
Adaptive Video on Demand Service on RSVP capable
Network1

Carlos Veciana-Nogués, Jordi Domingo-Pascual

Computer Architecture Department

Advanced Broadband Communications Center
Polytechnic University of Catalonia

Campus Nord. Mòdul D6. Jordi Girona 1-3. 08034 Barcelona.
{carlosv, jordid}@ac.upc.es

Abstract. At present, the provision of quality of service is one of the most
relevant research topics. The Integrated Services approach defined by IETF and
based mainly on the resource reservation protocol (RSVP [1]) is one of the
issues that attracts many research work. On the other hand, research on
adaptive applications [2] is another research topic. In this paper, we present a
proposal that combines the features of RSVP and adaptive applications
altogether. We put into work two protocols, RSVP and SVA2 to get an
optimum resource usage for a video on demand transmission. RSVP helps to
maintain a given network bandwidth available, while SVA adapts video flow
taking into account not only the network impairments but the client resources
variations as well. We think that it is very important to cope with the resource
availability at the end systems to provide a QoS to the final user. Once a flow is
being transmitted, RSVP may renegotiate the reservation to adjust the
bandwidth usage. Flow adaptation is done at the video server by reducing video
flow size. We choose MPEG1 format because it has a good compression factor
and allows a good quality. Our mechanism may work on other video formats
with hierarchical relationships among frames. SVA[3] is a protocol that
interchanges information between the client and the video server. The client
informs the server about how many frames per second it is able to decode and
to display, then the video server adapts the video source rate while it maintains
frame synchronization and sequence dependencies. The experiences we present
demonstrate that a good collaboration of reservation and adaptation procedures
may provide a given QoS.

1 This work has been partially funded by the Spanish Research Council under grant CICYT

TEL97-1054-C03-03.
2 SVA stands for the Spanish name “Servicio de Video Adaptativo”; in English “Adaptive

Video Service”

Introduction

Delivering interactive multimedia information across a packet switched network
with a best effort service is not a simple task. There are a lot of factors to take care of
such as packet losses, synchronization among flows, error recover, scalability,
admission control, bandwidth usage optimization and so on. Many proposals have
been presented in order to “introduce” network quality of service. Both, the
Integrated Services and Differentiated Services approaches are well known proposals
with a lot of research work being carried out. From the user’s point of view, QoS is a
non-quantifiable characteristic about the “goodness” of the application [4](i.e. the
video being displayed in the terminal). Usually, a range of “acceptable” quality is
defined or allowed. QoS applies to all layers in a communication process: application,
transport, network, link and physical medium. We will focus on the network,
transport and application layers.

Usually, real time video communications work on a connectionless transport
service (RTP/UDP) [6] over network service (IP), and they appear to the application
layer as one service. QoS at network layer must allow video flows to maintain a given
bit rate, a maximum delay and a delay jitter between a maximum and minimum value
that allow the decoders to keep the synchronization.

At application layer, QoS must keep flow synchronization while decoding and
displaying the video on the terminal. At this point resource management within the
terminal (which includes the OS, the decoding process, inter process communication,
etc.) affects the overall QoS perceived by the user. Resource reservation in the
network (or providing different classes of services [5]) is necessary to provide QoS
but it is not sufficient. Resource reservation at the end system is necessary as well.

Our scenario considers the following assumptions. There exists a resource
reservation in the network (RSVP). A video server may deliver video flows to an
heterogeneous set of terminals; each of them has its own properties and resources (i.e.
hardware or software decoding). The end system may not be dedicated exclusively to
receive and to process the video flow and thus the internal resources available at a
given time may vary (i.e. CPU or memory). Most proposed adaptive applications take
into account network losses and react according to network performance. We propose
that the adaptation process must include the terminal performance as well.

We implemented an adaptive mechanism that monitors the terminal performance
as well as the network performance. We tested it in an experimental platform [7]
using the RSVP protocol to maintain QoS at network layer and SVA protocol to
monitor and to adapt the client performance at application layer.

