
 

  
Abstract—The available bandwidth (AB) of an end-to-end path 

is its remaining capacity and it is an important metric for several 
applications. That´s why several available bandwidth estimation 
tools have been published recently. Most of these tools use the 
Probe Rate Model. This model is based on the concept of self-
induced congestion and requires that the tools send a packet 
train at a rate matching the available bandwidth. The main issue 
with this model is that these tools congest the path under study. 
In this paper we present a novel available bandwidth estimation 
tool that takes into account this issue. Our tool is based on a 
mathematical model that sends packet trains at a rate lower than 
the AB. The main drawback of this model is that it is not able to 
track the AB. To solve this issue we propose to apply Kalman 
Filters (KF) to the model. By applying these filters we can 
produce real-time estimations of the available bandwidth and 
monitor its changes. In addition the KFs are able to filter the 
noisy (erroneous) measurements improving the overall accuracy. 
We also present an extensive evaluation of our tool in different 
network scenarios and we compare its performance with that of 
pathChirp (a state-of-the-art available bandwidth estimation 
tool). 
 
Index Terms—Available Bandwidth, Measurement, Kalman Filter 

I. INTRODUCTION 

THE Available Bandwidth (AB) of an end-to-end path is 

its remaining capacity, that is, the amount of traffic that can be 
sent along the path without congesting it.  Recently, the area 
of end-to-end AB estimation has attracted considerable 
interest. Basically because the AB is an important metric for 
several applications such as overlay networks, dynamic server 
selection, and inter-domain path monitoring. As a result, 
several estimation techniques and tools based on active 
measurements have been developed. 

Most of the proposed tools designed to estimate the AB fall 
into two categories: the Probe Rate Model (PRM) and the 
Probe Gap Model (PGM). The first model uses packet trains 
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and it is based on the concept of self-induced congestion. 
Informally, if one sends a packet train at a rate lower than the 
AB along the path, then the arrival rate of the packet train at 
the receiver will match the rate at the sender. However if the 
sending rate is greater or equal than the AB then the packet 
train will congest the queues along the path and the receiving 
rate will be lower than the sending rate. Tools such as Delphy 
[1], TOPP [2], PathLoad [3], IGI/PTR [4], pathChirp [5], 
BART [7] and AB [9] use this model. The second model 
(PGM) uses packet pairs and bases its estimation on the 
differences of input and output time gaps of the packet pairs 
[6]. However C. Dovrolis et al. showed that this model can 
underestimate the AB of multi-hops paths with one-hop 
persistent traffic [20]. 

The PRM model has been used in many AB estimation tool 
and it has been shown as very accurate. However it suffers 
from one basic problem. PRM-based tools must send probe 
traffic at a rate equal or greater than the AB in order to 
estimate it. This will fill the queues along the path congesting 
it. This means that, for each estimation, a PRM-based tool will 
congest the measured path during a certain period of time. In 
fact, A.Shriram et al. showed recently in [16] that tools such 
as PathLoad [3] can significantly impact the responses time of 
TCP connections. 

In this paper we present a novel AB estimation tool that 
takes into account this issue. Our main objective is to estimate 
the AB without sending probe traffic at a rate equal or greater 
than the actual AB, thus reducing considerably the impact on 
the measured path. Our tool is intended for network 
administrators that aim to track, and obtain long-term statistics 
of the usage (AB) of a path without severely impacting its 
performance.  

The tool is based on the mathematical model presented in 
Forecaster [8]. This model shows that there is a linear relation 
between the utilization of a path and the probe traffic rate sent. 
Forecaster estimates this straight line by sending two packet 
trains at different rates (always below the AB). Then it 
“projects” the line and estimates the AB. Although Forecaster 
shows that this model is very accurate it requires sending two 
separated packet trains in order to estimate the AB. This 
packet trains may be sent at a very low rate (i.e. Capacity/10). 
During this interval Forecaster assumes that the AB does not 
change. However this does not hold on a real path and may 
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lead Forecaster to incorrect estimates. In addition, this issue 
makes it very difficult for Forecaster to efficiently track the 
AB under sudden variations. As we will see, our tool is able to 
produce an estimation per packet train. 

