
Demonstrating Communication Services Based on Autonomic Self-
organization

A. Bernadas2, R. Alfano1, A. Manzalini1, J. Solè-Pareta2, S. Spadaro2

1Telecom Italia, e-mail: antonio.manzalini@telecomitalia.it
2Universitat Politècnica de Catalunya, e-mail: pareta@ac.upc.edu

Abstract

This paper reports the main results achieved in the
development of a prototype for demonstrating
communication services, based on the principles
autonomic self-organisation. In particular, the
prototype has been designed and developed as a
distributed adaptable complex system, realized by
means of a population of lightweight autonomic
components interacting with each other through self-
organizing algorithms. A demonstration prototype to
show the collaborative ambient of a rescue team in a
critical situation with limited connectivity, such as
mobility, data distribution and high probability of
disconnection, has been simulated. This prototype
show both how these factors represent strong
challenges for current software architecture and how
the distributed lightweight components can self-
organize themselves in order to face these challenges.

1. Introduction

The definition of the autonomic system is taking
inspiration from the self-governing behaviors of some
natural autonomic systems, such as the human
autonomic nervous system. Once launching the
Autonomic Computing initiative, IBM defined four
general properties a system should have to constitute
self-management: self-configuring, self-healing, self-
optimizing and self-protecting. Since the launch of
Autonomic Computing initiative, the self-* list of
properties has grown substantially. Now it includes
also features such as self-anticipating, self-adapting,
self-critical, self-defining, self-destructing, self-
diagnosis, self-governing, self-organized, self-recovery,
self-reflecting and so on. The extension of the
autonomic technology principles from computing to

network and services resources has still the meaning of
developing solutions that are capable of hiding
operational complexity to both Operators and Users.
Autonomic systems are capable of making decisions on
their own, by using high-level policies from operators,
checking and optimizing their status in order to adapt
themselves to change environment conditions at the
same time.

In Framework Program VI, the European
Commission has launched the Situated Autonomic
Communication Initiative (Future Emerging
Technologies): its vision refers to the self-* features of
the distributed network and service resources, systems
and infrastructures fostering the development of the
Information Communication Society.

In this context, the IST Integrated Project Cascadas
[http://www.cascadas-project.org/] has the main goal in
identifying and developing distributed component-ware
architecture for development of innovative situation
aware and autonomic services. Basic concepts and
algorithms adopted for the development of the
prototype have been inspired by the activities carried
out in the project.

Figure 1. Example of an autonomic element

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.143

101

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.143

101

International Conference on Complex, Intelligent and Software Intensive Systems

0-7695-3109-1/08 $25.00 © 2008 IEEE
DOI 10.1109/CISIS.2008.143

101

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

In IP Cascadas, a distributed autonomic system can
be seen as a framework of autonomic components
(figure 1) [1], dynamically interacting with each other
and self-organizing their activities to achieve certain
goals. Specifically, autonomic features of the
components can be exploited through the introduction
of goal-oriented knowledge reasoning capabilities.
Regarding the self-organization capabilities, the second
key aspect of the prototype, biological algorithms have
always been a key source of inspiration [2]. As an
example, swarm intelligence principles have been
widely used for modeling problems through some
simple interactions of a collection of agents
cooperating to achieve a common goal. In these
systems, problems are “self-solved” in real time
through the appropriate collective behavior, as
consequence of interactions occurring between the
agents and the environment.

Above principles can be ideally applied to model
the self-* collective behavior, which can be observed
also in human social relationships. Cities, for example,
can be easily recognized as self-* ecosystems.
Nowadays, with the wide adoption of digital devices,
communications are generating data clouds
overlooking modern cities whose patterns show self-
adaptive and self-organizing properties.

The aim of this paper is demonstrating, through the
development of a prototype, the applicability of the key
principles of autonomic self-organization for the
development of solutions enabling communication
services even in critical disconnected situations (such
as a catastrophic event in a city).

A brief video clip (.ogg) of the demonstrator is
available at the Cascadas web-site
[http://www.cascadas-project.org/].

2. Autonomic self- aggregation

This section provides an introduction about the two
basic foundations of autonomic self-organization, as
developed into the prototype: i) autonomic agent
environments; ii) self-organising algorithms. Attention
has been mainly focused where innovation is needed,
for instance on the applicability of self-organising
algorithms in autonomic agent environment. Given the
richness of available results, references to literature are
provided for further details.

2.1. Autonomic Agents

Autonomic systems are typically distributed,

complex and concurrent, comprised of multiple
interacting autonomic elements and all the resultant

issues have already been faced in different fields of
autonomous agents.

