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Abstract—Packet losses are a critical metric for network
performance assessment. In this paper we present a novel
methodology to accurately estimate the packet loss ratio in real-
time in a fully distributed scenario.

The constraint such systems must face is the large amount of
resources required for keeping live performance assessment.

Our contribution has two main parts. On the one hand we
study the behaviour of packet losses among the traffic sharing
a path, and extend the classical definition of loss burst by the
concept of density. On the other hand, with the knowledge
acquired in the loss distribution study, we present an adaptive
sampling technique that schedules the network resources in
order to distributely estimate the packet losses with reasonable
accuracy.

In order to validate the proposal we perform some real
tests over an European-wide testbed. The results show a great
improvement in packet loss estimation over previous research,
while using a controlled amount of resources.

I. INTRODUCTION

Companies and service providers are slowly realizing that
the provisioning of multimedia contents on the network imply
to provide some kind of Service Level Agreement (SLA) to
their customers. This inevitably leads to propose means for
verifying such SLA. There are some recent research efforts in
this area [1]–[4], all using different approaches, but all sharing
the same idea: to estimate the end-to-end metrics, namely One
Way Delays (OWD), Packet Loss Ratio (PLR) and Inter Packet
Delay Variation (IPDV).

This paper focuses on the estimation of the Packet Loss
Ratio. This metric can be estimated by either using active or
passive traffic measurements. Active measurements for SLA
verification such as [1] can be used when the access to
the network under study is restricted. However, if access is
granted, passive measurements provide better accuracy [5].

Related to passive approaches several on-line traffic mon-
itoring infrastructures for network performance assessment
have been published [3], [4], [6]. These systems usually
focus on direct traffic observations for assessing the network
performance, and they use a distributed infrastructure in order
to gather the network metrics. This infrastructure uses at least
two collection points where packets are time-stamped, sent
to a central processing unit that performs packet matching,
and finally the performance metrics are extracted. This means
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that these distributed infrastructures require additional control
traffic to maintain the live reporting.

Gathering this information in a per packet basis is very
expensive in terms of bandwidth and processing resources
needed by the control traffic. In our previous work we pro-
posed a full distributed infrastructure named Network Parame-
ter Acquisition System (NPAS) that uses mechanisms of traffic
aggregation [3] and static sampling techniques [7] in order to
reduce the resource consumption. In addition we presented
in [8] an adaptive sampling technique to further reduce the
used resources. With adaptive sampling the sampling rate
is dynamically adjusted to a given value that minimises the
used resources providing reasonable accuracy. The problem
highlighted in these works [8] is that estimating the PLR
is not straightforward by means of traffic sampling. With
traffic sampling the accuracy is tied to the number of samples,
hence it is reduced due to low rate flows or when using low
sampling rates. Despite of this, we believe that improving
PLR estimation is a critical issue, given that for all metrics
packet losses have the most noticeable effect on the network
performance, especially when dealing with real-time traffic
and user perception [9]. In this paper we present an adaptive
sampling technique to estimate the PLR, our technique is
intended to be used in any passive distributed infrastructure
such as NPAS [3] or perfSONAR [4].

The main issue addressed on this paper is: how can we
adapt the sampling rate to minimise the used resources while
maintaining a reasonable accuracy? The sampling rate should
be higher during congestion periods and lower when there
is no congestion (i.e PLR close to zero). An obvious option
may be to increase the sampling rate when a packet loss is
detected and decrease it otherwise. The main issue is that
(as we will show later empirically) some packet losses are
sporadic while others belong to bursts. Even more, during
congestion periods not all the packets are lost. This means that
our technique should not overreact increasing the sampling
rate when a sporadic loss occurs, instead of this it should
increase the sampling rate when a bursts of losses are detected.
On the contrary, our technique should not underreact during
a congestion period when a packet is not lost. Therefore it
should decrease the sampling rate only when the congestion
period has finished.

In order to solve this issue we broaden the classical defini-
tion of burst [10]. Instead of considering a burst as the list of
consecutive packet losses, we introduce the concept of density
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to enhance the burst definition (our definition is similar to that
of [11]) and we use it for not over or underreact in a real
scenario. In addition, we also show that during congestion the
packets are lost uniformly among all the flows over a path. We
use the knowledge acquired in these experiments for designing
an adaptive sampling technique which permits to improve the
PLR estimation with bounded resource consumption.

The evaluation of the system is performed by using the
European-wide testbed provided by the EuQoS project [12].
Our results show an improvement of 25% in average in the
PLR estimation, compared with the results obtained by using
static sampling. Moreover, the proposed solution bounds the
resource utilisation regardless the number of active flows,
while static sampling increases the amount of resources pro-
portionally to the underlying traffic.

The rest of the paper is structured as follows, in the next
section we present the work related to our proposal, by
focusing in packet loss and SLA validation infrastructures
in distributed scenarios. Later in Section III we present the
Network Parameter Acquisition System (NPAS) as the base of
our work. After we study the behaviour and the distribution of
packet losses in a real scenario. This together with NPAS is the
starting point over which we designed the dynamic adaptive
sampling methodology, which is detailed in Section V. Section
VI presents the evaluation of the methodology. In Section VII
we discuss about the deployment of the whole system, and
finally in Section VIII we draw some conclusions and point
the open lines for further study.

