

Abstract – VC merge has been presented as the most likely
implementation to offer multicast forwarding in MPLS
environments when ATM is used as data link layer. But it
presents some characteristics that may not be desirable, like
extra buffering and delay, and modification of traffic
characteristics. Other types of mechanisms are presented in the
literature to solve these problems. Compound VC (CVC) is one
of these mechanisms. This paper presents a general comparison
of VC merge and CVC. It finally discusses the implementation
issues of a CVC switch. Though its implementation is more
complex, it is shown that CVC forwarding could be carried out
by using state-of-the-art ATM hardware.

I. INTRODUCTION

AAL5 is the most commonly used adaptation layer for ATM
networks. Just one bit in the cell header of the last cell allows the
switch to delineate AAL5 PDUs. There is no way of knowing which
PDU a given cell belongs to. Thus, multiplexing of cells belonging
to different AAL5 PDUs must be avoided, or solved in some way, in
order to reassemble them correctly at the end-system. This problem
is known as the cell-interleaving problem.

IP multicasting over ATM [1] proposes some solutions to solve
the problem, but they present inefficiency in terms of signaling
overhead or delay depending on the chosen strategy. Native ATM
multicasting mechanisms try to solve this inefficiency by solving the
cell-interleaving problem at the ATM layer. That is, their goal is to
offer layer 2 multicast forwarding. In this paper, multicast is
understood as the provisioning of multipoint-to-multipoint
communications.

The interest of such mechanisms comes from the fact that many
vendors have used ATM to implement MPLS-capable routers. Thus,
these techniques could help in provisioning the multicast capability
for ATM Label Switch Routers (ATM-LSRs).

Some native ATM mechanisms have been proposed in the
literature to solve the cell-interleaving problem at the ATM layer.
They may be classified into four groups. The first group solves the
problem by avoiding cell interleaving to happen by means of either
buffers or token passing protocols. The second group uses the VPI
to identify the group and the VCI to identify either the sender or the
PDU. The third group provides mechanisms to allow the
multiplexing of cells inside a single VC either by adding the
multiplexing overhead in the transmitted data, or by using the GFC
field for that purpose, or by negotiating, at connection
establishment, the order in which cells are going to be transmitted.
Finally, the fourth group allows interleaving of cells by using 2 or

* This work has been funded by the Spanish Ministry of Education

(CICYT) under grant number TEL99-1117-C03-03 (SABA-2)

more VCIs for the same multicast group. A more detailed review of
these mechanisms may be found in [2].

The mechanism that has received more attention in the literature
is VC merge [3] (also referred to as store-and-forward in [2]) due to
its implementation simplicity. It belongs to the first type of the
above classification, and avoids cell-interleaving by using additional
buffers. However, this simplicity comes at the price of additional
delay, delay variation, and buffering. Thus, traffic characteristics are
changed.

Another mechanism called Compound VC (CVC) [4] was
introduced to solve the problems that appear with VC merge at the
price of using more VCI space. A comparison of both mechanisms
based on previous work is presented.

The goal of this paper is to present the functional architecture of a
CVC switch. The simple implementation of CVC may help in the
provisioning of multicast communications with quality of service in
MPLS environments using ATM-LSRs.

The next section is devoted to compare VC merge and CVC. The
following sections present the operation and characteristics of a
generic ATM switch as well as a VC merge switch. Section V
introduces the CVC forwarding operation by means of an example,
and also presents the functional architecture of a CVC switch.
Finally, we present the conclusions.

II. VC MERGE VS. COMPOUND VC

A. VC Merge

VC merge (or store-and-forward) [3] avoids cell-interleaving by
storing all the cells of a PDU in a buffer and by forwarding all these
cells in an atomic manner once the last cell of the PDU arrives. In
this sense, a VC merge switch emulates frame switching of AAL5-
PDUs without carrying out the AAL reassembly process.

B. Compound VC

The main idea in the Compound VC (CVC) mechanism [4] is that
the multicast group is associated to a group of adjacent VCs (or
compound VC). The VCI field in the ATM cell header is divided
into two parts. The first one corresponds to the CVC ID and the
other one carries the PDU ID (Fig. 1). Reference [5] shows the
advantages of using PDU IDs instead of Source IDs.

