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Abstract:  There are many problems closely involved with the QoS deployment in the current 
Internet. One of significant relevance focuses on the Qos routing scalability concerns. In this 
paper we propose a new QoS routing mechanism, named Prediction-Based Routing, mainly based 
on a precomputation scheme. The main characteristic of such a precomputation scheme is the 
prediction concept introduced to reduce the scalability issues. Because of this prediction concept 
links and routes availability are predicted according to a processing system which take routing 
decisions regardless of the link state information allocated in the nodes databases. As a 
consequence, updating messages are not required, so overhead is reduced and scalability is 
enhanced. 
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1. INTRODUCTION 
One of the most significant problems when talking about QoS routing is in fact the 

scalability. Some of the proposals dealing with this problem are mainly based on either 
implementing better QoS routing algorithms, introducing a hierarchical structure or 
using a precomputation approach. There are many contributions in the literature using a 
precomputation scheme to address such scalability issues. The well known hot potato 
routing [1] ‘predicts’ which will be the best route to a destination based on the delay 
information coming from such destination node. Authors in [2] propose to predict the 
future traffic load in a link, based on past measured samples of the traffic load in that 
link. In [3] authors present a dynamic variation of the hot potato routing. Unlike these 
proposals our contribution focusses on predicting link and route availability instead of 
predicting incoming traffic load. The Prediction-Based Routing (PBR) mechanism has 
already been presented in [4] as a Routing and Wavelength Assignment (RWA) 
mechanism to be applied to optical transport networks. 

Qos routing algorithms look for the “optimal” route between source-destination 
nodes pair based on the network state information obtained from the network state 
databases. Despite the fact that some update policies are included in the routing protocol 
to keep updated routing information, in highly dynamic networks it is extremely 
difficult to maintain accurate routing information on all network nodes. It has been 
widely shown in the literature the main causes motivating this inaccuracy, such as the 
non-negligible delay in propagating the update messages, the aggregation process 
inherent to hierarchical networks and the mechanisms used to reduce the signaling 
overhead produced by the need of updating. Hence, assuming the unavoidable existence 
of such an inaccuracy, new routing algorithms taken into account this parameter must 



be sought [5-9]. The PBR mechanism also impacts on the signaling overhead. One of 
the main skills of the PBR is that by using such an approach update messages are not 
needed, therefore reducing the signaling overhead. Assuming source routing, nodes do 
not select routes based on their network state information but also on predicted 
information. The basic idea of the PBR focuses on the training effort developed by the 
source nodes to find out the “optimal” route for every traffic request. In short, the 
prediction is obtained from some information kept in new prediction tables on every 
source node. The decision of which path is selected is performed by reading these 
prediction tables. 
2. APPLIYING THE PREDICTION-BASED ROUTING IN 

IP/MPLS NETWORKS 
The prediction-based routing is based on the well-known ideas of branch prediction 

developed in computer architecture [10]. In this area the main target boils down to find 
out whether a branch instruction will be taken or not before being processed. This is 
done to speed up the processor. The concepts used in branch prediction can be applied 
to a network scenario whenever substantial changes are included. The main components 
of our proposal are described in the next sub-sections. 

2.1. Route Registers 
Unlike branch prediction where the branch prediction outcomes history is stored in a 

register, in a network scenario, it is necessary to keep the network state from the point 
of view of the source node. In order to achieve it the PBR mechanism registers the 
amount of bandwidth that every source node allocates to every route from such a source 
node. In order to make understanding easier we assume that the information about both 
available and used bandwidth are expressed in terms of a percentage of the total 
capacity of the end-to-end route. We suppose that all the links has the same 100% of 
bandwidth capacity. There is one register per route on every source node. These 
registers are updated with information about assigned bandwidth from the point of view 
of these source nodes. One of the main skills of the PBR mechanism is that the registers 
updating process is achieved without flooding the whole network with messages 
containing the network state information. Because of the lack of updating messages the 
bandwidth allocated in the registers in the source nodes cannot be the real bandwidth 
occupation. 