The paper is organized as follows. The first section introduces the framework for
adaptive applications in real time communications. Section 2 gives a brief description
of RSVP and explains how it fits in our QoS management architecture. The third
section presents our proposal for the SVA protocol. Section four and five include a
detailed description of our selective frame discard algorithm, how it applies to
MPEG1 flows, and how it maintains frame quality while reducing flow volume.
Section 6 presents the details of the application and the scenario for the tests
including RSVP, heavy traffic and the video server, the client and SVA protocol.

Finally, some results that show the behavior of the overall system and its adaptation
properties.

1 Simple QoS framework

Layered frameworks help developers and designers to simplify their job. QoS
management must be present in all layers. However, layered frameworks are not the
“best” solution to manage QoS in an effective way. Timing restrictions are the most
important QoS characteristics for interactive multimedia applications. Information
about QoS parameters must be interchanged and managed. The management plane
controls certain aspects of several layers together.

Usually QoS requirements at each layer have been defined [4]. These definitions
allow designers to get control of QoS per Layer. Nevertheless, the mapping of QoS
parameters between Layers is a complex task.

Simplifying the QoS framework for a certain kind of application makes QoS
parameters management simpler. We can see in [8] and [9] how, with a set of a few
parameters (one per layer), a Video distribution application may provide some kind of
QoS control.
In our proposal, we consider three Layers: Network, System and Application. We
manage these parameters together (as a control plane) to get a good frame quality.
The video stream is optimized taking into account the client performance, the server
and the network load. The parameters considered are the following: packets per
second (pps) at Network Layer, complete frames per second (cfps) at System layer,
and visualized frames per second (vfps) at Application layer.

We consider Network Layer includes all the layers below IP layer. System Layer
includes all the processes between Network layer and Applications layer, such as
flow streaming, segmentation and reassembling. Application Layer includes stream
decoding, synchronization and presentation. On top of them, the User Layer reflects
the set of parameters related to user perception. Figure 1 shows our simplified
framework.

Figure 1. Simple QoS framework
Parameters pps cfps and vfps are directly related. Variations in received

packets/second (pps) affect the number of complete frames/second available (cfps),
and this affects the number of displayed frames/second (vfps). CPU load variations,
concurrent network traffic, and concurrent processes affect vfps too. A feedback
mechanism is used to inform the Server about the Client performance. The Client will
send periodically the value of vfps to the server. Then, the Server will modify video
flow, by discarding frames (or by including more frames) to fit in the free resources
of the client. It is a self-regulated mechanism as shown in Figure 2.

QoS Network Parameters

QoS Application Parameters

QoS System Parameters

QoS Network Parameters

QoS System Parameters

QoS Application Parameters
Application QoS

User QoS Perception

System QoS

Network QoS

Aplication Aplication

Hardware Hardware

System System

UserUser

Simplified Layered Communications Stack

UserUser

User QoS Perception

System System

Aplication AplicationApplication QoS

System QoS

Network QoS HardwareHardware

Figure 2. Self-regulated system based on a feedback parameter and discarding
frames.

2 Allocating bandwidth with RSVP

The Reservation Protocol, RSVP [1], is an IETF’s proposal to standardize a
mechanism to reserve resources along the path within the network. We use RSVP
over IP network protocol to reserve bandwidth for unidirectional connectionless
transmissions (UDP).

The server advertises its session with a PATH message. The PATH message
contains a list of parameters that specify the flow characteristics (mean bandwidth,
peak bandwidth, MTU size...). This information and some other added by
intermediate routers allow the client to ask for a reservation. Reservation message
(RESV) is sent back to the server, creating a "soft state" at all intermediate routers
that will allow to keep free resources to maintain the QoS for this flow. The soft state
at the routers is refreshed via periodically PATH and RESV messages [10].

Mapping multimedia application parameters into Tspec (PATH parameters) and
Rspec (RESV parameters) is too complex to leave this task for the user of the
application. Some authors [11] propose a new layer above RSVP to simplify this task.
They propose the definition and use of a database of well-known sources and their
corresponding reservation parameters. This requires a lot of experimentation to find
the “optimal” set of parameters for each application and configuration. We use a
similar method by using only the bandwidth parameter for the reservation.
Nevertheless, RSVP forces all transmission systems (routers and end systems) to
support this protocol. Soft-state per-flow management is too complex to be
implemented at core routers. Core routers deal with large amounts of flows and data
and require high speed and simple algorithms. Scalability is one of the main issues to

Queue

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

tf
-
+

Client side Server Side

Filter

Discard
Algoithm

Original Video Flow

Frame

System Under Control:
Network (pps)
System (cfps)
Aplication(vfps)

pps

Discarded Frame

ovfps

cvfps

be solved. For backbone high-speed routers, it is envisaged to use differentiated-
services oriented mechanisms to guarantee QoS.