Therefore, the tuple (VPI, CVC ID) identifies a group in a unique
way and the least significant bits of the VCI field identify the AAL5
PDU.

Compound VC ID PDU ID

VCI field

Variable size

Fig. 1. VCI field in Compound VC

The Compound VC switch. A non-VC merge ATM multicast switch.*

Josep Mangues-Bafalluy and Jordi Domingo-Pascual
Technical University of Catalunya (UPC)

Advanced Broadband Communications Center (CCABA)
Computer Architecture Department
Campus Nord. Mòdul D6. Sala 008.

Jordi Girona 1-3. 08034 Barcelona (Spain)
{jmangues | jordi.domingo}@ac.upc.es

The VPI, CVC ID and PDU ID are locally mapped at the
switches. The CVCID mapping entries do not change during the
connection, while the PDU ID mapping entries are dynamically
modified each time the first cell of a new PDU traverses the switch
or each time the last cell is transmitted.

Besides, the size of each part is negotiated at connection
establishment. This feature allows more flexibility in matching
different group sizes and traffic characteristics.

C. Comparison of VC Merge and CVC

Simulation results [4] show that throughput obtained by both
mechanisms is the same if the same number of reassembly buffers
for VC merge as PDUIDs for CVC is chosen.

The main difference is the behavior of the pattern of the outgoing
traffic. VC merge includes buffering and transmits the cells of the
same PDU grouped and at the peak rate. On the other hand, CVC
simply multiplexes the arriving cells without increasing neither the
end-to-end delay nor the cell delay variation. The price paid is extra
VCI consumption. But the number of additional VCIs is not high.
As shown in [5], a few PDU IDs are enough to serve groups with
high number of sources for the simulated traffic conditions.

The graphical example of the behavior of both mechanisms
presented in [2] could help in showing their influence on traffic
characteristics. This point is further analyzed in [6], where
comparisons concerning the delay behavior of some mechanisms are
carried out. In particular, there is a comparison between VC merge
(referred to as hardware VC merge in that paper) and non-hardware
VC merge. As far as delay in the buffers is concerned, the results
obtained for non-hardware VC merge also apply to Compound VC
(CVC). The only difference among both may appear due to
processing times at the nodes. However, they are likely to be small
compared to the buffering delay because the processing is carried
out with hardware, as we explain below. The interesting part of that
work, was the utilization of real traffic traces. The results showed
that the delay for hardware VC merge was 65% higher across the
range of network load until 85%. Standard deviation also was 95%
higher in the hardware VC merge case, and this increase stayed
approximately constant up to about 85% utilization.

This aspect may not be very important for data transmission but
may significantly distort the traffic characteristic of real-time
multimedia communications, which are common among multicast
applications.

Other results obtained through simulation and analytically also
show that VC merge requires more buffers than non-VC merge
mechanisms [7], though in some cases, and for the studied traffic,
the authors claim that this buffer increase is not significant.
However, there are other studies claiming that the conclusions of
that paper are in contrast with their findings [8].

Anyway, additional buffering is not the only concern when
dealing with VC merge. Quality of service (QoS) requirements must
also be satisfied. In the same paper [7], the authors propose some
modifications in VC Merge to offer per-class quality of service. The
paper suggests using different output buffers for traffic requiring
different QoS. Each output buffer is associated with a different VC
and a cell level scheduling mechanism is responsible for
interleaving cells of different classes in order to minimize traffic
distortion. As a consequence, buffering requirements and VCI
consumption increase.

With respect to delay, and apart from that introduced by the extra
buffering, one could expect that delay and cell delay variation
somehow increase when multiple merging nodes are crossed when
VC merge is used.

Signaling requires some modifications if CVC is to be supported
because the establishment of the connection must handle a group of
VCIs as a compound VC. Interoperability issues with standard
signaling must also be considered. Some ways to deal with
interoperability may be found in [5].

Finally, with respect to implementation, VC merge is simple.
However, CVC may be implemented with slight modifications to
state-of-the-art ATM hardware. The implementations of both
mechanisms are compared in the following sections.