One aspect of our tool is that it does not send packet trains 
at a higher rate than the AB. Another aspect is that it produces 
an estimation per packet train. This means that our tool 
reduces the impact on the queues along the path and that it is 
able to track the AB. This is achieved by exploiting the above 
mentioned linear model. However instead of “projecting” the 
line or using linear regression, we rely on Kalman Filtering 
[11].  The Kalman Filters (KF) are an efficient recursive filter 
that estimates the state of a linear system from a series of 
noisy measurements. With KFs we are able to produce an 
estimation per measurement (instead of one estimation for two 
measurements) and filter noisy (erroneous) measurements. 
This means that KFs allows us to create a continuous 
monitoring tool able to track the AB and improve the overall 
accuracy. 

The remainder of this paper is organized as follows. First 
we discuss the related work, and then we present the design of 
our available bandwidth estimation tool. Next we show the 
evaluation of our tool and finally we present the conclusions. 

II. RELATED WORK 
The area of available bandwidth estimation has attracted 

much attention recently and many tools have been published. 
As it has been shown in the previous section, most of these 
tools use either the Probe Rate Model or the Probe Gap 
Model. In this section we will present only the tools related to 
our approach. 

S.Ekelin et al. presented in [7] BART, a PRM-based AB 
estimation tool that exploits Kalman Filters. BART uses a 
linear model that relates the interpacket strain (the time gap 
between two consecutives packets) with the probe traffic rate. 
Then the AB is computed as the point where the line intercepts 
the horizontal axis. In fact BART’s model is similar to ours, 
the main difference is that their linear model is defined above 
the AB while ours is defined below the AB. That´s why BART 
has to congest the tight link in order to produce an estimation. 

Finally, at the best of the authors’ knowledge, the only AB 
estimation tool that does not send probe traffic matching the 
AB is Forecaster [8]. The tool presented here is based on this 
mathematical model but produces estimations using KFs 
instead of projecting a line. In addition our tool is able to track 
the dynamic variations in the AB. 

III. ABEST DESIGN 
In this section we present the design of our tool. First we 

present the mathematical model, next we discuss how we 
apply Kalman Filters to the model and then we discuss how 
the utilization is estimated. Finally we show the algorithm 
used to track the AB. 

 

A. Mathematical Model 
The utilization of a queue i  in a single-hop scenario is: 

iiu π−= 1           (1) 

Where iπ  is the probability that the queue is void. Most of 
the existing AB measurement techniques rely on using a 
constant-rate fluid cross-traffic model. This means that these 
techniques assume that the cross-traffic has infinitely small 
packet size and arrives at the hop at a constant rate. In fact, X. 
Liu et al. showed in [19] that the tools that use a constant-rate 
fluid model can underestimate the AB under certain 
conditions.   However eq. 1 does not make any assumptions 
about the nature of the cross-traffic.  

If we transmit probe traffic at a rate r  through this link, 
then the utilization can be expressed as: 

),1min()(
i

ii C
ruru +=    (2) 

Where iC   is the capacity of link i . For the multi-hop 
case, K. Harfoush et al. showed in [8] a first order 
approximation of eq. 2 for a multi-hop scenario: 

),1min()( barrui +≅      (3) 

Where a  and b are constants. This equation states that 
there is a linear relation between the utilization of a path and 
the rate of the probe traffic sent. Figure 1 shows that, as the 
probe traffic rate increases so does the utilization (linearly).  
At a certain rate abr  the utilization will reach 1 (the path is 

fully loaded) then, the available bandwidth of the path is abr . 

 
Fig. 1.  The tool’s linear model. 

 
This means that with this model we can estimate the AB 

without sending the probe traffic at the AB rate. Once the 
linear equation (eq. 3) has been estimated the AB can be 
computed as the point where the straight line reaches 1 (i.e 
utilization = 1): 

a
bAB −= 1

         (4) 

B. The Kalman Filters 
Our tool uses Kalman filtering to estimate the linear 
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equation (eq. 3). The KFs are able to estimate a system 
defined by a state vector x , affected by an input u  through 
noisy measurements. In our case the network is our system 
and the noisy measurements are the estimations of the 
utilization. The system is also affected by a noise w  and the 
measurements have a noise v . Then, the system is governed 
by the linear stochastic difference equation:  

111 −−− ++= kkkk wBuAxx      (5) 
With a measurement z  that is: 

kkk vHxz +=                (6) 

