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Abstract— Usual QoS routing algorithms involve the periodic update 
of network state information in all the network nodes. Based on this 
knowledge the QoS routing algorithms select the ‘best’ route. It has 
been shown in the literature that the performance of these QoS 
routing algorithms strongly depends on the frequency of updating. 
We propose a new QoS routing mechanism called Prediction-Based 
Routing based on predicting the availability of links and routes 
regardless from the network state information. Consequently, update 
messages are not required, hence reducing signalling overhead and 
providing a major enhancement in terms of scalability. We show that 
the PBR is a viable option compared with usual QoS routing 
algorithms from the point of view of performance, complexity ad 
signalling overhead.   

Keywords-component; QoS Routing, Prediction-Based Routing, 
Routing Inaccuracy. 

I.  INTRODUCTION 
Scalability is one of the main challenges in QoS routing. 

There are many issues impacting on the scalability problem, 
such as the signaling overhead and the route computation 
schemes. 

Concerning to the signaling overhead, a significant amount 
of the existing signaling messages is because the update 
procedure required to keep the network state databases 
correctly updated. Assuming source routing, QoS routing 
algorithms seek for the “optimal” route between source-
destination node pairs based on the network state information 
obtained from the network state databases on such source 
nodes. The signaling overhead may be reduced by limiting the 
amount of updating messages. Unfortunately, reducing such 
updating messages leads to have inaccurate network state 
information. As a consequence routing is done according to 
outdated network state information, so increasing the blocking 
probability. There are many contributions in the literature 
proposing routing mechanisms that take into the unavoidable 
presence of such inaccuracies [1][2][3][4][5][6]. Closely 
related to the inaccuracy problem [7] and [8] propose a new 
algorithm named ‘proportional routing’, aiming to removing 
the update messages.  

Concerning to the routing computation schemes, a major 
tool that has been explored in several previous studies to 
address the scalability problem is that of precomputation [9]. 
For example, the well-known hot potato routing scheme [10] 
predicts the best route to a destination node based on the delay 
information coming from that node. In [11] it is proposed to 
predict the future traffic load in a link through past measured 

samples of the traffic load in that link. In [12], a dynamic 
variant of hot potato routing is presented. All these 
contributions target to predict the incoming traffic load.  

In this paper we propose the Prediction-Based Routing 
(PBR) mechanism. Despite we named our mechanism with the 
same name used in a previous work [19], it is worth to notice 
that they address a very different problem, proposing a cost 
function to predict the average queuing delay. Our PBR 
addresses the scalability problem by both, proposing a new 
computation scheme and reducing the signaling overhead. In 
short, unlike the previously mentioned precomputation 
schemes, they all predicting the incoming traffic load, the PBR 
focuses on predicting link and route availability. Moreover, 
the PBR mechanism also significantly reduces the signaling 
overhead because update messages are not required. Similar to 
the ‘proportional routing’, proposed in [7][8], in the PBR the 
routes are selected without taking into account network state 
information. However, in ‘proportional routing’ the route 
selection is based on flow blocking statistics collected locally, 
whereas in the PBR the route is predicted to be blocked or not 
based on both new tables, named Prediction Tables, and local 
information. The Prediction-Based Routing (PBR) mechanism 
has been already presented in [13] as a Routing and 
Wavelength Assignment (RWA) mechanism in the context of 
optical transport networks. The positioning papers in [14] [20] 
briefly introduce the PBR in the context of IP/MPLS 
networks. 

The main objective of this paper is to describe in depth the 
behavior of the PBR mechanism. Based on the obtained 
results we justify how a heuristic mechanism such as the PBR 
correctly assigns the routes based on both the training of the 
Prediction Tables (PT), and the local network state 
information. We propose to apply the PBR mechanism for 
both, off demand and on demand route computation. In the 
first case, off demand computation, the routes are computed 
previously to the connection request. However, in the second 
case the routes are dynamically computed when a connection 
request reaches the source node. Inferred from the application 
of the PBR mechanism, off demand and on demand 
respectively, we propose two QoS routing algorithms, the 
Predictive Selection of Route Fixed Alternate (k-PSR_FA) and 
the Predictive Selection of Route On demand (k-PSR_R). 
While in the k-PSR_FA, the algorithm selects the route 
between a set of precomputed routes (we name these routes 
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fixed alternate), in the k-PSR_R, the algorithm dynamically 
calculates and selects the routes.  

