms used to reduce the signaling
overhead produced by the need of updating. Hence, assuming the unavoidable existence
of such an inaccuracy, new routing algorithms taken into account this parameter must

be sought [5-9]. The PBR mechanism also impacts on the signaling overhead. One of
the main skills of the PBR is that by using such an approach update messages are not
needed, therefore reducing the signaling overhead. Assuming source routing, nodes do
not select routes based on their network state information but also on predicted
information. The basic idea of the PBR focuses on the training effort developed by the
source nodes to find out the “optimal” route for every traffic request. In short, the
prediction is obtained from some information kept in new prediction tables on every
source node. The decision of which path is selected is performed by reading these
prediction tables.
2. APPLIYING THE PREDICTION-BASED ROUTING IN

IP/MPLS NETWORKS
The prediction-based routing is based on the well-known ideas of branch prediction

developed in computer architecture [10]. In this area the main target boils down to find
out whether a branch instruction will be taken or not before being processed. This is
done to speed up the processor. The concepts used in branch prediction can be applied
to a network scenario whenever substantial changes are included. The main components
of our proposal are described in the next sub-sections.

2.1. Route Registers
Unlike branch prediction where the branch prediction outcomes history is stored in a

register, in a network scenario, it is necessary to keep the network state from the point
of view of the source node. In order to achieve it the PBR mechanism registers the
amount of bandwidth that every source node allocates to every route from such a source
node. In order to make understanding easier we assume that the information about both
available and used bandwidth are expressed in terms of a percentage of the total
capacity of the end-to-end route. We suppose that all the links has the same 100% of
bandwidth capacity. There is one register per route on every source node. These
registers are updated with information about assigned bandwidth from the point of view
of these source nodes. One of the main skills of the PBR mechanism is that the registers
updating process is achieved without flooding the whole network with messages
containing the network state information. Because of the lack of updating messages the
bandwidth allocated in the registers in the source nodes cannot be the real bandwidth
occupation.

Since the information about assigned bandwidth is used to access some tables (so-
named prediction tables), this information must be digitalized in order to build the index
of such prediction tables. Just as an example if the number of bits used to digitalize the
bandwidth information is 1, we can assign ‘0’ to the index when the used bandwidth in
the path is bigger or equal than the 50%, and otherwise we assign ‘1’. Instead, if the
number of bits used to digitalize the bandwidth information is 2 then 0 (00 in binary)
stands for an used bandwidth bigger than 75%, 1 (01 in binary) stands for an used
bandwidth between 75-50%, 2 (10 in binary) stands for an used bandwidth between 50-
25%, and finally 3 (11 in binary) stands for an used bandwidth lower than 25% and so
on depending on the number of bits. These indexes express more or less the available
bandwidth.

2.2. Prediction Tables
In the source nodes there is one prediction table for every feasible route from that

node. Every route register has its corresponding prediction table. The prediction tables

have different entries, each one keeping the information about a different pattern by
means of a two bit counter. The use of two values to account for the availability or the
unavailability has been well studied in the area of branch prediction. As it is presented
in [10] a two bit counter gives better accuracy than a one bit counter. It is also exposed
in [10] that going to counters larger than two bits do not necessarily give better results.
This is due to the “inertia” that can be built up with a large counter. A two-bit counter
can have 4 values: 0, 1, 2 and 3. The prediction is done reading the value of such a two
bit counter. If the value is 0 or 1 (less than 2) the prediction is to select that route,
otherwise, if the prediction is 2 or 3 the prediction is that the route is unavailable and it
is not selected then. The number of entries of the prediction tables depends on the
number of bits of the route registers. For example, if the route registers keep
information about the occupied bandwidth in the route with two bits; the number of
entries of the prediction tables will be 4.

2.3. Algorithm
The Predictive Selection of Route (PSR) is the routing algorithm inferred from the

PBR we suggest in the paper. Its performance is shown in the example of Fig.1. We
assume there are two routes computed between every source-destination nodes pair (the
algorithm is able to compute more than 2 routes) as well as the assigned bandwidth is
stored in the route registers by two bits. The PSR algorithm checks the 2 shortest routes
in a computed order, according to the availability of their links. In the case of PSR there
are not any updates of the network state information, that is, the information about the
availability of the links does not represent the current picture of the network. Indeed,
without updating, every node only knows how routes and links the node has assigned in
the past. This information dictates the order by which the PTs are checked. For the
example of Figure 1, we suppose that the first route to be checked is Route 1 and the
second one is Route 2. When a new request demanding 40% of bandwidth reaches the
source node, the first route is examined. The last information in this first route is that
the used bandwidth is 40%. This used bandwidth is incremented by the requested
bandwidth, i.e. 40%+40%. If the resultant bandwidth is lower than 100 % then the
prediction table of the first route is checked, that is the counter of the corresponding
entry read; otherwise the next prediction table would be checked. In our example the