Since the information about assigned bandwidth is used to access some tables (so-
named prediction tables), this information must be digitalized in order to build the index 
of such prediction tables. Just as an example if the number of bits used to digitalize the 
bandwidth information is 1, we can assign ‘0’ to the index when the used bandwidth in 
the path is bigger or equal than the 50%, and otherwise we assign ‘1’. Instead, if the 
number of bits used to digitalize the bandwidth information is 2 then 0 (00 in binary) 
stands for an used bandwidth bigger than 75%, 1 (01 in binary) stands for an used 
bandwidth between 75-50%, 2 (10 in binary) stands for an used bandwidth between 50-
25%, and finally 3 (11 in binary) stands for an used bandwidth lower than 25% and so 
on depending on the number of bits. These indexes express more or less the available 
bandwidth.  

2.2. Prediction Tables 
In the source nodes there is one prediction table for every feasible route from that 

node. Every route register has its corresponding prediction table. The prediction tables 



have different entries, each one keeping the information about a different pattern by 
means of a two bit counter. The use of two values to account for the availability or the 
unavailability has been well studied in the area of branch prediction. As it is presented 
in [10] a two bit counter gives better accuracy than a one bit counter. It is also exposed 
in [10] that going to counters larger than two bits do not necessarily give better results. 
This is due to the “inertia” that can be built up with a large counter. A two-bit counter 
can have 4 values: 0, 1, 2 and 3. The prediction is done reading the value of such a two 
bit counter. If the value is 0 or 1 (less than 2) the prediction is to select that route, 
otherwise, if the prediction is 2 or 3 the prediction is that the route is unavailable and it 
is not selected then. The number of entries of the prediction tables depends on the 
number of bits of the route registers. For example, if the route registers keep 
information about the occupied bandwidth in the route with two bits; the number of 
entries of the prediction tables will be 4. 

2.3. Algorithm  
The Predictive Selection of Route (PSR) is the routing algorithm inferred from the 

PBR we suggest in the paper. Its performance is shown in the example of Fig.1. We 
assume there are two routes computed between every source-destination nodes pair (the 
algorithm is able to compute more than 2 routes) as well as the assigned bandwidth is 
stored in the route registers by two bits. The PSR algorithm checks the 2 shortest routes 
in a computed order, according to the availability of their links. In the case of PSR there 
are not any updates of the network state information, that is, the information about the 
availability of the links does not represent the current picture of the network. Indeed, 
without updating, every node only knows how routes and links the node has assigned in 
the past. This information dictates the order by which the PTs are checked. For the 
example of Figure 1, we suppose that the first route to be checked is Route 1 and the 
second one is Route 2. When a new request demanding 40% of bandwidth reaches the 
source node, the first route is examined. The last information in this first route is that 
the used bandwidth is 40%. This used bandwidth is incremented by the requested 
bandwidth, i.e. 40%+40%. If the resultant bandwidth is lower than 100 % then the 
prediction table of the first route is checked, that is the counter of the corresponding 
entry read; otherwise the next prediction table would be checked. In our example the 
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Figure 1. Showing the PBR performance 



total bandwidth is 80% (>75%) so that the index used to access the first prediction table 
is 0 (00 codified in 2 bits). With this index, the prediction table of the first path is 
accessed and the counter is read. According to the Fig.1 the value obtained after 
accessing the prediction table is a 2, so that the prediction turns out to avoid the first 
route. Hence the second route is examined.. In this second path the used bandwidth is 
25%, so that the resultant bandwidth will be 40%+25%=65%. This means an index of 1 
(01 codified with 2 bits). The prediction table of the second route is accessed with this 
indexed obtaining a value of 1. According to this counter value, the algorithm selects 
this second route since prediction states that this route will not be blocked. It is 
necessary to specify that the algorithm checks both the counter value of the prediction 
table and the availability of the node’s outgoing link towards the route 1 or the route 2. 
This is done because the nodes always have updated information of availability of their 
outgoing links. In Fig. 2 there is a summary of the algorithm. We call the functions that 
check the availability of route 1, Check(Route1), and for route 2 Check(Route2). In the 
example, after checking the prediction tables of the two routes, if the algorithm had not 
selected any route because it predicted that the two routes will be blocked, the algorithm 
would select the route that has availability in their outgoing link. That is the algorithm 
selects the route only checking the availability of the outgoing links of the node. In the 
summary of the algorithm these functions are called CheckF(Route1) and 
CheckF(Route2).  

New request demanding an X% of bandwidth. 
Check(Route 1): 

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). The total 
bandwidth is  X+Y%. 