We also study in this paper the impact of the number of 
feasible routes on the PBR performance. In [15] and [16] it 
was described the problem involved when increasing the 
routes to be selected, since more feasible routes does not 
always imply better performance. This is due to the cost 
involved in using longer alternate routes.  

This paper is organized as follows. In Section II the PBR 
mechanism and the algorithms inferred from the PBR 
mechanism are deeply described. In Section III we present a 
performance evaluation and, finally, in Section IV we 
conclude the paper. 

II. PREDICTION-BASED ROUTING IN IP/MPLS NETWORKS 
The Prediction-Based Routing is based on the well-known 

ideas of branch prediction developed in the context of 
computer architectures [17]. In this area, the main target boils 
down to find out whether a branch instruction will be taken or 
not before being processed. This is done to speed up the 
processor. The concepts used in branch prediction can be 
applied to a network scenario whenever substantial changes 
are included. The main components of our proposal are: the 
routing register, the prediction tables and the PSR algorithms.  

A. PBR  off demand: the k-PSR_FA algorithm. 
The PBR mechanism presented in [14] is based on choosing 

the possible routes between different fixed alternate routes. 
That is, in the work done so far the route is chosen between 2 
(k in general) static (fixed) and previously computed 
(precomputed) routes. The main reason motivating the use of 
fixed precomputed routes is to limit the number of Prediction 
Tables in the sources nodes; using fixed alternate routes we 
are limiting the number of Prediction Tables.   

Unlike branch prediction where the history of prediction 
outcomes is stored in a register, in a network scenario it is 
necessary to keep the network state from the point of view of 
the source node. In order to achieve it, the PBR mechanism 
registers the amount of bandwidth that every source node 
allocates to every route originated on such a source node. For 
simplicity of exposition, we assume that the information about 
both available and used bandwidth is expressed in terms of a 
percentage of the total capacity of the end-to-end route. There 
is one register per route on every source node. These route 
registers are updated with information about assigned 
bandwidth from the point of view of these source nodes. One 
of the main characteristics of the PBR mechanism is that the 
register’s updating process is achieved without distributing 
update messages. Because of the removal of these update 
messages, the bandwidth allocated in the route registers of the 
source nodes does not reflect the precise bandwidth assignment 
values. 

The information about assigned bandwidth is used to access 
some tables (termed prediction tables, or PTs); hence it should 
be digitalized in order to constitute a proper table index. As an 
example, if we employ a single bit for digitalizing the 
bandwidth information, we can assign ‘0’ to the index when 
the used bandwidth in the route is bigger than or equal to 50%, 

otherwise we assign ‘1’. Table in Fig.1 shows the index values 
for two bits. 

Source nodes include one prediction table for every 
feasible route. Every route register has its corresponding PT. 
The PTs have different entries, each keeping the information 
about a different pattern by means of a two-bit counter. The 
use of two values to account for the availability or the 
unavailability has been widely studied in the area of branch 
prediction in computer architecture. As shown in [17] a two- 
bit counter provides significantly better accuracy than a one-
bit counter. It is also shown that counters of more than two 
bits do not provide significantly better results; this is due to 
the “inertia” that can be built up with a large counter. A two-
bit counter admits four values, namely 0, 1, 2 and 3. The 
prediction is done by reading the value of the two-bit counter, 
as follows. If the value is 0 or 1, the prediction result is to 
select the route associated with this counter; otherwise the 
prediction outcome is that this route is unavailable and should 
not be selected. 