Agent-based approaches have been, and remain, a
rich area for the study of the emergence of self-
organisation. For example, “artificial markets” have
been studied for their potential in market-based control.
The aspiration is that if the appropriate
interaction/trading rules are encoded into a population
of agents, then the agents will be able to self-organise
into “useful” structures/networks, where “useful” is
defined in terms of an application context, such as
supply chains or trading markets. Di Marzo et al. [3]
reviewed different aspects of self-organisation in Multi-
Agent Systems. They show how inspiration derives
from natural systems (complex physical systems as well
as natural systems). For example, the concept of
stigmergy, derived from the behaviour of social insects,
has also been important in inspiring the design of
Multi-Agent Systems. Bernon et al. [4] review several
examples of applications of self-organising multi-agent
systems. They show how Multi-Agent Systems can
self-organise themselves to carry out tasks, even though
individual agents have very simple properties.
Moreover, the emergent properties of the self-
organising system support each application.

2.2. Self-organising algorithms

This section describes two examples of self-

organizing algorithms [6]: passive clustering [6] and
on-demand clustering [6]. In the context of this paper
the term “aggregation” refers to the process by which
nodes form associations (“links”) with each other. It is
a “clustering” process during which each node,
characterised by a certain “type” establish links with
nodes of the same type. From this point of view, the
efficiency of a self-aggregation algorithm can be read
in terms of convergence capabilities of increasing the
fraction of links connecting nodes of the same type.

2.2.1. “Passive” clustering. A first set of basic local

rules has been devised requiring only direct interaction
between first neighbours yet susceptible to give rise
over time to spontaneous system-wide aggregation of
elements. The basic idea involves two nodes being
notified by a third (the “match-maker”), which are
interconnected through an overlay network, even if
those two nodes have no direct part in the decision
process (“passive” clustering). The rules are as
follows:
− match-maker node is randomly selected. This is

102102102

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

equivalent to say that every node in the system has
a chance of “waking-up” and initiating a rewiring
procedure, provided that this procedure is brief
enough (and/or infrequent enough) that a situation
in which two concurrent rewiring affect the same
nodes is extremely unlikely, and so every attempt
can be considered as an independent event.

− match-maker randomly selects two of its own
neighbours and, if they happen to belong to the
same type, instructs them to link together

− if the two chosen nodes were not already directly
connected (through the overlay) a new link is
established between them (i.e. they become first
neighbour of each other).

− if conservation of the total number of links is in
force (optional) and a new connection is
successfully established, the match-maker
terminates one of its own links with one of its two
selected neighbours.

2.2.2. “On-demand” clustering. In passive

clustering technique, in order to preserve homogeneous
node degree in the realistic, local rules-based scenario,
the rewiring procedure has to be modified: there is the
need of eliminating the indirect positive feedback
leading to the emergence of scale-free topology. It may
be objected that the heterogeneous node degree can be
highly beneficial to the network operation if the higher
connectivity of some vertices can be made to reflect
their superior capability. However, in our case, such
correlation is effectively absent: the emergence of hubs
in the “passive rewiring scenario” results from the
amplification of random fluctuations. As it cannot be
guaranteed that those nodes ending up with a higher
degree effectively have some specific features that
designate them as efficient “super-peers”, the result
could be disastrous and generate critical bottlenecks,
which is why we aimed at maintaining node degree as
homogeneous as possible throughout the system’s
history.

This has been achieved by distinguishing between
the initiator of a rewiring procedure and the match-
maker. Basically, upon “waking-up”, the initiator
requests a new link from one of its existing neighbours,
which will then act as the match-maker. Since with this
logic, the probability for a node to be appointed match-
maker is obviously a direct function of its own degree
(and the match-maker still ends losing one neighbour in
the process of a successful rewiring operation), it
introduces a negative, “rich becomes poorer” feedback
similar to the one observed in the abstract model.

The detailed algorithm governing key node
behaviour in the three roles of “initiator”, “match-
maker” and “candidate” involved in a rewiring
operation following the “on-demand” clustering
procedure is shown in figure 3. It involves exchanging
five types of messages (plus the link termination
message which isn’t discussed here). The “neighbour
request” (NRQ) message is sent by the initiator to the
chosen match-maker and specifies the type of node
desired. The “neighbour reply” (NRP) message is sent
by the match-maker to the initiator to inform it to a
potential candidate. The “link” (LNK) message is sent
by the initiator to the candidate to ask for the
establishment of a new link, which will only be
effectively created if it is compatible with the goals of
the candidate, as evidenced by the receipt of an
“acknowledgement” (ACK) message by the initiator.
Notice that, for most of the results presented in this
section, this will always be the case as all nodes in the
system share the same objective, i.e. they are all
assumed to be simultaneously in clustering (or reverse-
clustering) mode. Finally, after a successful handshake
between the initiator and the candidate, the match-
maker is informed via the “success” (SCC) message so
that the match-maker can be able to determine whether
or not its own connection to the candidate has to be
terminated, in order to conserve the total number of
links.