Where the subscript k  refers to the discrete time and A  
relates the state of the previous time step )1( −k  with the 

state of the new time step )(k . Similarly, B  relates the 
control input to the state x  while H  relates the state with the 
measurement. Then, the KF estimates the process by using a 
form of feedback control: the filter estimates the process state 
at some time and then obtains feedback in the form of (noisy) 
measurements. The KF algorithm has two steps, in the first 
step (“time update”) the filter projects forward in time the 
state of the system and obtains an a priori estimate. In the 
second step (“measurement update”) the filter uses a new 
measurement to correct the a priori estimate to produce an 
improved a posteriori estimate. After each time and 
measurement update pair, the process is repeated with the 
previous a posteriori estimates used to project or predict the 
new a priori estimates. This recursive nature is one of the 
main advantages of the Kalman Filters. The KFs assume that 
the system is linear and that the system noise w  and the 
measurement noise v  are Gaussian and independent. Please 
refer to [11] for further details on Kalman Filters.  
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Fig. 2.  Mean absolute error of the estimation of the utilization using different 

distributions. 

In our case the state vector x  that describes the system 
represents our linear model (the parameters of the sloping 
straight line from eq.  3): 









=

b
a

x        (7) 

As it has been shown in [8] our system is linear. We drop 
the input u  (and consequently B because in our particular 
case the network is affected by the intensity of our probe 
traffic and the cross-traffic. As we cannot estimate the 
intensity of the cross-traffic we do not use this particular 
parameter. It is important to remark that, as we will show 
later, this does not affect the accuracy of the results. In 
addition we drop A  (i.e. IA = ) because the state of the 
previous time step of the network will be the same than the 
state of the new time step.  
Thus, the following equation governs our system: 

11 −− += kkk wxx      (8) 

The measurements are governed by equation (6). We define 
 as: 

]1[uH =          (9) 
This way the measurements z  (eq. 6) are seen by the KF as 

the actual utilization of the system under our probe-traffic 
load. Finally, the predictor equations defined by the KFs in 
our particular case are: 

1
~~

−
− = kx xx         (10) 

QAPP T
kk += −

−
1     (11) 

And the corrector equations are: 
1)( −−− += RHHPHPK T

k
T

kk  (12) 

)~(~~ −− −+= kkkkx xHzKxx          (13) 
−−= kkk PHKIP )(                       (14) 

Where the “minus” superscript refers to the a priori 
estimates (before the measurement correction). P  is the 
estimate of the error covariance matrix, its value will be 
updated by the KF each time step. K  is the Kalman gain, a 
very important parameter of the KFs. This gain is computed 
(in each time step) in eq. 12 and weights the new measurement 
with the a priori estimate in eq. 13. Finally Q  and R  
represent the process and measurement noise covariance 
respectively.  These are key parameters in the KFs. The 
authors in [7] suggest computing R as the variance of the 
estimations of the utilization. However this does not represent 
accurately the measurement noise because, at the end, our goal 
is to measure the AB. That´s why we compute R  as the 
variance of the estimations of the AB. As our results show this 
improves the overall accuracy of our tool and helps it to track 
the actual AB. Regarding Q , the process noise covariance is a 
2x2 matrix that represents the variability of the system. This 
value must be set manually and is a key parameter when 
considering the behavior of the KF. A high Q  means that the 
KFs will consider the prediction as less accurate while the 
measurements will be considered as very accurate. Therefore 
the KFs will set the Kalman gain accordingly and each new 
measurement will be weighted heavier. Low values for Q  
mean the opposite. We will come back to this in the result’s 
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section.  

C. Estimating the Utilization 
As we have seen, at this point if we can estimate the 

utilization of a link we can estimate the AB through eq 4. In 
this subsection we discuss how to design an optimal estimator 
for the utilization. 