The number of entries of the prediction tables depends on 
the number of bits of the route registers. For example, if the 
route registers keep information about the used bandwidth in 
the route within two bits, then the number of entries of the 
prediction tables is 4. 

Based on the PBR off demand mechanism, we propose the 
k-PSR_FA (Predictive Selection of Route Fixed Alternate) 
algorithm, being k the number of feasible routes. Fig.1 
illustrates an execution of the algorithm. We assume that there 
are two precomputed shortest routes between every source-
destination nodes pair, and that the assigned bandwidth is 
codified by two bits. In Fig.1 we depict the handling of a new 
request that demands 40% of bandwidth. We also assume that 
these shortest routes are link disjoint, if possible. Otherwise 
the shortest routes should share the minimum number of links. 
This is done because if the first route is predicted to be 
blocked, then the prediction is effectively to use a completely 
different route, since the source node does not know the 
identity of the link blocking the first route. Generally, the k-
PSR_FA algorithm checks the k shortest routes in a computed 
order, according to the availability of their links. The 
information about the availability of the links does not 
represent the current picture of the network. Indeed, without 
updating, every node only knows how routes and links have 
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Route 1 register

Incoming traffic
request demanding
40% of bandwidth

25%

Route 2 register

1) (40+40)%            PT1  index= 00 
    bandwidth       
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01
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11

Check
route 2

2) (25+40)%            PT2  index= 01 
     bandwidth       1

Route 2
Prediction  Table

00 
01 
10 
11 

Select
route 2

Bandwidth (B) Index 
 
    75%<=B                        0 
 
 50%<=B<75%    1 
 
   25<=B<50    2 
 

B<25%     3 

 
Figure 1. 2-PSR_FA performance, bandwidth codified with 2 bits. 
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been used in the past. This information dictates the order by 
which the PTs are checked. Getting back to Fig. 1, the last 
information upon the first route is a used bandwidth of 40%. 
This used bandwidth is incremented by the requested 
bandwidth, i.e. 40%+40%. If the resulting figure is lower than 
100 %, then the PT of the first route is checked, that is the 
counter of the corresponding entry is read; otherwise the next 
PT would be checked. In our example, the total bandwidth is 
80% (>75%), so that the index used to access the first PT is 
00. With this index, the PT of the first route is accessed and 
the counter is read. According to Fig.1, the value obtained 
after accessing the PT is 2, hence the decision made by the 
prediction process is to avoid the first route. Hence, the second 
route is examined. In this second route, the used bandwidth is 
25%, so that the resulting figure is 40%+25%=65%. This 
means an index of 01. The PT of the second route is accessed 
with this index, obtaining a value of 1. According to this 
counter value, the algorithm selects this second route. We 
point out that the algorithm checks both the counter value of 
the PT and the availability of the node’s output links towards 
each of the two routes, because the nodes always have updated 
information on the availability of their output links.  

In Fig. 2 we present a short summary of the k-PSR_FA 
algorithm, for k=2. We call the functions that check the 
availability of route 1 and route 2 as Check(Route1), and 
Check(Route2), respectively. In the example, after checking 
the PTs of both routes, if the algorithm still has not selected 
any route according to the prediction, the algorithm will select 
the route by only checking the availability of the node’s output 
links. These functions are termed CheckF(Route1) and 
CheckF(Route2), respectively. 

The route registers at the source node are updated with the 
information about the used bandwidth for the source node in 
every route. In the example above, when the algorithm selects 
the second route, the new bandwidth used by this node in this 
second route will be 65%. It is important to note that this used 
bandwidth is just the value known by the node, which might 
be substantially different from the real bandwidth occupation. 
This is because, due to the lack of update messages, 
bandwidth changes produced by other source nodes allocating 
bandwidth on links of the same route are not reported 

An important issue to be considered is that only the PT of 
the selected route is actually updated (or trained). Hence, if the 
connection is established, the corresponding counter on the PT 
is decreased, otherwise (i.e., the connection is blocked) the 
counter is increased. In our example, if the connection is 
successfully established, the counter of the entry 01 in the PT 
of route 2 will be 0, but if the connection is finally blocked the 
counter will be 2. The attempt of selecting the route by just 
checking the output availability when no route is assigned is 
done to unblock the PT counters. Indeed, if the route is 
selected and the connection can be established, then the 
corresponding PT counter of route 1 or route 2 is decreased, 
hence unblocking it. 