Moreover, RSVP helps to maintain QoS but does not guarantee it. While it is
maintained between routers, shared Ethernet LANs may produce packet loses. RSVP
may help to protect a flow from other aggregated flows so that the adaptation
mechanism gives a good performance. As mentioned above, end systems and
workstations may behave poorly when the CPU load varies and affects multimedia
applications performance too. This is the main reason to use an adaptive application
[2] together with RSVP.

The reservation re-negotiation procedure can take a while due to high CPU load at
the client. Response time may be critical for high quality flows in multimedia
applications. Another problem may arise if RESV messages are lost due to high
congestion in the network. In this case, response time for new reservation may be
long and soft state information in the routers may be cleared by timeout.

3 Adaptation at application layer

Once a given QoS is guaranteed at network layer, the application layer must keep the
quality specified at this layer. In the case of a video-based application QoS at
application layer is good frame quality and timing, but not frame rate in most cases.
Video degradation usually comes from the loss of frames at network layer or from a
poor performance at application layer. Trying to maintain a given frame rate when the
resources are not enough is not a good approach. There are several possible
alternatives to reduce the bit rate of a video flow to fit in the available resources. Re-
coding the video flow in a simpler format is one option. Another solution may be
based in a discrete quality reduction, such as removing color. We discard these two
alternatives because re-coding is too expensive in time and resources, and the
reduction of colors is not scalable; once color has been removed from a flow no other
simple treatment is possible.
Our approach is to reduce the number of frames per second because it allows smooth
variations. As far as the frames are completely recovered, the quality is acceptable
while the sensation of continuity is maintained at least until the frame rate is reduced
to a half of the nominal rate. Most high quality video flows are coded at 25 or 30
frames per second. Displaying 12 or 15 frames per second gives a good continuity
feeling if frame quality is maintained. Even in the case the bandwidth of the
transmission channel is very narrow or the server/client resources are very scarce, less
than 10 frames per second may be acceptable in some cases.

Using RSVP packet losses will not be frequent. However, loss of frames at the
server or the client is possible because of overload of these systems. We will not
discuss the Server system because we assume stored video flows distribution with
enough resources. With this assumption, video coding is already done and files
accesses and distribution on the network are the main tasks of the server. The Client
at the receiver terminal must decode the video flow, and perhaps more than one flow
if it is listening to a multiparty session. Lack of specific hardware, for example an
MPEG decoder card, could be an important handicap when considering CPU usage in

the client. Other software and Operating System processes may slow down the video
decoding process.

3.1 Adaptation mechanism in the Client.

Several factors limit the decoding rate. The first factor is the number of packets per
second (pps) that are delivered by Network Layer. As we are using RSVP for
allocating sufficient bandwidth, pps will be the same at Server and Client side.
However, loss of packets is still possible, for example during reservation
renegotiations. The loss of certain kind of information could produce the loss of a
part of some frames and even the loss of whole frames, depending on the video
format. The sequence of the received packets is the result of segmenting a certain
number of frames per second into packets of a size according to the Network MTU. It
will be a variable value because most video formats generate variable bit rates.

The client will receive these packets and reassemble them to build the complete
frames. This process will give us the number of complete frames per second (cfps).
The value of cfps may not be the same at the client and at the server side because of
several reasons. The lack of CPU, buffer overflow at the Application Layer, the
system layer being unable to deal with that frame rate may be some of the problems.
In summary, all these factors directly affect the upper layer parameter perceived by
the user: the number of visualized frames per second (vfps).
In an ideal situation where there are neither packet losses nor frame losses, cfps vfps
are constant values. The Vfps is the Application Layer QoS parameter. It is the one
that gives the end user the feeling of a good visualization. We may deal with pps, cfps
and vfps together to manage the control plane, but we have decided to use only the
vfps parameter because it comprises the overall performance of the client.