Eq. 1 defines the utilization as the probability that there is at 
least one packet in the queues of the path. In order to estimate 
the utilization of a path the authors in [8] suggest sending a 
packet train, end to end, and compute the fraction of packets 
that have experienced queuing delay along the path. Probe 
packets are time stamped at the sender and at the receiver. 
Then the minimum one-way delay of the set of packets is 
computed. This minimum delay corresponds to the delay 
suffered by a packet that has not encountered queuing delay. 
Therefore, the fraction of packets with a greater delay than the 
minimum delay is the fraction of packets that suffered queuing 
delay. Let { }NddD ...1=  be the set of one-way delays 
suffered by the packets of the packet train. Then the utilization 
is estimated as: 

{ }{ }
D

DdDd
u ii ∈>

=
min~       (15) 

According to the PASTA [13] property, if this packet train 
is sent with exponential inter-departure times, the packets 
arriving in the queuing system will sample the system queues, 
on average, as an outside observer would at an arbitrary point 
in time. However F. Baccelli et al showed in [14] that Poisson 
probes are not unique in their ability to sample without bias. 
That is why we have evaluated other distributions in order to 
analyze which distribution samples the queues better for our 
particular estimator. We tested a range of different 
distributions by sending 104 packet trains (of 200 packets and 
1500B as packet size) at different rates on a single link fed 
with Poisson packet arrivals. The link is simulated using ns2 
and the cross-traffic packet sizes are distributed as in the 
Internet (see [15] for details): 50% (40 bytes), 10% (576 
bytes) and 40% (1500 bytes). Z. Zhang et al. showed in [21] 
that the Internet traffic has weak correlation over time scales 
less than 100ms and stronger correlations at time scales 
greater than 1s. The duration of our packet trains is around 
100ms, this means that a Poisson cross-traffic model suffices.  

The packet trains are sent with different inter-departure time 
distributions: Periodic, Poisson, Uniform [0.9µ,1.1µ], Uniform 
[0,2µ] and Pareto (shape parameter α=1.16). The experiment 
is performed with different link loads 
(utilization={0,0.3,0.6,0.75,0.9}). For each packet train we 
have computed the absolute error when estimating the 
utilization.  
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Fig. 3.  Mean absolute error using different packet train lenghts  

As Figure 2 (in the previous page) shows the distribution 
that minimizes the error when estimating the utilization is the 
Poisson distribution while the worst one are the Periodic and 
Uniform [0.9µ,1.1µ] distributions. In fact, the exponentially 
distributed packet trains are not severely impacted by the load 
of the link and the mean error is always below 0.07.  

The Periodic and Uniform [0.9µ,1.1µ] distributions create 
“constant” packet trains where the inter-departure time of the 
packets is very similar. The behavior of these packet trains is 
roughly described by the Probe Rate Model. If the rate of the 
packet train is above the AB then almost all the packets are 
queued, and thus the utilization is overestimated. If the rate is 
below the AB then the packets do not congest the tight link 
queue and thus the utilization is underestimated. Regarding the 
Pareto and Uniform [0,2µ] distributions figure 2 shows that 
they are more accurate under high link loads that under low 
link loads. This is because these distributions have also some 
periodicity. When the link load is at 90% the cross-traffic rate 
congests the tight link queue and almost all the packets are 
queued. This means that the utilization for this very special 
case is accurately estimated. 

At this point we have evaluated different distributions for 
estimating the utilization and concluded that the optimal one is 
the Poisson distribution, where the inter-departure time of the 
packets belonging to a packet train are exponentially 
distributed. However we still need to evaluate which is the 
optimal packet train length and which is the optimal packet 
size. We have performed the same experiment than before but 
using different packet train lengths and different packet sizes. 

Figure 3 (note that the X-Axis uses a log-scale for clarity) 
shows the mean absolute error for different packet train 
lengths under different link loads. As the figure shows packet 
trains with a length lower or equal to 150 packets suffer from 
a large error when estimating the utilization.  
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Fig. 4.  Mean absolute error using different packet sizes. 

Regarding packet trains longer than 150 packets the mean 
error is bounded to 0.06. In addition, the error is not 
significantly impacted by the utilization of the link under 
study. In fact the error is slightly reduced as the packet train 
length increases. However it is important to remark that long 
packet trains suffer from one basic problem, the utilization 
may change during the transmission of the packet train and 
this may lead to incorrect estimates. Thus, there is a tradeoff 
between the accuracy of the estimations and the duration of 
the measurement. We believe that the optimal length for our 
packet trains is 200 packets. Longer packet trains 
(250,300,350…) have slightly less error, however as the figure 
shows this extra accuracy is not justified since the duration of 
the measurement is increased dramatically (i.e packet trains of 
250 packets last 25% more than packet trains of 200 packets).  