B. PBR on demand: the k-PSR_R algorithm 
As it was exposed earlier the potential problem of a PBR on 

demand mechanism is the amount of memory required by both 

the number of PTs and the size of the PTs. Remember that in 
the source nodes there is a PT for every possible route to every 
possible destination. In addition a large number of PTs 
negatively impacts on the computational cost. 

We address the problem of the memory requirements by 
means of both, reducing the PT size, and reducing the number 
of PTs. First, the PT size is reduced so that there is only one 
entry of two bit counter in every PT. As a consequence, it is 
not necessary to codify the requested bandwidth in a certain 
number of bits, since the algorithm does not consider it in the 
route selection (because there is only one entry on each PT). 
For every new connection request the corresponding PTs of 
the possible routes are accessed and read, independently of the 
requested bandwidth. This is done to both, limit the necessary 
amount of memory required, and simplify the execution of the 
algorithm. Second, the algorithm is able to calculate all the 
possible routes and then check all the possible PTs. However, 
to reduce even more the memory requirements we add a new 
parameter, R. R is the number of statically precomputed 
shortest routes. Then, in the source nodes, there is R PTs for 
every source-destination pair of nodes. 

Despite the fact that the number of PTs has been reduced as 
well as their size, we are aware that a significant 
computational cost is needed to access all the feasible PTs. 
Hence, to reduce this computational cost we propose to limit 
the number of routes to be compared, varying the parameter k; 
being k the dynamically k-shortest routes with two-bit counter 
lower than 2 and with output link availability. We name the 
routing algorithm inferred from the PBR on demand 
mechanism, Predictive Selection of Route On Demand  (k-
PSR_R). In short, the k-PSR_R algorithm checks the k-

New request demanding an X% of bandwidth. 
Check(Route 1): 

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). 
The total bandwidth is  X+Y%. 

If (X+Y)% <=100% the PT of the first route is checked 
If(PT counter<2) and there is availability in the output link the 
algorithm selects the  route1 

 Else Check(Route 2). 
Else Check(Route 2)  

Check(Route 2)  
The new bandwidth is added to the bandwidth kept in the route2 register (Z%). 
The total bandwidth is X+Z%. 

If (X+Z)% <=100% the PT of the second route is checked 
If (PTcounter<2) ) and there is availability in the output link the 
algorithm selects the  route2 

 Else CheckF(Route 1) 
 Else CheckF(Route 1) 
CheckF (Route 1): 

The new bandwidth is added to the bandwidth kept in the route1 register (Y%). 
The total bandwidth will be X+Y%. 

If (X+Y)% <=100%  
If there is availability in the output link the algorithm selects the  
route1 

  Else CheckF(Route 2). 
Else CheckF(Route 2)  

CheckF (Route 2): 
The new bandwidth is added to the bandwidth kept in the route1 register (Z%). 
The total bandwidth will be X+Z%. 

If (X+Z)% <=100%  
If there is availability in the output link the algorithm selects the  
route2 

  Else No route is assigned 
Else No route is assigned  

Figure 2. Summarizing the 2-PSR_FA algorithm 
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shortest routes with two-bit counters lower than 2 and with 
output link availability between the first R shortest routes. 