III. FUNCTIONAL BLOCKS OF AN ATM SWITCH

The generic architecture of an ATM switch that we take as a

reference for the discussion below is represented in Fig. 2.

X

CONTROL

IM

IM

IM

OM

OM

OM

Fig. 2. Generic switch block diagram

The control block is in charge of dealing with the signaling and
management operations. The input module (IM) receives incoming
cells, maps their VPI/VCI, and forwards them to their corresponding
output module/s. For that purpose, it appends additional information
to each cell in the form of tags. These internal tags are used by the
switch fabric to route the cells to the output modules (OMs). Finally,
the OM buffers the cells coming from the IMs and sends them to the
output link after having formatted them appropriately. The
following sections describe how forwarding is carried out in a VC
merge switch and a CVC switch.

IV. MULTICAST FORWARDING WITH VC MERGE

A. Traffic forwarding

The forwarding in a multicast group using VC Merge is carried
out through the only established VC, i.e. in principle, there is just
one VC per group. The cell-interleaving problem is solved by the
output module of the switch. It is in charge of buffering all the cells
of a given PDU and sending them together once they were all
received. Fig. 3 shows an example of VC merge forwarding.

Merge Point Merge Point

1 1 1
1 1 1

1 1 1
2 2 2

2 2 2

2 2 2

3
3

3

3 3 3

Fig. 3. VC merge forwarding example

B. Block functionality description
The main difference in a VC Merge switch with respect to

conventional switches is in the output module. All the required
buffering management is carried out there. Fig. 4 presents a block
diagram of such an output module. Only ATM cell forwarding parts
are represented. SONET/SDH operations, signaling and
management cell insertion, etc. are not represented.

classifier

Reassembly buffers

Output buffer

Fig. 4. Output module of a VC merge switch

When cells arrive to the OM after having crossed the switch
fabric, they are classified and put into their reassembly buffer
according to the tuple (input module, VCI). Remark that the IM
must add an internal tag to allow the OM to differentiate between
cells coming from different IMs with the same VCI [7]. The IM
number is carried in an internal tag. Once all the cells of a PDU
arrive, they are moved in an atomic manner to the output port from
where they are transmitted through the output link.

V. MULTICAST FORWARDING WITH CVC

Fig. 5. shows a scenario where CVC could be used. It is

homogeneous in the sense that all users in the multicast group (or
CVC connection) receive the same treatment and introduce the same
traffic to the network. A typical example of such a scenario is a fully
interactive videoconference.

A. Traffic forwarding

Once the multicast tree has been established with the right
number of IDs assigned to the CVC connection, the forwarding of
traffic begins. We assume all switches in the network perform CVC
forwarding.

When a sender wants to transmit to the group, it sends its
information through the single VC that connects it to the ingress
switch. Once in the switch, if there is no traffic from the group being
forwarded to the same output link, the packets will be forwarded
without PDU ID remapping, i.e. just the compound VC ID mapping
part is required. For instance, when sender A in Fig. 5. wants to
transmit, it sends its information through link A-S1 with the only ID
assigned to this link for this multicast group. In switch S1, there is
no information from other members of the group being forwarded
from S1 to S2. Thus, PDU ID mapping in S1 is not required and the
packet is forwarded by just looking at the CVC ID switching table.

S1

S2 S6S3

S5S4

B C

G HA

KJI

14 1414

4141 414141

2

4

1

4

4

2

14 44

FED

141414

Fig. 5. Example of multicast scenario with CVC

If there are other senders forwarding its information through the
same switch, both flows will be aggregated. Therefore, the CVC
forwarding mechanism will be used to map the PDU IDs. For
instance, when the PDUs sent by sender A arrive to switch S2, they
are multiplexed with those coming from senders B and C and they
are forwarded from S2 to S3 through a 2-ID compound VC.

Fig. 5. also shows that the number of IDs assigned to the group in
a given link may not be the same in both directions. It depends on
the characteristics of the aggregated traffic and will be calculated at
connection establishment. For example, the link connecting a switch
with a member of the group uses 1 ID in the ingress direction,
because just this member uses it. But it uses 4 IDs in the egress
direction because the aggregated traffic of the whole group is
forwarded to all the components of the multicast group.

