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Abstract. We present a complete statistical analysis of highly-aggregated
Internet traffic traces captured with a tailor-made measurement platform
designed to operate at gigabit speed with ns-precision. Our main result
is that the traces are not Poisson but present nontrivial scaling behavior.

1 Introduction

There is an important debate in the literature regarding the statistical nature
of highly aggregated traffic in the Internet. On one hand many papers have
reported the existence of scaling properties in traffic measured at the network
level [1–3]. Similar scaling phenomena has been detected at other levels as well
(e.g. transport and application levels) and it implies a deviation from the Poisson
traffic model. This deviation is not trivial in the sense that it has a noneligible
impact on the network performance like for instance, on the buffer dynamics and
on the blocking probability [3, 4].

On the other hand, papers such as [5–7] maintain that the existence of scaling
properties depends on the level of aggregation of traffic. As we move from access
to core networks this level increases and so traffic should resemble more and more
to a Poisson process. Indeed, in the field of optical networks the assumption of
Poisson traffic is a very common practice (see for instance [8] and references
therein).

Theoretically, in order to find out if the Poisson assumption is correct, one
could simply perform a statistical analysis of network traffic in a high-capacity
optical backbone link. In the praxis, two main difficulties arise when trying to
accomplish such task. First, due to confidentiality issues it is difficult for the
research community to access such information, owned in most cases by private
operators. Second, the efficient measurement of traffic at Gbps speeds is a very



challenging technical task. Hardware limitations often reduce the precision of the
packet time-stamps to µs (e.g. in [7]). Software limitations introduce artifacts in
the measured data changing its statistical properties (e.g. TCPdump).

In the framework of the collaboration agreement between Advanced Commu-
nications Broadband Center (CCABA) and Supercomputing Center of Catalonia
(CESCA), CCABA has created SMARTxAC [9]. It is a tailor-made measurement
platform designed to operate at gigabit speed without packet losses and a ns-
precision in the packet time-stamp measurements. In this paper, we provide a
complete analysis of packet arrival times measured at the optical link intercon-
necting the Catalan R&D network (about 50 Universities and Research Centers)
with the Spanish R&D network and the global Internet.

The paper is structured as follows. We begin in Section 2 with a description
of SMARTxAC. In Section 3.1 we use two well-known statistical tests from [10]
and apply them in order to test the Poisson hypothesis in the traces. Section 3.2
presents a detailed analysis of the scaling properties of the traffic, in particular,
the self-similar and multifractal hypothesis are tested. In Section 4 we compare
several traffic models in two different network scenarios in order to gain a quan-
titative understanding of their ability to capture the essential information from
the traces. Section 5 presents the conclusions from this work.

2 Traffic Measurements

In this section we briefly describe the measurement platform shown in Figure 1.
The measurement location is the Anella Cientifica, which is the Catalan R&D
network, managed by CESCA and connects about 50 Universities and Research
Centers in Catalonia. The point of measurement is a pair of Full-Duplex Gigabit
Ethernet links (two per each traffic direction) that connects the Anella Cien-
tifica to RedIRIS (the Spanish R&D network) and to the global Internet. The
measurement is performed at a tapped link using optical splitters.

Fig. 1. Measurement platform



SMARTxAC is a passive system able to perform at gigabit speeds without
packet losses and ns-precision in the packet time stamp measurements. It inte-
grates the capture engine as well as the real-time flow traffic measurement and
analysis in the same software. This software runs in a single machine which is
equipped with one or more Endace DAG 4.3GE Gigabit Ethernet measurement
cards. In order to analyze all the traffic in real-time, only packet headers are cap-
tured and aggregated into flows, which reduces the data volume to be processed
and stored by the traffic analysis system. Also, it is possible to configure the
platform to capture certain ranges of a frame or to collect high time resolution
packet traces, since precision time stamping is performed on the capture device,
which is synchronized via GPS.

3 Statistical Analysis of the Traces

In this section we consider the measured packet arrival times to form a sample
path of a given stochastic process and investigate its nature by means of different
statistical tests.