3. Architecture of the prototype

A prototype has been designed and developed in
order to demonstrate the applicability of the main
principles of autonomic self-organization in terms of
interactions of a population of autonomic components
through self-organizing algorithms.

The scenario used for demonstrating the prototype is
a dynamic and data intensive digital environment, such
as a city with pervasive digital devices, where everyone
can exchange information and collaborate with each
other. A scenario like this requires technologies and
solutions to manage large amounts of highly distributed
data items, which need to be transformed into
meaningful, reliable and available information for each
mobile user.

3.1. The use-case

The selected use-case is a city where some catastrophic
event has impacted the communication infrastructure
causing faults limiting normal wire and wireless

103103103

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

connectivity, but with the premise that all agents are
endowed with mobile devices with wireless capacity
[5]. The use-case is ideal for demonstrating how
autonomic self-organisation meets requirements for
emergency communications between the survivors and
rescue teams, with the aim of providing first aid as
soon as possible.

Ad hoc network

Building

Rescue Team

Survivor

AP

Figure 2. Main entities involved

Two basic groups are involved in the simulation: the

rescue teams and the survivors. The interaction
between groups of survivors and between survivors and
rescue teams should test the efficiency of the self-
management system. Rescue teams and survivors are
placed in two differentiated interaction environments.

Inside each building the communication is managed
in a completely distributed way without any central
control. This is likely to be a communication network
between peers based on an ad-hoc system. The last
objective is to achieve the major spread degree of
available information in the environment, in order to
make each survivor able to provide and gather the
information from its neighbours.

Moreover, the rescue teams will interact with the
different environments where the survivors are situated.
Therefore, a rescue team will be able to communicate
with a group of survivors when it is in the covering
area where some of them are situated.

The basic rules that the agents must fulfil are:
• communicate the information to each other in the

same environment.
• migrate to other environment (building).

Figures 2 and 3 provide, respectively, a

representation of the main entities involved and a
snapshot of the demo application developed to test the
proposed technique.

environment simulating the city

streets buildings

survivors

Figure 3. Demo snapshot

 3.2. Main architecture

The architecture of each agent is structured into the
following functional blocks.

3.2.1 Reasoning Part. It has the task of managing the
lifecycle of an agent. It describes the possible state and
invokes the proper specific features, if specified,
running all of them as a state machine. It works within
the system as a DIET’s job, in a parallel execution way.

3.2.2. Communication part. It is in charge of
implementing communication among the agents. It
includes the three behaviours described before in the
“On-demand” clustering algorithm (“initiator”, “match-
maker” and “candidate”). It also includes blocks that
are in charge of the information exchange contemplated
in reasoner’s logic (messages including survivor’s list,
GPS position and so on). Jobs are the way of
distributing the functionalities of an agent. Therefore,
agents can compose their behaviour by combining
multiple jobs. To implement the behaviour that
responds to the communication protocol mentioned a
structure of different jobs has been created. The
structure is the following one:

1. NotifyNeighboursJob: Job that on the start-up

notifies in broadcast of its type of ID to the
neighbours by creating connections. It also handles
notifications of the neighbours.

2. RandomNeighbourRequestJob: Job that initiates the
request process for type items (Initiator behaviour).

3. HandleNeighbourRequestJob: It handles requests,
returning a random address of a candidate with the
type requested (Match-Maker behaviour).

rescue team

104104104

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

4. HandleNeighbourReplyJob: It handles notifications
of the type requested, starting the link process with
the chosen candidate (Initiator behaviour).

5. HandleLinkJob: It handles “link” requests from the
initiator in the link process (Candidate behaviour).

6. HandleAckJob: It handles “ack” responses from the
candidate finishing the link process (Initiator
behaviour).

7. HandleSuccessJob: It handles “successful links”
notifications to the candidate from the initiator
agent destroying the connection with the candidate
(Match-Maker behaviour).

Figure 4. Jobs’ Structure

The SerialJobManager is used to execute several

jobs in sequence. Once the first job has finished, it will
start the second job, the third, the fourth and so on.
This is useful when an agent's behaviour can be split
into various stages. This sequence system is used to
implement all the steps of the initiator agent behaviour
("wake-up", link creation, send success and so on).