B. Block functionality description

The previous subsection showed the functionality offered by
CVC for multicast forwarding at the group level. This subsection
deals with the ATM-level block architecture inside the switches to
offer the CVC forwarding capability.

There are two options for the implementation of the CVC switch,
namely the Longest Prefix Match (LPM) and the 2-Mappings
(2MAP). The first one allows to treat the group as a whole by just
having one entry for any given group in the CVCID mapping table
of the IM. This implementation involves LPM lookup operations
because the CVC ID is variable in length. LPM lookups are costly to
implement in hardware. On the other hand, in the 2MAP
implementation, the switch must carry out two mappings of the VCI
field of each cell. But these mappings are carried out with indexing
table lookup operations. This paper focuses on 2MAP because it is
simple and it may be implemented with state-of-the-art ATM
hardware.

As presented in section II, in CVC, the VCI field is divided into
two parts, a CVC ID part identifying the multicast group and a PDU
ID part identifying the packet to which a cell belongs. Both
identifiers are locally remapped at each switch. The following
sections explain how each of these mappings is carried out by means
of a CVC ID mapping table and the Dynamic VCI Assignment
(DVA) respectively. The example presented in the appendix (Fig. 7
and tables) will serve us to explain this implementation.

1) Input Module – CVC ID mapping

The IM is in charge of the mapping of the CVC ID. This
mapping, for a given CVC connection, is determined at connection
establishment. That is, the entries in the CVC ID mapping table for a
given group are filled in when the connection is established and are
removed from the table when the multicast connection ends. The
number of entries in the mapping table of a given IM corresponding
to a single CVC connection is equal to the number of IDs used in the
input link to that IM. In our example Fig. 7, 2 IDs (and thus, 2
entries in the table) for IM 1, 4 IDs (4 entries) for IM 2, and 4 IDs
for IM 3.

These entries are used to map the CVC ID field of the incoming
cells and to forward them to the appropriate output port/s. The
2MAP implementation treats the entries in the IM table as if they
were normal VCIs. Thus, state-of-the-art ATM hardware could be
used. This is in contrast with the LPM implementation, which just
requires one entry in the table for each group. But the price paid is
major changes in ATM hardware.

Notice that the PDU ID is also mapped jointly with the CVCID
when the whole VCI is changed. But the PDU ID will only be paid
attention in the OM.

The range of VCIs allocated to the output link will determine the
CVCID and PDU ID values to which incoming cells are mapped. In
our example, the output VCIs allocated for the group at OM 4 are
comprised in the range 0xAF28 to 0xAF2F (Table 4). This range is
chosen at connection establishment and the OM sends to each IM
involved in the forwarding of the CVC connection a number of
VCIs inside this range equal to the number of input IDs to that IM.
These VCIs will be used to fill in the output VCI column of the
CVC ID mapping table. For instance, OM 4 sends IDs 0xAF28 and
0xAF29 to IM1, which is assigned 2 IDs

Once the CVC ID mapping is done, a routing tag is added to the
cell. This tag will allow the switch fabric to route the cell to the
correct output port. If there is a single destination port, the tag will
directly contain the output port number. But if there are multiple
destination ports, this tag will carry a multicast address that will
allow the multicast-capable switch fabric to duplicate and route the
cell to the corresponding ports [9].

A second tag is also added to the cell. It contains the IM through
which the cell arrived to the switch. This field is required in case
that cells coming from different IMs with the same VCI, and thus
the same PDU ID, must be forwarded to the same OM.

Therefore, in most operations, the IM behaves exactly like a
normal ATM switch. The only slight difference is the inclusion of a
second information tag next to the routing tag, which is also
required for VC merge hardware [7]. This means that state-of-the-art
hardware could be used in the Input Module with slight
modifications.

2) Output Module - Dynamic VCI Assignment (DVA)

Fig. 6 presents the internal structure of the cell-processing block
of the Output Module of a CVC switch. It is based on the functional
blocks described in [9]. Only blocks used for handling CVC cells at
the ATM level are represented. Other blocks for signaling and
management cells handling are not represented.