3.1 Testing the Poisson Hypothesis

The Poisson hypothesis can be tested by means of various approaches, such as
the computation of the autocorrelation function of the packet interarrival time
sequence (see [3, 5, 7]). Few papers have provided formal statistical tests, such
as the Box-Ljung statistic in [7]. In this section we introduce two simple and
powerful statistical tests [10] in order to test the Poisson hypothesis.

A Poisson process is a particular case of renewal process in which the inter-
arrival time distribution is exponential. We use this fact in order to indirectly
test the Poisson hypothesis using the null hypothesis of a renewal process. For
that purpose we use the Lewis-Robinson (LR) and the Pair-wise Comparison
Nonparametric Test (PCNT) [10].

Performing the LR and the PCNT tests with an uplink (UL) and downlink
(DL) sequence of 223 arrival times (between 2 and 3 minutes of measurement
time) and a confidence interval of 5% lead to a rejection of the renewal process
hypothesis. This implies a rejection of the Poisson process hypothesis. In order to
compare our results with the analysis of the OC48 traces in [7], we rounded our
traces from a precision in the packet time-stamps of ns to a precision of µs. Then
our tests agreed with those in [7] in accepting the independence assumption for
the packet interarrival times.

These LR and PCNT tests are defined as follows. Let T = {T1, · · · , TN}
be the sequence of N packet arrival times and X = {T2 − T1, · · · , TN − TN−1}
the sequence of interarrival times in the trace. We refer to the quantile zα/2 as
the value for which P [Z > zα/2] = α

2 , where Z is distributed according to a
standard normal distribution, and α represents the confidence interval. The null
hypothesis H0 in both tests is that the observed traces of packet interarrivals
form a renewal process.



The Lewis-Robinson Test Under the hypothesis of a Poisson process and
conditioning on TN , the arrival times {T1, · · · , TN−1}, are uniformly distributed
on (0, TN ). Let

UL =
∑N−1

i=1 Ti − (N − 1)TN

2

TN

√
N−1
12

. (1)

The Lewis-Robinson statistic ULR is equal to UL/CV . CV is the coefficient of

variation that can be estimated as CV =
√
bσ2

X

X
, where σ̂2

X and X represent the
variance and average estimators, respectively. The test criterion is to reject H0

if ULR /∈ [−zα/2, zα/2].

The Pair-wise Comparison Nonparametric Test Let U count the number
of times that Xj > Xi for j > i and for all i. Under H0 the mean value of U is
E[U ] = N(N−1)

4 and its variance can be estimated as V ar[U ] = (2N+5)(N−1)N
72 .

According to the central limit theorem for large N , U should be approximately
distributed as a normal distribution with mean E[U ] and variance V ar[U ]. Thus,
the statistic:

UPCNT =
U − E[U ]√

V ar[U ]
. (2)

should be approximately distributed as a standard normal distribution. There-
fore, the test criterion is to reject H0 if UPCNT /∈ [−zα/2, zα/2].

3.2 Estimation of the Scaling Properties

We wish now to find a stochastic process that captures better than the Poisson
process the statistical nature of the traces. The natural choice at this point [4,
2, 3, 11] is to check if the traces possess scaling behavior. To do this we focus
on large and small time scales in order to detect the presence of self-similar and
multifractal behavior, respectively.

Self-Similarity A continuous time stochastic process {Y (t); t ∈ R} is self-
similar with Hurst parameter H (in short H-ss), if for all a > 0 and t ≥ 0, and
some 0 < H < 1,

Y (t) =d a−HY (at) . (3)

where =d represents equivalence in the sense of finite dimensional distributions.
In the traffic modeling context this definition has the drawback of implying that
Y (t) is nonstationary [12]. For this reason it is often desirable to work with the
increment process X(t) = Y (t)−Y (t−1) of Y (t). If this process is stationary then
Y (t) is referred to as a self similar process with stationary increments (H-sssi).
Assume now second-order stationarity and the existence of the second moment
of X(t), then the process {X(t); t ∈ Z} is exactly second-order self-similar with
Hurst parameter H (1/2 < H < 1) if for all k ≥ 1:

γ(k) =
σ2

2
((k + 1)2H − 2k2H + (k − 1)2H) , (4)



where γ(k) represents the autocovariance function of X(t). Otherwise {X(t)} is
asymptotically second-order self-similar if:

lim
m→∞

γ(m)(k) =
σ2

2
((k + 1)2H − 2k2H + (k − 1)2H) , (5)

where γ(m)(k) is the autocovariance function of the aggregated process X(m)(i) =
1
m

∑mi
t=m(i−1)+1 X(t). In both cases the process X(t) is also said to be long-range

dependent (LRD), since the sum of Equation(4) or (5) over k does not converge
(see [13, 14] for a more precise definition). This is a direct implication of the
hyperbolic decaying form of these equations.

Let us assume that the measured sequence X is part of a sample path of a
finite-variance second-order stationary process X(t). From X we wish to estimate
the Hurst parameter H, and thus study the possible second-order self-similarity
and LRD of X(t). We begin this study with the estimator proposed in [13]
based on the discrete wavelet transform (DWT). We now provide an intuitive
description of this transform, and refer to [13] (and references therein) for a more
formal one.

With the DWT a time series X is successively projected into a series of
approximation subspaces Vj . We denote by aproxj(t) = (ProjVj X)(t) to the
approximation of X in Vj . The subspaces Vj satisfy a series of properties [13],
one of them being that Vj ⊂ Vj−1. This implies that aproxj(t) is a coarser
(i.e. less detailed) approximation of X than is approxj−1(t), and provides the
interpretation of j as a scale parameter. As in the map of a geographical region,
a time series viewed at a coarser scale j (e.g. scale 1:50000 in the map) contains
less information than at a finer scale j − 1 (e.g. scale 1:25000 in the map). The
information which is lost when going from approxj−1(t) of X to approxj(t)
is captured by the so-called detail coefficients {dX(j, k), k ∈ Z}. They can be
computed by comparing with inner products the time series X with the functions
ϕj,k, which are shifted (i.e. parameter k) and dilated (i.e. parameter j) templates
of a certain function ϕ0 called the dual mother wavelet [13]. That is, {dX(j, k) =
〈X, ϕj,k〉, j = 1, · · · , J, k ∈ Z}.

The Logscale Diagram (LD) is basically a log-log plot of variance estimates of
the series {dX(j, k), k ∈ Z} across different scales j, complete with the confidence
intervals for these estimates (for more details see [13]). LRD and second-order
self-similarity can be detected if from a certain lower cutoff scale j1 the LD aligns
within the confidence intervals up to the largest scale J present in data. If j1 = 1
exact second-order self-similarity is the most reasonable choice. Otherwise, j1 6=
1 suggests asymptotic second-order self-similarity. Figures 2.a to 2.c present the
LD for the DL, UL and BC (Bellcore traces, search for BC-pAug89 in [15]),
in which 24 scales are considered for the DL and UL traces. In DL and UL
alignment is detected for large time scales suggesting asymptotic second-order
self-similarity. Alignment begins much later than in the BC trace, but it does
not seem to degenerate into a flat curve, which would indicate the absence of
LRD and self-similarity.



Once detected the presence of asymptotic second-order self-similarity we pro-
ceed to the estimation of the corresponding Hurst parameter with a number of
well-known estimators from the literature (see [14] and references therein). Ta-
ble 1 summarizes the results obtained. The estimated Hurst parameter is lower
for the DL and UL traces compared to the BC one. However, one has to be
careful when interpreting such results. Due to the asymptotic nature of the self-
similar phenomenon, not considering a sufficiently high number of scales in the
analysis, or considering the lower timescales may lead to biased estimations [16].
In our case, due to computational constraints, the length of the DL and UL
traces used with all the estimators was of 222, except for the A&V estimator,
for which 24 scales were used (and which provides a higher Hurst estimation).
Since the asymptotic self-similar behavior begins at scales which are quite high
(above scale 15, see Figures 2.a and 2.b), eliminating the last two scales in the
rest of the estimators might account for the small values of H observed. This
highlights the need for computationally-efficient estimation algorithms in order
to estimate the Hurst parameter in highly-aggregated traffic. Another possible
interpretation is that the process X(t) is non-stationary. This interpretation
drastically reduces the possibilities to model the packet arrival process. Finally,
another interpretation is that although the underlying process is (asymptotic
second-order) self-similar and LRD, its Hurst parameter is quite close to 0.5 (i.e.
absence of LRD), indicating a low degree of LRD.