Route 1
Prediction Table

40%

Route 1 register

Incoming traffic
request demanding
40% of bandwidth

25%

Route 2 register

1) (40+40)% PT1 index= 00
 bandwidth

200
01
10
11

Check
route 2

2) (25+40)% PT2 index= 01
 bandwidth 1

Route 2
Prediction Table

00
01
10
11

Select
route 2

Figure 1. Showing the PBR performance

total bandwidth is 80% (>75%) so that the index used to access the first prediction table
is 0 (00 codified in 2 bits). With this index, the prediction table of the first path is
accessed and the counter is read. According to the Fig.1 the value obtained after
accessing the prediction table is a 2, so that the prediction turns out to avoid the first
route. Hence the second route is examined.. In this second path the used bandwidth is
25%, so that the resultant bandwidth will be 40%+25%=65%. This means an index of 1
(01 codified with 2 bits). The prediction table of the second route is accessed with this
indexed obtaining a value of 1. According to this counter value, the algorithm selects
this second route since prediction states that this route will not be blocked. It is
necessary to specify that the algorithm checks both the counter value of the prediction
table and the availability of the node’s outgoing link towards the route 1 or the route 2.
This is done because the nodes always have updated information of availability of their
outgoing links. In Fig. 2 there is a summary of the algorithm. We call the functions that
check the availability of route 1, Check(Route1), and for route 2 Check(Route2). In the
example, after checking the prediction tables of the two routes, if the algorithm had not
selected any route because it predicted that the two routes will be blocked, the algorithm
would select the route that has availability in their outgoing link. That is the algorithm
selects the route only checking the availability of the outgoing links of the node. In the
summary of the algorithm these functions are called CheckF(Route1) and
CheckF(Route2).

New request demanding an X% of bandwidth.
Check(Route 1):

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). The total
bandwidth is X+Y%.

If (X+Y)% <=100% the PT of the first route is checked
If(PT counter<2) and there is availability in the outgoing link the algorithm
selects the route1

 Else Check(Route 2).
Else Check(Route 2)

Check(Route 2)
The new bandwidth is added to the bandwidth kept in the route2 register (Z%). The total
bandwidth is X+Z%.

If (X+Z)% <=100% the PT of the second route is checked
If (PTcounter<2)) and there is availability in the outgoing link the algorithm
selects the route2

 Else CheckF(Route 1)
 Else CheckF(Route 1)
CheckF (Route 1):

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). The total
bandwidth will be X+Y%.

If (X+Y)% <=100%
If there is availability in the outgoing link the algorithm selects the route1

 Else CheckF(Route 2).
Else CheckF(Route 2)

CheckF (Route 2):
The new bandwidth is added to the bandwidth kept in the route1 register (Z%). The total
bandwidth will be X+Z%.

If (X+Z)% <=100%
If there is availability in the outgoing link the algorithm selects the route2

 Else No route is assigned
Else No route is assigned

Figure 2. Summarizing the PSR algorithm

2.3. Updating procedure
The route registers are updated with the information about the used bandwidth for

the source node in every route. In the example above when the algorithm selects the
second route the new bandwidth occupied by this node in this second route will be 65%.
It is important to note that this used bandwidth is only the bandwidth known by the
node which might be quite different from the real occupation since other source nodes
may allocate other bandwidths in links of the same route. Due to the lack of update
messages this source node will not be aware of such a bandwidth changes.An important
issue to be considered is that only the prediction table of the selected route is really
updated. Hence, if the connection can be setup the corresponding counter on the
prediction table is decreased, otherwise if the connection is blocked the counter is
increased. In the above example if the connection is established the counter of the entry
01 in the prediction table of route 2 will be 0, but if the connection is blocked the
counter will be 2. The fact of trying to select routes only checking the outgoing
availability when any route is assigned (by means of functions CheckF(Route1) and
CheckF(Route2)) is done to unblock the PT counters. When both routes might not be
selected because the PT counters of route 1 and route 2 are bigger than 1, the PSR
algorithm runs the function CheckF(Route1), and if the route cannot be assigned the
algorithm runs CheckF(Route2). If the route is selected by means of function
CheckF(Route1) or CheckF(Route2) and the connection can be setup, then the
corresponding PT counter of route 1 or route 2 is decreased therefore unblocking it.