Table 1. QoS mapping, related parameters

QoS Layer QoS parameter Acronym
Network Packets per second Pps
System Complete frames per second Cfps
Application Visualized frames per second Vfps

The vfps parameter will be monitored during video presentation. Then, varying
values in pps and cpfs parameters will be detected at Application layer. As stated
above, the main factors that contribute to a certain vfps value are:

 Packets lost at network.
 Too late arrival packets
 Client buffer overflow
 Client insufficient capacity

3.2 Adaptation mechanism

Periodically, the client sends feedback information to the Server. This information
includes the current value of vfps (cvfps). The server compares this value with the
original vfps of the stored flow (ovfps). Then, the server computes the frame
reduction it must apply to fit the Client resources.

Transmission Factor = cvfps/ovfps (1)

The Transmission Factor parameter (TF) means how much the server should

reduce the flow, in frames per second, to adapt to current client resources.
Next step is to decide how to use the TF. For example, if we have a video coded at

30 fps (ovfps) and our client is displaying 10 fps (cvfps), TF is 0,33. It means that we
should drop 20 frames out of 30.

The TF means the frame transmission probability too. If we calculate TF every
transmission time and accumulate it, when the accumulated value is greater than 1,
we should transmit a frame.

Pause time between consecutive frames transmission varies to according to cvfps
variable. Then synchronization is maintained. Table a in Figure 6 shows this example.

The whole system (Client cvfps, Server ovfps, TF, and the related parameters pps
and cfps) is self-regulated. It means that it gets the optimal transmission rate taking
into account both the channel and the client performance.

4 MPEG-1 principles

MPEG-1[12] format gets a high compression rate thanks to intraframe and interframe
redundancy reduction. Intraframe compression does not affect our mechanism
because we remove complete frames. If a packet loss occurs, the whole frame will be
discarded. Interframe compression affects directly our mechanism because of inter-
frame dependency.

MPEG-1 codification generates three kinds of images. Type I images (Intraframe
codified) are stand-alone and do not depend on any other. Type P images (Predicted)
depend on previous complete decoded P or I image. Type P images only code the
parts of the image that have changed from the previous P or I image respectively.
Finally, type B images (Bi-directional predicted) code differences between previous
and future type I or B images. Compression rate for B images is higher than for P
images, and P compression rate is bigger than that of I images. MPEG-1 combines
these three kinds of images to get the best ratio between complexity and compression.
Figure 3 shows inter-frame relationships.

Figure 3. Inter-frame relationships. Arrows means that source frame is used to
generate destination frame.

Because of this interframe relationship, frames are stored in a different order to

optimize the decoding speed and to reduce buffer requirements. Figure 4 shows
store/transmission order and visualization order.

Figure 4. Store and transmission order

Discarding certain kind of images produces different effects on the rest of the
video flow. Discarding B images do not affect video sequence decoding, B images
errors are not propagated. Discarding P images affects past and future (in the order
they are displayed) type B images, and future type P images. Discarding I images
affects all images until the next I image arrives. Figure 5 shows and example of how
P image discard/lost affects displayed flow. Frame loses produce some block error
decoding in related frames and visualized frame may contain non sense square areas.

Figure 5. Lost frame effects

5 Selective frame discard for MPEG-1 video flows

In the previous section, we have seen a mechanism to decide how to reduce a video
flow by dropping frames. However, frame discard affects the quality of the following
frames. In order to maintain frame quality and sequence selective frame discard

visualizationI B B B P B B B P B B B I

I P B B B P B B B I B B B

I B B B P B B B P B B B I

store & transmission

visualization

I P B B B P B B B I B B B store & transmission

visualizationI B B B P B B B B B B I

incorrect future reference

incorrect past reference

Lost frame

algorithm must be applied. This selective discard must maintain inter-frame
relationships [3].

In order to maintain interframe relationships we introduce a queue in the server.
This queue will contain dropped frames with potential importance. We can send
correct sequences combining the Transmission Factor with the current frame type to
be sent and the frames stored in the queue,.
A high-level code description, which implements this process, is presented next. Note
that cvfps and TF are constants in this piece of code, but they are updated in parallel
by a monitoring process.