The ParallelJobManager is used to run multiple
jobs concurrently. For instance, an agent may use a
scheduler job to manage its schedule events, and
another job that implements the specific behaviour to
the agent which requires scheduling functionality.
Therefore, the system designed in the simulation is
served by this scheduler job to manage the tree jobs
structure because it requires combinations of sequence
and parallel execution.

A correct implementation of these jobs provides us
an important feedback about the applied behaviour of
the algorithm. Figure 4 shows the tree structure
distribution of the different jobs for the proper work of
the communication algorithm.

3.2.3 Specific Part. It executes a normal code,

depending on Reasoning Part’s decisions, and returns
the results so that they can be checked and sent back.
For instance, there are specific functions for the
survivors' list managing that confronts the information
contained in them as well as the management of
information that refers to the GPS positioning.

3.3. Technological approach

This section provides a description of the technology

and algorithms used for the prototype development. In
particular the prototype has been developed using the
DIET (Decentralised Information Ecosystem
Technologies) multi-agents framework and
implementing the active-clustering self-organization
protocol.

3.3.1. DIET. DIET Agents (Decentralised

Information Ecosystem Technologies) [http://diet-
agents.sourceforge.net] is a platform for developing
agent-based applications. DIET platform [7],
developed in the EU-funded DIET project, is an Open-
source framework released under GPL license and
downloadable from sourceforge web site.

DIET goal is providing an ecosystem-inspired
approach to the design of agent applications [8]. In this
context an ecosystem can be viewed as an entity
composed of one or more communities of lightweight
components conducting frequent, flexible and local
interactions with each other and with the environment
that they inhabit.

Although the capability of each lightweight
component itself may be very simple, the collective
behaviours and the overall functionality arising from
their interactions exceed the capacities of any
individual organism. These higher-level processes can
be adaptive, scalable and robust to changes in their
environment.

3.3.2. Self-organization protocol: active-

clustering. In order to achieve a good level of self-
organization, a bio-inspired self-organizing algorithm
has been applied.

This protocol is totally based on the previous “On-
demand” clustering protocol described before.

The figure 5 shows the interaction among the three
behaviours included in the “On-demand” clustering
protocol.

NotifyNeighborsJob

HandleAckJob

HandleNeighbourReplyJob

RandomNeighbourRequestJob HandleNeighbourRequestJob HandleLinkJob HandleSuccessJob

RescSimApp
(agent's behaviour)

Survivor

SerialJobManager

ParallelJobManager

105105105

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

INITIATOR MATCH_MAKER CANDIDATE

NRQ

NRP

LNK

ACK

connection_map

SCC
connection_map

connection_map

connection_map

connection_map

Connection removed

chooses a random
matchmaker from all its
own connections and
requests for a type

sends an address from a
candidate with requested
type of between its own
connections

Start connection
process to candidate

Holds initiator's type
and returns ack

Holds candidate’s type
and sends success to
matchmaker

Destroys connection to
candidate

Figure 5. DIET behaviours interactions

4. Future work

Further investigation and development will be based
on the enhancing of the Reasoner (with RuleML). In
particular, the enhancements (by adding a rule engine
with a set of rules) will improve the behaviour of the
survivors and rescue teams in order to obtain the
highest efficiency. Added rules can be created, deleted
and modified by the previous rules if necessary so the
rule engine is able to adapt itself to the changes in the
environment. It can also be seen as a rule engine that
has a set of states that an agent must achieve by
fulfilling some goals.

Crea te d Re a d y to
e xe cu te Pla n

Re ce iv e An n u n ce P la nEve n t / Lo a d
t h e P la n a nd s e t t h e
Go a lAch ie v a b le

Se rvice Ca ll
rece ive d

Re ce ive
An n u nce P la n Eve n t / Lo a d t he
P la n a n d s e t t h e
Go a lAchie v a b le

Re ce ive
S e rv ice Ca llEve n t / ch e ck if t he
S e rv ice Ca ll co rre s p o n d s t o it s
Go a lAchie v a b le

Go a lAch ie ved

[S e rv ice Ca ll
d o e s n 't
m a t ch]

[S e rv ice Ca ll
m e t ch e s] /S t a rt
run n in g p la n
Figure 6. Basic process of reasoner

The state machine tries to understand the different

changes in the environment and it gives orders to
change some of the internal behaviours. Every
survivor and rescue team will have his own state
machine implemented in RuleML and attended by the

reasoning. RuleML is a shared Rule Markup Language,
which allows both forward (bottom-up) and backward
(top-down) rules in XML for deduction, rewriting, and
further inferential-transformational tasks.