3. PERFORMANCE EVALUATION

In order to evaluate our proposal we first measure the percentage of blocked
connections produced by the PSR algorithm when varying the number of bits used to
digitalize the requested bandwidth. Then, we compare the performance of the PSR
algorithm with a well-known QoS routing algorithm, the Widest Shortest Path (WSP)
[11] (which requires the updating process). The WSP dynamically selects for every new
incoming request, the route with more available bandwidth among the shortest ones. We
assume in our evaluation that shortest routes are link disjoint. Finally we have carried
out a set of simulations to check the learning process of the PSR algorithm. All the
performed simulations are obtained by applying the PSR and the WSP to the NSF net
topology shown in Fig.3. We assume nodes (1, 2, 11, 12, 14 and 15 in Fig.3) acting as
source and destinations node. A Poisson distribution models the connection arrivals, and
all the links have the same available bandwidth, which is normalized to 100%. Each
arrival connection requires a percentage of the total bandwidth.

Figure 3. Topology used in the simulations

3.1. Number of bit to codify the requested bandwidth
In the first evaluation we test the performance of the PSR algorithm when the

number of bits used to digitalize the bandwidth is changed for different traffic loads.
Notice that in every one of the 6 possible source nodes there are one prediction table,
PT, and one route register for every possible route from such a source node. If there are
5 possible destinations, and there are 2 possible routes for every one, there are 10 route
registers and 10 prediction tables in every source node. The length of these route
registers and the number of entries of the prediction tables depend on the number of bits
used to codify the bandwidth. For example, if the number of bits is 1, in the source
nodes there will be 10 route registers of 1 bit, and 10 prediction tables of 2 entries each
one (remind that in every entry of the PT there are a 2 bit counter). But if the number of
bits used to codify the bandwidth is 5, the route registers will have a length of 5 bits,
and the PT will have 32 entries each one. The holding and arrival times of the incoming
requests are measured in units of time. Besides, all different traffic loads have a holding
time of 10 units of time, and also an arrival time of 10 units of time. In order to change
the traffic load we change the average requested bandwidth demanded by the incoming
request from 10% to 30 % of average bandwidth. In Fig.4 we can see the results of these
simulations, that is the percentage of blocked connections versus the number of bits
used to codify the bandwidth requested for different traffic loads. From the obtained
results we observe that the optimum number of bits depends on the pattern of traffic
load, for 10% of average bandwidth for all the different number of bits we obtain the
same results, but for 30% of average bandwidth the best results are when the bits used
to digitalize the bandwidth is 4. Being aware the lower the number of bits the lower the
hardware cost, we only present results for 1, and 4.

3.2. PSR versus Widest Shortest Path
In Fig.5 we present results obtained for the number of blocked connections for the

Widest Shortest Path and the PSR algorithm versus the time between the update
messages are flooded in the network, for different traffic loads. Note that the PSR
algorithm does not vary with the time of updating because it does not need update
messages. In general, the Widest Shortest Path behaves better than the PSR only when
the time between update messages is 1 unit of time. Even, for 10% the PSR behaves
better than the Widest Shortest Path when the time between update is 1 unit the time.
But it is important to note that one update message every single unit of time is
unaffordable from the point of view of the signaling overhead. In fact, in our simulation
sending an update message every single unit of time implies (in average) approximately

 10%

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

1 2 3 4 5

Number of bits

%
 B

lo
ck

ed
 R

eq
ue

st
s

 30%

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5

Number of bits

%
 B

lo
ck

ed
 R

eq
ue

st
s

Figure 4. % of Blocked Request of the PSR algorithm for two different traffic loads

3 set-up connections per updating; or if updating is every 5 units of time it implies 15
set-up connections per updating.
The results of the PSR algorithm show that the routing based on prediction is a valid
option because of both its capacity of learning how to assign routes and the complete
reduction of the signaling overhead owing to flooding update messages (only topology
update messages are required).

3.3. Learning time of the PSR algorithm
Finally we evaluate the time required to train the prediction tables, i.e., the learning

time for the PSR algorithm. Results on Fig.6 show the number of blocked connections
versus the number of connections requests for the PSR and the Widest Shortest Path
algorithm. Results are presented for 2 different traffic loads: when the average
demanded bandwidth is 10 % and 30 % respectively. For traffic load of 10 % in the x-
axis the number of connection requests ranges from 0 to 20000 new requests. In this
graphic we can observe that initially the PSR behaves worse than the Widest Shortest
Path. However, when the number of requests is approximately 8000 the PSR has similar
number of blocked requests than the Widest Shortest Path with Updating=5 units of
time. Finally, for 15000 requests the PSR reaches the results of the Widest Shortest Path
with Updating=1 unit of time. For this traffic load we can consider that the PSR has a
“time of learning” of 8000 or 15000 request, depending on what we define as learning
time. On the other hand we also present results for a traffic load of 30% of average
bandwidth requested. In this case the PSR never reaches the results of the Widest
Shortest Path algorithm with Updating=1. The PSR has similar performance than the
Widest Shortest Path algorithm with Updating=5, and clearly behaves better from