Table 1. Hurst parameter estimation for the interarrival time series (A&V: Wavelet
Abry-Veitch estimator [13], Local W.: Local Whittle, C.I.: confidence interval)

H Whittle C.I. A&V C.I. Local W. Periodogram Variance R/S

DL 0.5207 [0.5202, 0.5214] 0.770 [0.713, 0.827] 0.62 0.63 0.59 0.55

UL 0.5501 [0.5495, 0.5507] 0.796 [0.739, 0.853] 0.54 0.65 0.58 0.54

BC 0.6426 [0.6408, 0.6443] 0.752 [0.728, 0.777] 0.77 0.67 0.77 0.73

The Multifractal Behavior In this section we look for scaling in the higher-
order moments of the detail DWT coefficient series {dX(j, k), k ∈ Z} of the type
Sq(j) = E[|dX(j, k)|q] ∼ Cqj

αq , where Sq(j) are referred to as the partition
functions [17]. For a H-ss process the function αq exhibits a simple linear scaling
with q: αq = Hq+q/2. The Hurst parameter controls each scaling exponent and
thus it constitutes an example of a monofractal process. It is common to define
the function ζq as [17, 11]:

ζq = αq − q/2 . (6)

which gives the simple relation ζq = Hq for H-ss processes. If Equation(6) is not
linear with q then one says that the process has nontrivial multifractal scaling.
In a generalization of the LD one may look for alignment in a log-log plot of
estimates of the partition functions Sq(j) across different scales j for different
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Fig. 2. Logscale Diagram for the: a) DL, b) UL and c) Bellcore traces. d) Estimation
of the Legendre spectrum for the DL and UL traces.

values of q. The slope of the linear regression for each q provides an estimation
for αq (i.e. of ζq). The Multiscale Diagram (MD) [13] is a plot of the estima-
tion of ζq vs. q, together with the corresponding confidence intervals. A lack of
alignment within the confidence intervals in the MD suggests nontrivial multi-
fractal scaling (i.e. not linear with q). The Linear Multiscale Diagram (LMD) is
a statistically equivalent variant of the MD in which one plots hq = ζq/q vs. q.
The LMD is more convenient for visual inspection: nontrivial multifractal scaling
is manifested as a nonalignment (within the confidence intervals) of the LMD
curve with a horizontal line. Figures 3.a to 3.c present the LMD for the DL, UL
and a realization of a fractional Gaussian noise (fGn) process (see [12]) fitted to
the DL trace, respectively. As it can be observed from Figures 3.a and 3.b, the
DL and UL trace show no alignment, suggesting nontrivial multifractal scaling.
However, the fGn synthesis does show alignment (see horizontal dashed line in
Figure 3.c). This suggests the presence of trivial multifractal scaling, as it should
be the case for a (second-order) self-similar process.

The study of a multifractal process {X(t), t ∈ R} reduces to the study of
the erratic behavior of each sample path {X(t, w), t ∈ R, w ∈ Ω} locally evalu-
ated around t. This erratic behavior is measured with the so called singularity
exponents [17]. The Haussdorf spectrum can be thought of as a summary of the
multifractal properties of a time series. It basically gives the fractal (Haussdorf)
dimension of the set of points having the same singularity exponent α, as a



function of α. The Legendre spectrum is less rich but it is usually used as it is
far more numerically accessible. Figure 2.d plots an estimation of the Legendre
spectrum computed as in [17] for the DL and UL traces. The wide bell-shaped
curve is an indicator of the presence of nontrivial multifractal scaling.
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4 Performance Comparison of Different Traffic Models

In the previous section we have concluded that the traffic traces possess scaling
properties. In this section we wish to measure the impact of such deviations from
the Poisson assumption from the performance point of view.