The figure 6 shows the basic state-machine process
of the reasoner.

Above, the simplified state-machine shows the main
mechanism used by the agent to fulfil a
ServiceCallEvent. The Reasoner for each plan,
provided by the Facilitator, extracts a GA, representing
the goal the agent achieve after the execution of the
plan.

When a Reasoner with an active plan receives a
ServiceCallEvent transforms the ServiceCallEvent in a
GA and tries to match it with the GA of its active Plan.
If the two GAs match, the reasoning on the active Plan
starts. In this way, the ServiceCallEvent will be
completely fulfilled when the Reasoner reach the GA.

Within the Reasoner, development has been oriented
to modify the plan using a RuleML version and to
introduce refactoring in the reasoning. So, Reasoning
capabilities allow the agent to take the proper actions in
terms of sending GAs and GNs, invoking specific
functions and checking internal conditions, in order to
achieve a given Goal.

The figure 7 and 8 corresponds to the state machines
devised for both survivor and rescue team agents
respectively.

 Figure 7. Survivors’s Self-Model

Emergency
situation?

Health State? Search doctor

Search GPS
Localization

(in case of not have

Complete emergency
list persons

disabled

healthy

yes

Init State

n

St 4 St 2 St 3

St 1

St 5

St 6

Tr 1 Tr 2

Tr 3 Tr 4

Tr 5

Tr 6

Tr 8 Tr 7

Tr 5

106106106

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

Search survivors
Survivor detected?

Get emergency list persons
from survivor detected

Take a decision between all
emergency situat ions received

8Building 5

9Building 2

6Building 4

Emergency
degree

Detected Groups of
survivors

Scale of importance from 1 to 10

Go to decided group
and rescue it

Emergency situation?

yes

Init State

no

St 2

St 1

Tr 1Tr 2

Tr 3

Tr 4

Tr 5

Tr 6

Tr 7

yes

no

St 3

St 5

St 4

St 6

Tr 8

 Figure 8. Rescue Team’s Self-Model

5. Conclusions

This paper reports the main results achieved in the
development of a prototype for demonstrating
communication services based on the principles
autonomic self-organisation. In particular, the selected
use-case focus on the applicability of the above
principles for the development communication
services, even in critical disconnected situations such
as catastrophic event in a city.

 The achieved results have demonstrated that the
solution, designed by means of self-organising
algorithms deployed in frameworks of distributed
autonomic agents, is meeting some challenging
requirements such as adaptability to dynamic situations
and robustness, even in environments with high churn
rate and/or disconnected situations.

A brief video clip (.ogg) of the demonstrator is
available at the Cascadas web-site
[http://www.cascadas-project.org/].
Further investigation and development will go in the
main direction of enhancing reasoning capabilities of
the agents, by adopting a RuleML approach for
instance.

6. Acknowledgements

The authors would like to acknowledge the
European Commission for funding the Integrated
Project CASCADAS (Note 1) “Component-ware for
Autonomic, Situation-aware Communications, and
Dynamically Adaptable Services” (FET Proactive
Initiative, IST-2004-2.3.4 Situated and Autonomic
Communications).

7. References

[1] R. Sterritta, M. Parasharb, H. Tianfieldc, R.
Unland, A concise introduction to autonomic
computing, Advanced Engineering Informatics 19
(Elsevier, 2005), 181–187.
[2] A. Manzalini, P. Marrow, “The CASCADAS
Project: A Vision of Autonomic Self-organizing
Component-ware for ICT Services” SOAS 2006
(Erfurt, September 2006)
[3] E. Koutsoupias and C. H. Papadimitriou. Worst-
case equilibria. LectureNotesinComputerScience,
1563:404–413, 1999.
[4]B-G. Chun, R. Fonseca, I. Stoica, and J.
Kubiatowicz. Characterizing selfishly constructed
overlay routing networks. In Proc.IEEEINFO-COM,
2004
[5] N. Ravi, et al., “Accessing Ubiquitous Services using
Smart Phones”, 3rd International Conference on Pervasive
Computing and Communications, Kauai Island (NW), March
2005.
[6] Aggregation Algorithms, Overlay Dynamics and
Implications for Self-Organised Distributed Systems.
IST CASCADAS Work Package 3 Deliverable Month
12
[7] DIET –
http://diet-
agents.sourceforge.net/ProjectBackground.html
[8] T. Choudhury, A. Pentland, “Modeling Face-to-
Face Communication Using the Sociometer”,
Conference on Ubiquitous Computing, Seattle (WA),
2003.

107107107

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:43 from IEEE Xplore. Restrictions apply.