Once we have fixed the problem of the memory 
requirements we explain the k-PSR_R algorithm. The k-
PSR_R algorithm looks, for every new connection request, the 
possible routes and reads the two-bit counter values as 
follows. Once the routes are calculated they are checked 
according to their length in number of hops. The first, shortest 
route, is checked. If its corresponding two-bit counter is lower 
than 2 and the corresponding output link has enough available 
bandwidth the route is provisionally selected. In any case, if 
the first route is selected or if it is not selected, the next, 
second route, is checked. If the second route has its two-bit 
counter lower than 2, the same hop length than the first, and 
output link availability, this second route is compared with the 
first. If the second route has more available bandwidth, this 
second route is now provisionally selected. This process 
finishes when k possible routes are considered (k shortest 
routes with two-bit counter lower than 2 and output link 
availability) or when R routes are checked. See in Fig. 3 a 
summary of this k-PSR_R algorithm. In order to make 
understanding easier we compare the k-PSR_R algorithm with 
the Widest Shortest Path (WSP) [18]. The k-PSR_R algorithm 
runs similar than the WSP but with two differences. The first 
is that the algorithm selects the widest shortest route between 
the routes with counter lower than 2 and output link 
availability. That is, it selects the widest shortest route in a 
graph where the routes with two-bit counters larger than 1 or 
no output link availability are pruned. The second difference is 
that k-PSR_R uses the local information on the source node 
about the link availability of the routes. This local information 
stands for the amount of bandwidth allocated by those 
connections originated by such a source node.  

 As in the k-PSR_FA algorithm, if the k-PSR_R algorithm 
does not select any route, the routes are checked as explained 
above but eliminating the restriction of two-bit counters lower 
than 2. See also summary in Fig. 3.  

The k-PSR_R algorithm updates (or trains) the two-bit 
counters of the PTs according to the following. If the 
connection can be established the two-bit counter 

corresponding to that route is decreased, otherwise, the 
connection is blocked, the two-bit counter is increased. 

III. PERFORMANCE EVALUATION 
In order to evaluate our proposal we compare the 

performance of the PBR mechanism with a well-known QoS 
routing algorithm the WSP. For every new incoming request, 
the WSP dynamically selects the route with the largest amount 
of available bandwidth among the shortest (i.e., minimum-hop) 
ones. All the performed simulations are obtained by applying 
both PSR algorithms and the WSP algorithm on the NSF 
topology, depicted in Fig. 4. We assume that in our simulations 
nodes 1, 2, 11, 12, 14 and 15 in Fig. 4 are source and 
destinations nodes. Connection arrivals are assumed to be 
Poisson, and all the links have the same available bandwidth, 
which is normalized to 100%. Each arriving connection 
requires a certain percentage of the total bandwidth. The 
holding and arrival times of the incoming requests are 
measured in units of time. All the connection requests have a 
averages holding time of 10 units and an average arrival time 
of 10 units. In order to change the traffic load, we change the 
average requested bandwidth (that is, the average value of all 
the requested bandwidths) demanded by the incoming requests 
from 10% to 25 %. We carry out three set of simulations. The 
first targets to find out the optimal number of bits needed to 
codify the bandwidth requirements in the k-PSR_FA algorithm. 
The second targets to evaluate the PSR performance, 
comparing it with the WSP algorithm. And finally we evaluate 
the impact of the parameters R and k on the k-PSR_R 
algorithm performance. 

A. Number of bits to codify the requested bandwidth in the k-
PSR__FA algorithm 

As it is exposed in section II.A, the k-PSR_FA algorithm 
uses the bandwidth codification in the process of selection of 
the route. In this set of simulations we want to evaluate the 
impact on the k-PSR_FA performance when the number of 
bits used to codify the bandwidth changes. Notice that the 
length of the route registers and the number of PT entries 
depend on the number of bits used to codify the bandwidth. 
For example if the number of bits used to codify the 
bandwidth is 3, the route registers will have a length of 3 bits, 
and the PTs will have 8 entries each one, but if the number of 
bits is 0 (bandwidth is not codified) there will not be route 
registers and the PTs will have only one entry. We present in 
Table I the percentage of blocked connection, for the 4-
PSR_FA algorithm for 0 (bandwidth is not codified), 1, 2 and 