Finally, regarding the packet sizes figure 4 shows the mean 
error when estimating the utilization using different packet 
sizes (40B,100B,500B,1000B and 1500B). As the figure 
shows the optimal packet size is 1500B (this result agrees with 
the conclusions reached in [10]). As the figure shows when we 
use packet sizes of 40 and 100 bytes the mean error is larger 
(up to 0.08) than when we use packet sizes of 500, 1000 and 
1500 bytes.  In fact, these packet sizes have a very similar 
error, where the maximum mean difference is 5.5 10-3. We 
chose 1500 bytes as the packet size for our packet trains 
because we need to send less packets for each packet train, in 
addition these packets will have larger inter-departure times. 
This will make the implementation of our tool easier, specially 
when dealing with the “Interrupt Coalescence” [18] issue. 

As a summary figure 5 shows the expected performance of 
our packet trains (exponentially distributed, 200 packets and 
1500 bytes as packet size). The figure shows that in 90% of 
the cases the error is bounded to 0.08 and that the tool’s packet 
trains provide a good performance. The figure also shows that 
under high link loads (>90%) the accuracy of our packet trains 
is slightly impacted. We will come back to this 
later.

 
Fig. 5.  CDF of the expected performance of our packet trains 

D. The AB Estimation and Tracking Algorithm 
Figure 6 details the algorithm used by this tool to estimate 

the AB. The algorithm uses the following initial parameters: 
RATEMAX _ which is an upper bound for the rate of the 

probe traffic and INTERVAL which is the measurement 
interval, x which represents the initial guess of the AB and 
Q , which is the covariance matrix of the process noise. 

Our tool sends probe traffic at a random rate (uniformly 
distributed ]_,0[ RATEMAX and estimates the utilization. 
Then it uses the KFs to estimate the parameters of the linear 

model ( a~  and b
~

) and finally it produces an estimation of the 
AB using eq. 4. 

The algorithm can be easily implemented. It does not 
require time synchronization because it estimates the 
utilization by comparing the OWD of the packets (note that 
the actual value of the OWD it is not needed). It does not 
require the accurate computation of the dispersion of the 
packets. Therefore it may not suffer from the “Interrput 
Coalescence” issue described in [18]. Since KFs are recursive, 
it does not require storing past values. The main drawback 
(and advantage) of the algorithm is that some parameters need 
to be set, evaluated and tuned.  

 

 

 

 

 

  

  

  

  

 

 

 

 

 

 

 

 

  

   

 

 

Fig. 6.  The algorithm used to estimate the AB 
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IV. EVALUATION 
This section presents the evaluation of our tool. First we 

detail the methodology that we have used and then we present 
the results of the evaluation. 

A. Methodology 
We have evaluated our tool through extensive simulations. 

We have implemented it in NS2 and used a wide range of 
scenarios to analyze its accuracy and show its limitations. We 
have used four different scenarios with different number of 
links and different capacities. Our scenarios aim to represent 
the actual configuration of a backbone path, thus we simulate 
very high-speed links (up to 10Gbps). Usually these high-
speed links are in the middle of the path, just like in a real 
Internet backbone path.  

For each scenario we have run two different sets of 
experiments. In the first set we load the different scenarios 
with static cross-traffic rate. That is, the AB does not change 
during the experiments. The different links are loaded with 
non hop-persistent cross-traffic, this means that it interacts 
with our probe traffic on one link. With this set of experiments 
we aim to evaluate the accuracy of the tool under different 
loads. In the second set we load the different scenarios with 
variable cross-traffic rate. In this case the cross-traffic is hop-
persistent and we aim to evaluate if the tool is able to 
accurately track the AB. It is important to remark that this is 
our main objective. Regarding the cross traffic we use the 
same configuration than for the previous experiments (sec. 
III). The distribution for the packet sizes are as measured in 
the Internet: 50% (40 bytes), 10% (576 bytes) and 40% (1500 
bytes) and the cross-traffic model is Poisson.  

Table I summarizes the configuration of our experiments. 