10 %

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 20 40 60 80 100

Update (Time units)

%
 B

lo
ck

ed
 R

eq
ue

st
s

Widest
Shortest
Path

PBR
(1b,4b)

30 %

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 20 40 60 80 100

Update (Time units)

%
 B

lo
ck

ed
 R

eq
ue

st
s

Widest
Shortest
Path
PBR
(1b)

PBR(4b)

Figure 5. % of Blocked Requests for the Widest Shortest Path

and PSR algorithm for two different traffic loads

15 %

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000
Number of requests

N
um

be
r o

f b
lo

ck
ed

 re
qu

es
ts

Widest Shortest
Path (Updating=1)
Widest Shortest
Path (Updating=5)
PSR

25 %

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5000 10000 15000 20000
Number of requests

N
um

be
r o

f b
lo

ck
ed

 re
qu

es
ts

Widest Shortest
Path (Updating=1)
Widest Shortest
Path (Updating=5)
PSR

Figure 6. PSR process of learning vs the WSP

10000 requests. Therefore, we can argue that the “time of learning” of the PSR
algorithm strongly depends on the traffic pattern.

4. CONCLUSIONS
We have presented a precomputation approach for QoS routing based on the

prediction concept to address the scalability concerns in QoS routing. Our proposal is
based on predicting links and routes availability not according to the network state
information but according to its capacity of learning. One of the main skills of this
approach is that update messages are not needed, so reducing the signaling overhead.
Simulation results show that the algorithm inferred from the PBR mechanism behaves
better than usual routing algorithms such as the Widest Shortest Path for reasonable
network scenarios, that is, when the updating frequency is affordable the Widest
Shortest Path has a better performance than the PSR.

ACKNOWLEDGEMENTS

This work was partially funded by the MCyT (Spanish Ministry of Science and
Technology) under contract FEDER-TIC2002-04531-C04-02 and the CIRIT (Catalan
Research Council) 2001-SGR00226 and the European Commission through the
Network of Excellence E-NEXT under contract FP6-506869.

REFERENCES

[1] P. Baran, “On Distributed Communications Networks”, IEEE Transactions on

Communications, pages 1-9, 1964.
[2] T.Anjali, C.Scoglio, J.de Oliveira, L.C. Chen, I.F. Akyldiz, J.A. Smith, G.Uhl, A.Sciuto, “A

New Path Selection Algorithm for MPLS Networks Based on Available Bandwidth
Estimation”, QofIS 2002.

[3] C. Busch, M. Herlihy, R.Wattenhofer, “Routing without Flow Control”, ACM Symposium
on Parallel Algorithms and Architectures 2001.

[4] E. Marín-Tordera, X.Masip-Bruin, S.Sánchez-López, J.Solé-Pareta, J.Domingo-Pascual, “A
New Prediction-Based Routing and Wavelength Assignment Mechanism for Optical
Transport Networks”, QofIS 2004.

[5] R.A.Guerin, A.Orda, “QoS routing in networks with inaccurate information: theory and
algorithms”, IEEE/ACM Transactions on Networking, Vol.7, nº.3, pp. 350-364, June 1999.

[6] D.H.Lorenz, A.Orda, “QoS routing in networks with uncertain parameters”, IEEE/ACM
Transactions on Networking, Vol.6, nº.6, pp.768-778, December 1998.

[7] G.Apostolopoulos, R.Guerin, S.Kamat, S.K.Tripathi, “Improving QoS routing performance
under inaccurate link state information”, Proc. ITC’16, June 1999.

[8] S.Chen, K.Nahrstedt, “Distributed QoS routing with imprecise state information”, Proc.7th
IEEE International Conference of Computer, Communications and Nettworks, 1998.

[9] X.Masip, S.Sánchez, J.Solé, J.Domingo, “QoS Routing Algorithms under Inaccurate Routing
Information for Bandwidth Constrained Applications”, Proc. IEEE ICC, Anchorage, Alaska,
May 2003.

[10] J.E. Smith, “A study of branch prediction strategies”, In Proc. of 8th International
Symposium in Computer Architecture, Minneapolis 1981.

[11] R. Guerin, A.Orda and D. Williams, “QoS Routing Mechanism and OSPF Extensions”, in
Proceedings of 2nd Global Internet Miniconference (joint with GLOBECOM’97), Phoenix,
USA, November 1997.