For(i=1 to R)  (R can be=all possible routes){ 
While(CheckedRoutes<=k){ 
If(two-bit_counter(Route(i)<2) and there is output link availability{ 
CheckedRoutes++; 
 If(Length(Route(i)<Length(AssignedRoute)) AssignedRoute=Route(i); 
 If(Length(Route(i)==Length(AssignedRoute)){ 
 CheckLocalLinkAvailability: 
 If(LocalLinkAvailability(Route(i))> LocalLinkAvailability(AssignedRoute)) 
    AssignedRoute=Route(i); 
 } 

If any route is assigned run the same algorithm without checking two-bit_counter 
values: 
 
For(i=1 to R)  (R can be=all possible routes){ 

While(CheckedRoutes<=k){ 
If  there is output link availability{ 
CheckedRoutes++; 
 If(Length(Route(i)<Length(AssignedRoute)) AssignedRoute=Route(i); 
 If(Length(Route(i)==Length(AssignedRoute)){ 
 CheckLocalLinkAvailability: 
 If(LocalLinkAvailability(Route(i))> LocalLinkAvailability(AssignedRoute)) 
    AssignedRoute=Route(i); 
 } 

Figure 3. Summarizing the k-PSR_R algorithm 

 
Figure 4. Topology used in the simulations 
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3 bits to codify the requested bandwidth, and for 10%, 15%, 
20% and 25% of average requested bandwidth. We can see 
that for 10%, 15% and 20% the best results are for 0 bits; only 
for 25% the best results are for 2 bits. We obtain similar 
results for 2-PSR_FA. On average, for our range of traffic load 
the best results are usually for 0 and 2 bits.  For simplicity and 
taking into account that 0 bits implies that there are not route 
registers, and only one PT of one two-bit counter per route is 
required in the source nodes,  in the rest of the performance 
evaluation we only present results for 0 bits for the k-PSR_FA 
algorithm. 

TABLE I. 4-PSR _FA % OF BLOCKED CONNECTIONS VS THE   NUMBER OF 
BITS TO CODIFY THE  REQUESTED BANDWIDTH. 

Average  Number of Bits   
Requested  
Bandwidth 

0 1 2 3 

10% 0.3314% 0.3314% 0.3321% 0.40262% 
15% 1.2682% 1.5041% 1.3434% 1.6959% 
20% 3.9550% 4.8036% 5.5262% 5.2469% 
25% 12.1375% 11.8983% 11.2713% 12.9306% 

B. PSR algorithms performance 
We compare the two PSR algorithms, k-PSR_FA and k-

PSR_R, with the WSP algorithm. In the case of k-PSR_FA, 
we assume that the shortest routes are link-disjoint. 
Accordingly, for coherence when comparing the performance 
of all the algorithms we simulate also two WSP versions, WSP 
with off demand route calculation, named k-WSP_FA, with k 
link-disjoint routes, and WSP with on demand route 
calculation,  named k-WSP_R.  

In Fig. 5 we present results of the percentage of blocked 
connections versus the time between updating (in units of 
time) for 10%, 15%, 20% and 25% of average requested 
bandwidth. In these simulations we assume k=2 and k=4 for 
the k-WSP_FA and k-PSR_FA algorithms, and k=All and 
R=All for the k-WSP_R and k-PSR_R algorithms. In the off 
demand algorithms that use precomputed routes (k-WSP_FA 
and k-PSR_FA) the routes have been manually selected. For 
2-FA, the two routes are the two shortest link disjoint. For 4-
FA, the first 3 routes are the shortest link disjoint, while the 
fourth shares the minimum number of links with the other 3, 
because there are not 4 link disjoint routes in the topology 
simulated. Remember that the PSR algorithms do not vary 
their performance with the updating time because they do not 
need update messages. 