Loop
wait(1/cvfps)
send_prob=send_prob+TF // recalculate send probability

if TF<1 then // it’s time to drop a frame

 if current_frame_type=B then
 drop_frame

 if current_frame_type=P then
 put_queue(q,current_frame)

 if current_frame_type=I then
 empty_queue(q)
 put_queue(q,current_frame)

else // TF>=1, it’s time to send a frame

 send_prob=send_prob-1 // remember left probability
 if current_frame_type=I then
 empty_queue(q)
 send(current_frame)

 if current_frame_type=B then

 if queue_lon=0 then send(current_frame)
 if queue_lon>0 then send(extract_first(q))

if current_frame_type=P then
 send(extract_first(q))
 put_queue(q,current_frame)

 if current_frame_type=I then empty_queue(q)
 send(current_frame)

end if
loop

A careful look at this algorithm shows that not all types of frames are dropped with
the same probability. B frames first ones to be dropped, followed by P frame, and
finally I frames. Then, a reduction in a percentage of frames does not contribute in the

same way to reduce the flow. This is because I frames are larger than P and B, while
the discard probability is in reverse order. A queue to store and recover the last
important P or I dropped frames is necessary. Figure 3 shows this modification.

Figure 6. Client side with selective discard algorithm.

Figure 7 shows an example of the application of the selective discard algorithm,

compared to raw discard. We can see how frame relationships are maintained, while
some images are sent later. Images are never delayed beyond next displayed I time.
MPEG-1 must transmit at least one I image per second. In the most greedy discard
application this delay will always be not greater than a second and it will be
transparent to the users most of the time.

Figure 7. Selective Discard example

B B B B PII P

PPI B P B B I B B B BB

1 2 3 4 5 6 7 8 9 10 11 12 13

Corrupted

RAW Discard

Transmision Factor =

B B B PII P P B

Table b

Table c

Table a

Current Frame Rate

Real Frame Rate

Presentation Order

Frame Number

Transmission Factor

Not Transmited

I P B B P B B I B B P B B P B B I B B P B B P B B I B B P B
I B B P B B P B B B B P B PI B B B I B B P B B P B B I B B

.48.16.18.52.54.58.3 .9 .62 .28.32.661 .94 .6 .26 .92 .34 .9 .2 .86.88.22.56 .84 .5 .82 .4.64.98

301 3 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Decoding Order

PPI B B P B B I B B B B

1 2 3 4 5 6 7 8 9 10 11 12 13

Selective Discard

Queue

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

tf

Discard
Algoithm

Original Video Flow

Frame

pps

Discarded Frame

Client side

6 Application architecture.

Our test application SVA is MPEG-1 video server. It serves an MPEG-1 video flow
over an unreliable UDP connection. We use RTP [6][13] for segmenting and
synchronizing video frames. The feedback control channel is a reliable TCP
connection that the client uses to send the feedback information (visualized frames
per second) to the server. The server implements the selective frame discard
algorithm described above to reduce the video flow (number of frames sent). The
client uses the Berkeley mpeg_play [14] decoder to visualize video. Mpeg_play code
has been modified to share some parameters that the client uses to calculate the
number of visualized frames per second.
An RAPI [15] front-end application [7] is activated at the same time to make a
reservation along path from server to client.

Figure 8. Application components and communication channels

A point to point transmission is established in the experiment. The proposal may

be extended using multicast transmission. Scalability may be improved by using a
hierarchy of active nodes [16], which apply the selective discard algorithm. In this
way, the server can feed video flows for a group of clients with the QoS adaptation
for each of them. In this case, the feedback information must be sent to the nearest
active node, not to server in order to avoid control information overhead in the server.
Active nodes must interchange feedback information too, to know which video size
they can receive.

7 Results

Our test environment is based on a real deployment of the Internet architecture
including the implementation of the RSVP test application and the SVA mechanism
(figure 9). There is a router (CISCO 7026) interconnecting three nets: CCABA
(Ethernet 10Mbps), SABA (Ethernet 10Mbps) and SABA-ATM (ATM 155Mbps).
This configuration allows us to send interfering traffic straight through the router.