For the static AB experiments we have three different cases. In 
the first case (case A) the path is not loaded with cross-traffic. 
This case is used as a best-case scenario. In the second case 
(case B) the path is at a half-load, this is a typical scenario. 
The last case (case C) is a worst-case scenario where at least 
one link is highly congested (up to 95%). This third case is 
used to evaluate the performance of the tool in an extreme 
situation and analyze its limitations. For the variable AB 
experiments we use variable cross-traffic rate. Since the tool is 
intended to collect long-term statistics of the AB we have 
simulated large variations of the AB (and thus, of the cross-
traffic rate). 

Finally, we compare the results of our tool with that of 
pathChirp [5]. pathChirp is considered as one of the best [16] 
available bandwidth estimation tools and uses the PRM model, 
this means that it congests at least one link along the path in 
order to estimate the AB. It is important to remark that it has 
also been shown in [16] that among the PRM-based tools 
pathChirp is considered as one of the less intrusive. 

B. Results 
On the one hand, figure 8 presents the results of the 

simulations for all the static scenarios (case A,B and C). All 
the results are presented using Interquartile Range Boxes 
where the box represents the middle 50% of the estimations 
and thus, the line in the middle of the box is the median. The 
upper/lower whiskers extends to the minimum/maximum data 
point within 1.5 box heights from the bottom/top of the box. 
Finally the cross represents the mean of the estimations. Each 
case was simulated during 300 seconds for both tools. The 
(red) cross highlights the actual available bandwidth for each 
case and for each scenario. On the other hand, figure 7 shows 
the mean relative error for all the different cases: 

 

TABLE I.  SCENARIOS USED TO EVALUATE OUR TOOL. FOR EACH SCENARIO WE 
SHOW THE CAPACITY OF THE LINKS AND THE LOAD OF EACH LINK. THE RIGHTMOST 
COLUMN SHOWS THE ACTUAL AB. 

Available 
Bandwidth 

100 Mbps 622 Mbps 10 Mbps  
0.0 0.0 0.0 10 Mbps 
0.3 0.4 0.2 8 Mbps 

Static 

0.95 0.2 0.01 

 

5 Mbps 
Scenario I 

Variable AB varies: 4, 8, 6, 10 Mbps 
1000 Mbps 10000Mbps 100 Mbps  
0.0 0.0 0.0 100 Mbps 
0.2 0.1 0.5 50 Mbps 

Static 

0.9 0.1 0.7 

 

30 Mbps 
Scenario II 

Variable AB varies: 80, 40, 60, 100 Mbps 
51 Mbps 4976 Mbps 100 Mbps  
0.0 0.0 0.0 51 Mbps 
0.5 0.1 0.2 25 Mbps 

Static 

0.1 0.2 0.7 

 

30 Mbps 
Scenario III 

Variable AB varies: 21, 51, 41, 31 Mbps 
1000 Mbps 4976 Mbps 622 Mbps 100 Mbps  
0.0 0.0 0.0 0.0 100 Mbps 
0.2 0.1 0.1 0.3 70 Mbps 

Static 

0.95 0.1 0.1 0.1 50 Mbps 
Scenario IV 

Variable AB varies: 80, 100, 40, 60 Mbps  
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Fig. 8. Results of the simulations for the static cases 

ab
abbaabs )~~( −=ε      (16) 

 
As both figures show both tools are very accurate for the 

case A (in all the different scenarios). In this particular case 
both tools show very good accuracy where the mean relative 
error is around 0.1. As it has been said before this is a simple 
case, from the figures we can also see that our tool has larger 
variability than pathChirp. This depends on the configuration 
of the covariance matrix of the process noise Q  and can be 
tuned; we will come back to this later. However it is important 
to remark that this does not affect the accuracy of our tool. 

Regarding the second case (B), where the network is at half 
load, both tools also show high accuracy with a similar mean 
error. We believe that this is the most common case in the 
internet and the mean relative error for the four scenarios is 
0.065 for our tool and 0.085 for pathChirp.  
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Fig 7. Mean error when estimating the AB for the static cases 