If (X+Y)% <=100% the PT of the first route is checked 
If(PT counter<2) and there is availability in the outgoing link the algorithm 
selects the  route1 

 Else Check(Route 2). 
Else Check(Route 2)  

Check(Route 2)  
The new bandwidth is added to the bandwidth kept in the route2 register (Z%). The total 
bandwidth is X+Z%. 

If (X+Z)% <=100% the PT of the second route is checked 
If (PTcounter<2) ) and there is availability in the outgoing link the algorithm 
selects the  route2 

 Else CheckF(Route 1) 
 Else CheckF(Route 1) 
CheckF (Route 1): 

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). The total 
bandwidth will be X+Y%. 

If (X+Y)% <=100%  
If there is availability in the outgoing link the algorithm selects the  route1 

  Else CheckF(Route 2). 
Else CheckF(Route 2)  

CheckF (Route 2): 
The new bandwidth is added to the bandwidth kept in the route1 register (Z%). The total 
bandwidth will be X+Z%. 

If (X+Z)% <=100%  
If there is availability in the outgoing link the algorithm selects the  route2 

  Else No route is assigned 
Else No route is assigned  

Figure 2. Summarizing the PSR algorithm 



 

2.3. Updating procedure 
The route registers are updated with the information about the used bandwidth for 

the source node in every route. In the example above when the algorithm selects the 
second route the new bandwidth occupied by this node in this second route will be 65%. 
It is important to note that this used bandwidth is only the bandwidth known by the 
node which might be quite different from the real occupation since other source nodes 
may allocate other bandwidths in links of the same route. Due to the lack of update 
messages this source node will not be aware of such a bandwidth changes.An important 
issue to be considered is that only the prediction table of the selected route is really 
updated. Hence, if the connection can be setup the corresponding counter on the 
prediction table is decreased, otherwise if the connection is blocked the counter is 
increased. In the above example if the connection is established the counter of the entry 
01 in the prediction table of route 2 will be 0, but if the connection is blocked the 
counter will be 2. The fact of trying to select routes only checking the outgoing 
availability when any route is assigned (by means of functions CheckF(Route1) and 
CheckF(Route2)) is done to unblock the PT counters. When both routes might not be 
selected because the PT counters of route 1 and route 2 are bigger than 1, the PSR 
algorithm runs the function CheckF(Route1), and if the route cannot be assigned the 
algorithm runs CheckF(Route2). If the route is selected by means of function 
CheckF(Route1) or CheckF(Route2) and the connection can be setup, then the 
corresponding PT counter of route 1 or route 2 is decreased therefore unblocking it. 
 
3. PERFORMANCE EVALUATION 

In order to evaluate our proposal we first measure the percentage of blocked 
connections produced by the PSR algorithm when varying the number of bits used to 
digitalize the requested bandwidth. Then, we compare the performance of the PSR 
algorithm with a well-known QoS routing algorithm, the Widest Shortest Path (WSP) 
[11] (which requires the updating process). The WSP dynamically selects for every new 
incoming request, the route with more available bandwidth among the shortest ones. We 
assume in our evaluation that shortest routes are link disjoint. Finally we have carried 
out a set of simulations to check the learning process of the PSR algorithm. All the 
performed simulations are obtained by applying the PSR and the WSP to the NSF net 
topology shown in Fig.3. We assume nodes (1, 2, 11, 12, 14 and 15 in Fig.3) acting as 
source and destinations node. A Poisson distribution models the connection arrivals, and 
all the links have the same available bandwidth, which is normalized to 100%. Each 
arrival connection requires a percentage of the total bandwidth.  

 

 
Figure 3. Topology used in the simulations 



3.1. Number of bit to codify the requested bandwidth 
In the first evaluation we test the performance of the PSR algorithm when the 