RSVP dameon RSVP dameon
path messages

resv messages

MPEG-1 Video Stream (pipe en memoria)

Video Server

feedback (tcp)

MPEG over RTP (udp)

IPv4 & RSVP net

MPEG over RTP (udp)

feedback (tcp)

shared memory

Client

mpeg_play

MPEG-1 Video Stream

Router performance is affected while there are no collisions on the Ethernet
segments.
WS1 (SunUltra-1) is the server and WS2 (SunUltra-1) is the receiver (client). RSVP
reserves resources at the router for this UDP flow. Then, WS1 serves a video flow to
WS2 on the reserved channel.
WS3 (SunUltra-1) stresses the router interface by sending Mgen [*] traffic to WS4
(PC486). The router must route this traffic from SABA-ATM network to SABA
segment.
In this scenario, the frame-rate transmission is adapted to the client free resources
only, because the network bandwidth is maintained in the router by using RSVP.
Two additional workstations WS5 (SunUltra-1) and WS6 (SunSparc20) are used to
perform traffic measurement and run tcp_dump [*] to collect statistics about sent and
received packets on both the source and the destination Ethernet LAN’s.

Figure 9. Network interconnection scenario.

The following tables show the effects of the selective discard algorithm on some
video transmission. WS1 is Video Server and WS2 is the client and includes the
video decoder. Table 2 shows the video characteristics: frame size, sequence type,
decoding frame rate and number of each type of frames.

Table 1. Video characteristics

Video Frame size Sequence fps frames I P B
Rnm 320x240 IBBBBBBBBBPBBBBBB

BBBPBBBBBBBBB
25 1211 41 81 1089

ToEdge 160x120 I 30 1730 1730 0 0
Bbima 160x112 IBBPBB 30 13126 3751 1875 7500
Work1 382x288 IBBPBBPBBPBBPBB 25 1390 110 390 920
Team1 160x120 IBBPBBPBBPBBPBB 30 820 69 137 614
Team2 160x120 IBBPBBPBBPBBPBB 30 2694 225 450 2019

Valk 160x120 IBBPBBPBBPBBP 30 1684 141 281 1262

Table 3 shows how the video flow adaptation works in the server. Reduction of

video flow depends on the decoding complexity. Decoding complexity varies due to
the image size, sequence type and intraframe compression factor. Most videos do not
reach original fps value because of the decoding process being made by software.
Note that image dropping is done with different percentages depending on the image
type. As mentioned before, the image type most affected by the discard algorithm is a
B type frame, followed by P frames and finally I frames.

Several MPEG-1 video sequences have been used in the experiments. In Work1
(*2) test, the client CPU has been stressed with another local mpeg_play process with
the same MPEG file.

Table 2 shows the results for the experiments. Those experiments labeled by
number 2 correspond to a second scenario where additional CPU load is present in
the client workstation. Work1(*2) is executed while another local mpeg_player is
active. Valk(*2) is decoded with 24bit depth color, while valk(*1) is decoded with
8bit depth color.

Table 2. Selective discard algorithm results.

Video Fps Frames I P B
Rnm 22 1089 35 75 979
ToEdge 28 1638 1638 0 0
Bbima 20 12451 3687 1742 7022
Work1(*1) 23 1291 100 339 852
Work1(*2) 15 743 74 237 614
Team1 30 820 69 137 614
Team2 30 2692 225 450 2019
Valk(*1) 30 1684 141 281 1262
Valk(*2) 23 1269 114 230 925

Valk(*1) can reach original fps without client CPU overload, but it decreases fps

value if 24 bit depth decoding is applied. Figure 10 shows the client vfps (visualized
frames per second) parameter and figure 11 shows frames per second served. A
transient effect may be observed during the first seconds due to the empty buffer
effect. Service speed changes are modulated by client buffer occupation. This effect
will be removed by reducing the buffer and modifying the Mpeg_play to process
strict time-stamp information.

Figures 12 and 13 show the same parameters but with a more complex decoding
process. Application adaptation is done at a lower service rate.

Fig. 10. Client frame rate during simple decoding process.

Fig. 11. Server frame rate during simple decoding process.

Fig. 12. Client frame rate during complex decoding process.

Fig. 13. Server frame rate during complex decoding process.