The OM is assigned the task of PDU ID mapping to avoid ID
collision when traffic coming from different input ports is
multiplexed. Therefore, if such multiplexing does not occur, the
DVA block functionality is not required, and cells are forwarded
with just CVC ID mapping.

When a cell arrives to the OM after being routed by the switch
fabric, it arrives to the cell-processing block. PDU ID mapping is
carried out in the Dynamic VCI Assignment (DVA) block (Fig. 6).
Notice that though the PDU ID is variable in size, its mapping is
carried out by changing the whole VCI (Table 4). Thus, the OM just
handles fixed-length fields. Notice also that though we map the
entire VCI, the only thing that is changed in the OM is the PDU ID
because the CVC ID was already changed in the IM.

Output buffer

VP/VC database

Dynamic VCI
Assignment

(DVA)
Cell processing

Fig. 6. Cell processing block of output Module of a CVC switch

Therefore, when the cell enters the cell-processing block, the
DVA looks up the VP/VC database and translates the VCI field in
the cell header depending on the tuple (input module, input VCI)
(Table 4). The output VCI carries a unique PDU ID for that CVC
connection. That is, no other PDU belonging to the same CVC
connection and passing through the same output module is assigned
that ID.

Once the translation is done, the internal tags are removed and the
cell is stored in the output buffer, from where it will transmitted to
the link.

The actions to be undertaken when mapping a cell depend on the
type of cell inside an AAL5-PDU (initial, middle or last). When the
initial cell arrives, a free PDU ID is assigned to the PDU and the
PDU ID is marked busy to avoid other PDUs from using it. If all
PDU IDs are already being used by other PDUs, early packet
discard (EPD) is applied to the current PDU (e.g. first entry of Table
4).

If middle cells must not be discarded, once they enter the DVA
block, the (input module, input VCI) tuple is searched in the table
and the output VCI (which includes the PDU ID) of the matching
entry is written in the cell header (Table 4).

The binding between the input tuple and the output PDU ID lasts
until the last AAL5 cell arrives, i.e. once the last cell arrives, the
same mapping process is carried out, but after that, the output PDU
ID is freed and the entry is removed from the table.

Once again, the implementation is carried out by mapping the
whole VCI instead of just the PDU ID with the aim of preserving
most operations of a normal ATM switch. In this way, with only
slight modifications in VCI table processing, it is possible to offer
multipoint-to-multipoint connections without degradation of traffic
characteristics. Besides, the OM of some current multicast (point-to-
multipoint) switches may require cell processing blocks to map
multicast connection IDs to output VPI/VCI values [9]. Therefore,
in this case, there won’t be any extra hardware apart from the one
that controls the actualization of the VP/VC database each time a
PDU starts or ends.

Thus, and as a concluding remark, notice that in the 2MAP
implementation, the switch is capable of mapping two variable
length fields (CVCID and PDUID) by performing two fixed-length-
mapping operations. As a consequence, the CVC mechanism may
be implemented with minor modifications to current ATM hardware
and without loosing the flexibility of the CVC mechanism.

VI. CONCLUSIONS

We have presented a general comparison of two mechanisms (VC
merge and Compound VC) to offer multicast capability in ATM
environments while solving the cell-interleaving problem. The wide
acceptance of ATM as data link layer for MPLS justifies the studies
around multicasting at the ATM layer.

Previous work shows that VC merge requires more buffering than
mechanisms allowing cell interleaving. Furthermore, apart from the
delay introduced by this buffering, there are additional effects on the
traffic characteristics, which could make quality of service difficult
to achieve.

On the other hand, CVC tries to solve all these problems at the
price of a slightly more complex implementation. This paper
presented an implementation of a CVC switch that allows the
utilization of state-of-the-art ATM hardware while preserving the
traffic characteristics.

REFERENCES

[1] Armitage, GJ ‘IP multicasting over ATM Networks.’ IEEE Journal on

Selected Areas in Communications 15(3): 445-457, April 1997.
[2] Mangues-Bafalluy J and Domingo-Pascual J. ‘Multicast forwarding

over ATM: Native approaches.’ IEEE Communications Surveys, 3rd
Quarter 2000.