number of bits used to digitalize the bandwidth is changed for different traffic loads. 
Notice that in every one of the 6 possible source nodes there are one prediction table, 
PT, and one route register for every possible route from such a source node. If there are 
5 possible destinations, and there are 2 possible routes for every one, there are 10 route 
registers and 10 prediction tables in every source node. The length of these route 
registers and the number of entries of the prediction tables depend on the number of bits 
used to codify the bandwidth. For example, if the number of bits is 1, in the source 
nodes there will be 10 route registers of 1 bit, and 10 prediction tables of 2 entries each 
one (remind that in every entry of the PT there are a 2 bit counter). But if the number of 
bits used to codify the bandwidth is 5, the route registers will have a length of 5 bits, 
and the PT will have 32 entries each one. The holding and arrival times of the incoming 
requests are measured in units of time. Besides, all different traffic loads have a holding 
time of 10 units of time, and also an arrival time of 10 units of time. In order to change 
the traffic load we change the average requested bandwidth demanded by the incoming 
request from 10% to 30 % of average bandwidth. In Fig.4 we can see the results of these 
simulations, that is the percentage of blocked connections versus the number of bits 
used to codify the bandwidth requested for different traffic loads. From the obtained 
results we observe that the optimum number of bits depends on the pattern of traffic 
load, for 10% of average bandwidth for all the different number of bits we obtain the 
same results, but for 30% of average bandwidth the best results are when the bits used 
to digitalize the bandwidth is 4. Being aware the lower the number of bits the lower the 
hardware cost, we only present results for 1, and 4. 

3.2. PSR versus Widest Shortest Path 
In Fig.5 we present results obtained for the number of blocked connections for the 

Widest Shortest Path and the PSR algorithm versus the time between the update 
messages are flooded in the network, for different traffic loads. Note that the PSR 
algorithm does not vary with the time of updating because it does not need update 
messages. In general, the Widest Shortest Path behaves better than the PSR only when 
the time between update messages is 1 unit of time. Even, for 10% the PSR behaves 
better than the Widest Shortest Path when the time between update is 1 unit the time. 
But it is important to note that one update message every single unit of time is 
unaffordable from the point of view of the signaling overhead. In fact, in our simulation 
sending an update message every single unit of time implies (in average) approximately 
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Figure 4. % of Blocked Request of the PSR algorithm for two different traffic loads



3 set-up connections per updating; or if updating is every 5 units of time it implies 15 
set-up connections per updating. 
The results of the PSR algorithm show that the routing based on prediction is a valid 
option because of both its capacity of learning how to assign routes and the complete 
reduction of the signaling overhead owing to flooding update messages (only topology 
update messages are required). 
 

3.3. Learning time of the PSR algorithm 
Finally we evaluate the time required to train the prediction tables, i.e., the learning 

time for the PSR algorithm. Results on Fig.6 show the number of blocked connections 
versus the number of connections requests for the PSR and the Widest Shortest Path 
algorithm. Results are presented for 2 different traffic loads: when the average 
demanded bandwidth is 10 % and 30 % respectively. For traffic load of 10 % in the x-
axis the number of connection requests ranges from 0 to 20000 new requests. In this 
graphic we can observe that initially the PSR behaves worse than the Widest Shortest 
Path. However, when the number of requests is approximately 8000 the PSR has similar 
number of blocked requests than the Widest Shortest Path with Updating=5 units of 
time. Finally, for 15000 requests the PSR reaches the results of the Widest Shortest Path 
with Updating=1 unit of time. For this traffic load we can consider that the PSR has a 
“time of learning” of 8000 or 15000 request, depending on what we define as learning 
time. On the other hand we also present results for a traffic load of 30% of average 
bandwidth requested. In this case the PSR never reaches the results of the Widest 
Shortest Path algorithm with Updating=1. The PSR has similar performance than the 
Widest Shortest Path algorithm with Updating=5, and clearly behaves better from 
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Figure 5. % of Blocked Requests for the Widest Shortest Path  

and PSR algorithm for two different traffic loads 
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Figure 6.  PSR process of learning vs the WSP 



10000 requests. Therefore, we can argue that the “time of learning” of the PSR 
algorithm strongly depends on the traffic pattern.  

 

4. CONCLUSIONS 
We have presented a precomputation approach for QoS routing based on the 

prediction concept to address the scalability concerns in QoS routing. Our proposal is 
based on predicting links and routes availability not according to the network state 
information but according to its capacity of learning. One of the main skills of this 
approach is that update messages are not needed, so reducing the signaling overhead. 
Simulation results show that the algorithm inferred from the PBR mechanism behaves 
better than usual routing algorithms such as the Widest Shortest Path for reasonable 
network scenarios, that is, when the updating frequency is affordable the Widest 
Shortest Path has a better performance than the PSR. 
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