Conclusions

The RSVP protocol will help in QoS management by simplifying the QoS stack.
Mapping stream characteristics on RSVP parameters, QoS at network layer and
below is managed. However, parameters interchange between application layer and
network layer must be introduced. This information interchange allow network layer
to adapt to application performance, and application to adapt to network layer
resources.

Selective frame discard algorithm allows us to reduce smoothly and gradually
MPEG flows. Some approaches reduce flow volume by reducing frame quality and
maintaining frame rate. These solutions display fast poor images. Selective frame
discard maintains frame quality but reduces frame rate. Frame rate reduction in high
quality videos can be done without affecting QoS perception in most of the cases.
High frame rate reduction not decreases user QoS goodness perception as reducing
frame quality does, especially in video-presentation and cooperative work
applications, where users pay attention to audio and slides.

Response time of the RSVP and the feedback protocols must be improved to
correct calculation of the global system configuration (server-network-client). Period
of the feedback messages and the reservation refresh must be tuned jointly.

Adaptive applications must take care of QoS parameters in layers above network
too. CPU load, as network congestion, can reduce severely application performance.
Transmission of video streams larger than the client cant deal with is a waste of
network resources. QoS management at application layer must help to optimize
overall resource usage. Operating System re-design for networked multimedia
applications is need for general-purpose computers.

REFERENCES

[1] R. Braden, L. Zhang, S. Berson, et al. “Resource ReSerVation Protocol
(RSVP) – Version 1” Functional Specification. RFC 2205, 1997.

[2] Josep Mangues-Bafalluy, Jordi Domingo-Pascual. “A framework for
Adaptive Applications”. Research report nº UPC-DAC-1998-7 (to be published).
UPC-DAC Barcelona 1998.

[3] Carlos Veciana-Nogués, Jordi Domingo-Pascual. “Adaptación de flujos
MPEG-1 para protocols de QoS best-effort”. Research report nº UPC-DAC-1998-10.
UPC-DAC Barcelona 1998.

[4] Daniel G. Waddintong et al. “Specifying QoS for multimedia
communications within distributed programming environments”. Lecture Notes in
Computer Science, 1(1185):75—103. 3rd Cost 237 Workshop, Barcelona 1996.

[5] Network Working Group, "An Architecture for Differentiated Services". RFC
2475, December 1998.

[6] Audio Video Transport Group. “RTP: A Transport Protocol for Real-Time
Applications”. RFC 1889, 1997.

[7] Esteve Majoral, “Multimedia Applications evaluation and implantation over
new Internet protocols”, Final Project Degree. Facultat d’Informàtica - Polythecnic
University of Catalonia, February 1999.

[8] Shanwei Cent, Calton Pu, et al. “A distributed real-time mpeg video audio
player”. Lecture Notes in Computer Science, 1(1018):151—162. Proc. Of
NOSSDAV, Durham 1995.

[9] Carlos Veciana-Nogués and Jordi Domingo-Pascual. “Transmisión de flujos
multimedia con gestión de la Calidad de Servicio”. Proc. Yuforic’97, pages 13—20,
Barcelona, April 1997.

[10] L. Zhang, S. Deering, D. Estrin, et al. “RSVP: A New Resource Reservation
Protocol.” IEEE Network, September 1993.

[11] Bob Lindell. “SCRAPI: A Simple ‘Bare Bones’ API for RSVP, Version 2”,
draft_lindell_rsvp_scrapi-01.txt (expires May’99)

[12] Joan L. Mitchell, et all. “MPEG Video Compression Standard”. Champman
& Hall, 1986. ISBN 0-412-08771-5.

[13] Audio Video Transport Group. “RTP: Payload Format for MPEG1/MPEG2
Video”. RFC 2038, 1997.

[14] MPEG player. University of Berkeley. “MPEG utilities”. Available at:
http://bmrc.berrkeley.edu/ftp/pub/multimedia/mpeg/, 1997.

[15] R. Braden and D. Hoffman. RAPI “An RSVP Application Programming
Interface. Version 5”. Internet draft, draft-ietf-rsvp-rapi-00, 1997.

[16] R. Wittman and M. Zitterbart. “Amnet: Active Multicasting Network”. Proc.
Of the 4th COST237 Workshop, pp. 154—164. Lisboa, Portugal, December 1997.