Finally, for the third case (C) where the network is highly 

congested both tools show lower accuracy. Specifically the 
last scenario has a backbone link of 4976Mbps under a high 
utilization (0.95). This is considered as a worst-case scenario 
and it is not very common on the Internet. In this case the 
error of our tool is due to an incorrect estimation of the 
utilization. The problem is that when our tool is operating near 
the full utilization it is difficult for our Kalman Filters to 
estimate the slope of the straight line (in the mathematical 
model). This is because a highly congested link may drop 
packets, making difficult to accurately estimate the utilization. 
As the figure shows pathChirp’s accuracy is also affected by 
the same reason. We believe that this is a tradeoff because we 
estimate the AB without sending packet trains at the same rate 
than the AB. This can be solved by designing a special 
estimator for this very special case (when the estimated 
utilization is very high). This special estimator should take 
into account losses. In any case if our tool detects that a link is 
highly congested it just needs to report it, this should be 
enough for upper layers (such as a routing algorithm) to make 
a decision, or to an ISP´s to upgrade a link. The main benefit 
of our technique is that the impact on the performance of the 
network is lower. 

Regarding the variable experiments, figure 9 shows the 
mean relative error for the different scenarios. In this 
experiment the AB has sudden variations and both tools need 
to rapidly adjust its estimations. As the figure shows our tool 
is more accurate than pathChirp, in this case the average error 
for pathChirp is 0.12 while for our tool is 0.06. It is important 
to remark that one of our objectives is to accurately track the 
changes of the AB and collect long-term statistics.  

Summarizing our tool’s accuracy is similar to that of 
pathChirp for the static experiments while it is better for the 
variable cross-traffic rate experiments. Our evaluation has also 
shown the main limitation of our tool in highly congested 
paths (the same applies to pathChirp). In addition we have 
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seen that the covariance matrix of the process noise Q  is a 
key parameter that can tune the behavior of our tool. This 
matrix represents the uncertainty of the process. Large values 
of Q  will help our tool react quicker to large variations of the 
AB, however it will also increase the variability. Low values 
of Q  mean the opposite. In fact, this parameter may be used 
to tune the behavior of our tool in different scenarios. If we 
want to monitor the AB at short time-scales it is better to use a 
large Q  (it will react quicker) while if we want to monitor it 

at large time-scales it is better a low Q  (it will be more 

stable). In this paper we have used a large value of Q , that´s 
why our tool has larger variability than pathChirp but it is 
more accurate for the variable experiments. We have used the 
same value of Q  along all the experiments (see figure 6). The 
evaluation and optimization of this parameter is left as future 
work. 
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Fig 9. Mean error when estimating the AB for the variable cases 

V. CONCLUSIONS 
The AB is one of the most important metrics in the area of 

network measurements. Many tools have been published and 
most of them use the Probe Rate Model. This models sends 
probe traffic at a rate similar (or even larger) than the AB. 
This leads to congestion and reduces the performance of the 
network under measurement.  

We have presented a novel available bandwidth estimation 
tool that benefits from a mathematical model that uses the 
utilization of the path to estimate the AB. In order to estimate 
the utilization this model sends packet trains at a lower rate 
than the AB, thus reducing the impact on the path. However, 
the main issue of this model is that it requires two 
measurements to produce an estimate. If the AB changes 
during these measurements the produced estimation is 
incorrect. Therefore it is not able to track the changes of the 
AB. Our proposed solution is to apply the Kalman Filters to 
this model. With the Kalman Filters we just need one 
measurement to produce an estimation. Incorrect (noisy) 
estimations of the utilization are filtered by the use of KFs 
improving the overall accuracy. In addition the KFs are able to 

track the changes of the AB. Our tool´s main goal is to collect 
long-term statistics of the variations of the AB for ISPs. 

We have evaluated our tool under a wide range of scenarios 
to evaluate its accuracy. The results show that our tool has a 
comparable accuracy with that of pathChirp (considered as 
one of the best AB estimation tools) for the static experiments. 
In addition we show the limitations of our tool. When the path 
is highly congested our tool has lower accuracy (the accuracy 
of pathChirp is also severely affected). We believe that this is 
not very common on the Internet and that it can be solved by 
designing an estimator of the utilization that takes into account 
packet losses. Regarding the scenarios where the AB varies 
over time (our main goal) we found that our tool accurately 
tracks it and shows better accuracy than pathChirp. 

Summarizing, the main benefit of our tool compared with 
others is that it does not send packet trains at a rate 
comparable to the AB while providing a good estimation. The 
main drawback is that, when operating under high congestion, 
the accuracy is lower.  
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