We focus on the performance of three traffic models in two different scenarios.
We chose the multifractal wavelet model (MWM) [11] as a representative of a
traffic model capable of capturing nontrivial multifractal scaling. As the second
model we use a variant of the MWM capable of generating (asymptotic second-
order) self-similar traffic (SIM). As the third model we consider the Poisson
model in order to evaluate its usefulness as an approximate but simple traffic
model.

We chose two different scenarios in order to benchmark the different traffic
models: a single-server infinite-buffer node, and a multi-server bufferless node.
In the first scenario we are interested in the queuing behavior. This scenario may
be representative for instance for opaque SDH (SONET) networks. In the second
scenario our aim is to measure the blocking probability of the different traces.
This scenario may be representative for instance for Optical Burst Switching
(OBS) networks.

All three traffic models (MWM, SIM and Poisson) are fitted to the original
UL and DL traces, and are used in order to generate synthetic traffic traces
representing packet arrival times. These traces are considered in a simulative
study together with the original ones (UL and DL) in order to compare their
behavior in terms the above mentioned performance parameters. We want to



focus on the ability of the three models to capture the relevant information
from the original UL and DL packet arrival time sequences. Thus, we use iid
exponentially distributed packet sizes in all simulation runs for all traffic traces
(including the original DL and UL) in order to eliminate the effect of possible
cross-correlations between the packet arrival and packet size sequences. The
figures in the following sections present the results averaged for 10 simulation
runs of 224 samples each, and with a link load of 50%.

Figures 4.a and 4.b provide the results concerning the blocking probability of
the traces from the different models in a bufferless multiserver node. As it can be
observed, models which incorporate scaling (MWM and SIM) constitute a good
approximation for the blocking probability. The use of the Poisson model implies
nonnegligible approximation errors in most practical situations. For instance, for
an OBS node with 6 wavelengths (a wavelength can be interpreted as a server)
the error is of 1 order of magnitude, and it grows nonlinearly with increasing
number of wavelengths.

Figures 4.c and 4.d illustrate the results concerning the buffer occupation
level. As it can be observed the Poisson model underestimates this performance
measure, while the SIM model overestimates it. The MWM shows a good match.
Regarding the SIM curve, similar results have been observed using a different
SIM generator based on fGn sample paths modified under a power transforma-
tion to make all interarrival values positive. We have observed that for high link
loads (i.e. above 40%) the SIM model overestimates the results, while for low
loads it underestimates them. Analogous results have been reported in [4].

5 Conclusion

We have addressed the question of whether the Poisson model constitutes a
good approximation for highly-aggregated Internet backbone traffic. Thanks to
the efficiency of the SMARTxAC platform, we have been able to analyze an
unprecedent amount of accurate (packet time-stamps with ns-precision) traffic
measurements.

Using simple and powerful statistical tests we conclude that the UL and DL
traces are not Poisson with a 5% confidence interval.

We have investigated the presence of scaling behavior in the traces. Evi-
dence suggests nontrivial multifractal scaling and when assuming stationarity,
asymptotically second-order self-similarity.

In order to assess the impact on the network performance of the fact that
scaling is present in our traces, we conducted a series of simulations to compare
different traffic models. The multifractal model resulted the most accurate one.
The Poisson model provided a poor approximation of the results. Its approxi-
mation error increases rapidly with the size of the buffer and with the number
of servers in a node.

According to these results, one should use traffic models which incorporate
the concept of scaling in order to analyze highly-aggregated Internet backbone
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traffic. It remains as an interesting open question the study of the reasons why
scaling is still present in highly-aggregated traffic traces.
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