From the obtained results we can conclude that both PSR 
algorithms outperform the WSP algorithms when the network 
state updating time is bigger than 5-10 units of time. 
Moreover, in some case the PSR outperforms the WSP even 
when updating is every unit of time. Remember that updating 
every unit of time, even every 5 or 10 units of time, is 
unaffordable from the point of view of the signaling overhead. 
On the other hand, the 4-PSR_FA algorithm outperforms in  
almost all the cases the k-PSR_R algorithm, except for 25% of 
requested bandwidth. This effect is also observable in the 
WSP algorithms. This can be explained because more routes 
to select does not always imply better performance [15]. The 
4-PSR_FA algorithm only selects among 4 routes, but these 

routes has been previously and manually selected, being link 
disjoint the first three and sharing the minimum number of 
links the fourth. From this observation we argue that the 
selection of the fixed alternate routes is as important as the 
routing algorithm as stated in [8].  

C. Adjusting parameters of the k-PSR_R algorithm 
As it is exposed in section II.B we introduced the parameter R 
in the k-PSR_R algorithm to reduce the amount of required 
memory. R is the number PTs of one two-bit counter per 
source-destination pair in the source nodes. We also 
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Figure 5. PSR versus WSP for traffic load of 10%, 15 %, 20% 
and 25% of average requested bandwidth. 
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introduced the parameter k to reduce the computational cost. 
The k-PSR_R algorithm selects the route between the k-
shortest with availability in their output link and the two-bit 
counter lower than 2.  In Table II we present results of the k-
PSR_R algorithm being the R parameter, either all the 
possible routes, 100 routes, or 10 routes; and being the k 
parameter either R, 4 or 2. We observe that the results are the 
same if we consider all the possible routes, R=all, or if we 
consider R=100. Even for 10% of average bandwidth we also 
obtain the same results when considering only R=10 routes. 
On the other hand, in general, reducing k from all the possible 
routes to 4 and 2, the percentage of blocked connections 
decreases (except for 25%). The two above observations mean 
that we can reduce the number of PTs, R, without increasing 
the blocked connections. In addition, the results are in general 
better when reducing k. From these last observations together 
with the good results of the off demand algorithm, k-PSR_FA, 
we argue that it is possible, for every network topology and 
traffic characteristics, to find an optimal combination of the R 
and k parameters and also, as it is presented in [8], to find the 
best fixed precomputed routes to be selected. 
TABLE II: % OF  BLOCKED CONNECTIONS OF THE K-PSR_R VARYING R AND K 

 FOR 10% OF TRAFFIC LOAD 
R/k All 4 2 
All 0.7068% 0.1600% 0.1667% 
100 0.7068% 0.1600% 0.1667% 
10 0.7068% 0.1667% 0.1667% 

FOR 15% OF TRAFFIC LOAD 

R/k All 4 2 
All 1.9201% 1.7468% 1.6201% 
100 1.9201% 1.7468% 1.6201% 
10 1.8934% 1.7468% 1.6201% 

FOR  20% OF TRAFFIC LOAD 

R/k All 4 2 
All 5.5937% 4.6736% 3.8269% 
100 5.5937% 4.7136% 3.8269% 
10 4.8000% 4.5070% 4.3002% 

FOR 25% OF TRAFFIC LOAD 

R/k All 4 2 
All 10.5140% 12.8875% 10.2940% 
100 10.5140% 12.8875% 10.2940% 
10 12.3408% 11.9008% 11.7074% 

IV. CONCLUSIONS 
We have presented the PBR mechanism, a precomputation 

approach based on prediction, to address the scalability 
problem of QoS routing. Our proposal is based on predicting 
routes availability not according to the network state 
information but according to its capacity of learning (training 
of the PTs). One of the main characteristics of this approach is 
that update messages are not needed, thus reducing 
significantly the signaling overhead. Simulation results show 
that the algorithms inferred from the PBR mechanism behave 
better than a standard QoS routing algorithm. 

Also we have shown the importance of finding and storing 
the best precomputed routes when using off demand route 

calculation, to improve the performance of the routing 
algorithms. Our future work will be aimed to develop 
algorithms that dynamically store the best routes depending on 
the network and traffic characteristics. 
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