[3] Rosen EC, Viswanathan A, and Callon R. ‘Multiprotocol label
switching architecture.’ IETF RFC 3031. January 2001.

[4] Mangues-Bafalluy, J. and Domingo-Pascual, J. ‘Compound VC
Mechanism for Native Multicast in ATM Networks.’ Proceedings of
the 2nd International Conference on ATM (ICATM’99). Colmar
(France), June 1999.

[5] Mangues-Bafalluy J and Domingo-Pascual J. ‘Performance Issues of
ATM Multicasting based on Per-PDU ID Assignment.’ Proceedings of
IEEE International Conference on Communications (ICC’00). New
Orleans (USA), June 2000.

[6] Boustead P, Chicharo J, and Anido G. ‘Scalability and performance of
label switching networks.’ Proceedings of GLOBECOM’98, pp. 3029-
3034, 1998.

[7] Widjaja I and Elwalid AI. ‘Performance Issues in VC-Merge Capable
Switches for Multiprotocol Label Switching.’ IEEE Journal on
Selected Areas in Communications 17(6): pp. 1178-1189, June 1999.

[8] Zhou P and Yang OWW. ‘Reducing buffer requirement for VC-merge
capable ATM switches.’ Proceedings of GLOBECOM’99, pp. 44-48,
1999.

[9] Chen TM and Liu SS. ‘ATM switching systems.’ Artech House
Publishers, 1995.

APPENDIX: EXAMPLE OF FORWARDING IN A CVC SWITCH

An example of the operation of CVC when multiplexing in a

switch occurs is described in the following paragraphs. First, Fig. 7
describes the scenario. The mapping tables related to it are also
shown below. The first three tables describe the CVCID mapping
tables at the IM1, IM2, and IM3 for a given CVC connection. For
example, the traffic belonging to this group enters input module 2
with VPI=3, CVCID=01110011010000 (these bits correspond to the
more significant bits of the VCI field). As we have two bits assigned
to the PDU ID, there are four possible identifiers. That is why there
are four inputs in

Table 2. The same considerations apply for the rest of the tables
of the input modules.

IM2

IM1

IM3

OM4

5/610C

3/7340

7/8324

4/AF28

2 IDs

4 IDs

4 IDs

8 IDsX

Fig. 7. Cell forwarding in a CVC switch.

For all tables, just entries corresponding to the CVC connection

in Fig. 7 are shown.

Table 1: CVC ID mapping table at input module 1

Input Output
VPI VCI VPI VCI OM

5 610C 4 AF28 4
5 610D 4 AF29 4

Table 2: CVC ID mapping table at input module 2

Input Output
VPI VCI VPI VCI OM

3 7340 4 AF28 4
3 7341 4 AF29 4
3 7342 4 AF2A 4
3 7343 4 AF2B 4

Table 3: CVC ID mapping table at input module 3

Input Output
VPI VCI VPI VCI OM

7 8324 4 AF28 4
7 8325 4 AF29 4
7 8326 4 AF2A 4
7 8327 4 AF2B 4

Table 4 corresponds to the PDU ID switching table at output
module 4. In this example, all the cells coming from IM1, IM2, and
IM3 have been given a CVCID equal to 1010111100101, and the
three less significant bits in the VCI field of the OM are used as
PDU ID. Thus, there are 8 IDs. But, there may be some cases in
which all the identifiers of all the input modules are being used. In
this example, ten simultaneous PDUs are trying to pass through
OM4 (2IDs from IM1 + 4IDs from IM2 + 4IDs from IM3). As
represented in Table 4, all the cells of two PDUs are discarded due
to having run out of output identifiers.

Table 4: PDUID mapping table at output module 4

input output
VCI IM VCI discard

AF28 1 - 1
AF29 1 AF28 0
AF28 2 AF29 0
AF29 2 AF2A 0
AF2A 2 AF2B 0
AF2B 2 AF2C 0
AF28 3 - 1
AF29 3 AF2D 0
AF2A 3 AF2E 0
AF2B 3 AF2F 0