II. RELATED WORK

Packet losses have been subject of study in many different
environments. Often in the area of QoS, which evolved with
works such as [13] into a new research topic, network mea-
surements. In this area a formal metric for packet losses was
defined in RFC-2680 and RFC-3357. From there, many efforts
have been invested in modelling the packet loss behaviour [10],
[14], [15] and estimate them by using active measurements
tools, starting from ping to zing [16], continuing with sting
[17] and recently with badabing [11].

As we have mentioned earlier, our work focus on passive
estimating the PLR for SLA verification through adaptive
sampling. Recently some work can be found centered on this
SLA assessment in [1] and [18]. In [1] the authors propose
a way of accurately estimating the packet losses by means of
active traffic generation, this largely differs from our approach,
which is based on a distributed passive Network Parameter
Acquisition System (NPAS). While in [18] the author com-
pares the accuracy achievable in counting the SLA violators
and does not consider a full fledged reporting infrastructure.

As generic performance assessment infrastructures, at the
best of our knowledge very few tools have been published.
Firstly, perfSONAR [4] is a tool intended to monitor any
network metric on a distributed fashion. Specifically the au-
thors present a methodology that provides meaningful network
performance indicators, which can be used to visually monitor
the status of the traffic. The main difference between this

Fig. 1. Example Scenario

tool and our proposal is that while perfSONAR limits the
study to the link status by active traffic generation, NPAS
analyses directly the network metrics by passively collecting
the traffic. Secondly InterMON [6] is based on interaction
and coordination of different kinds of tools with access to a
common database. The system’s main goal is to gather network
metrics for off-line processing, analysis and data-mining. In
this case, the main difference between InterMON and our
proposal is that we are focused on providing live values for
some network metrics not just gathering information for off-
line processing.

III. DESCRIPTION OF NETWORK PARAMETER

ACQUISITION SYSTEM

Network Parameter Acquisition System as proposed in [3] is
a distributed network performance assessment infrastructure. It
computes the network metrics suitable to quantify the network
performance over sensible traffic (e.g. VoIP or Videoconfer-
encing) on-line.

The system collects the traffic on each ingress and egress
points in the network, analysing only the traffic selected
by the configured filters. It computes the following network
metrics: One-Way Delay (OWD), Packet Loss Ratio (PLR),
Inter Packet Delay Variation (IPDV) and used bandwidth.

A. Basic system

This infrastructure presents a framework which reports the
intra-domain traffic metrics to higher layer entities to assess
whether the specified performance constraints (policies) are
fulfilled or not. This mechanism can also be used for triggering
alarms to give feedback to other system units in case that
the network is not providing the contracted quality. Both
alarms and policies management are out of the scope of this
specification.

Figure 1 shows a generic network scenario where the system
is deployed. It is composed by the following entities:

1) The Monitoring Entity (ME): is in charge of the traffic
collection via selection filters. The traffic selection policy
aggregates the data in a per flow or per Class of Service (CoS)
basis, but it can be easily extended to others.

The traffic information collected by MEs is sent to a
per-domain analyser entity (Processing Entity - PE) which
computes the network metrics of all the traffic under analysis.

2) The Processing Entity (PE): is the gathering point within
the domain. It configures the ME policies, performs most of
the processing, matches the information of the packets coming
from the MEs and computes the network metrics on-line. The
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results are published as a network management service to
monitor the status of the traffic under analysis in real-time.

Depending on the information sent by the ME more control
traffic is required to perform the monitoring. In general this can
be a problem for under provisioned domains, or ones without
dedicated links for network management traffic. We believe
that this is the case in most ISPs. That’s why NPAS controls
this issue by having three different modes of operation: i) per
packet reporting, where the traffic information is sent in a per
packet basis. ii) using time aggregation, where a time sliding
window is used to optimise the network usage. iii) by using
traffic sampling, as further discussed in the next section.

More detail in the specification of the first two modes and
the analysis of the bandwidth usage can be found at [3]. In
this paper we enhance the static sampling mode of operation
(described in the following subsection) by adaptively adjusting
the sampling rate wherever is more optimal.

B. Static distributed sampling

The complexity of applying sampling in this distributed
scenario is that centralised techniques (e.g. the techniques
studied in [19]) are not well suited for this task, since they
do not guarantee that all the ME capture exactly the same set
of packets. Thus, accurately determining packet losses or one
way delays is not feasible. We addressed this issue in [7] by
using a deterministic sampling technique (hash sampling [20])
to match exactly the same packets all over the different ME
for later computing the network metrics. This permits to all
the different ME to collect traffic independently, and only the
selection function at start up time has to be shared by the MEs.

This distributed sampling technique computes a hash func-
tion over a set of fields on the packet’s header, and depending
on its value the packet will be considered for later analysis.
In our environment using only one hash table is not sufficient,
since the monitoring framework has to guarantee that all the
flows under analysis are monitored. So, the sampling must
be applied within individual flows, not directly to all the
collected traffic. Hence, the packets are identified by using two
different keys, flow ID and packet ID with the corresponding
two level hash table. Thus, a packet is only analysed if it falls
within specified positions in the hash table (with size A), of
which only the first r packets are considered. Changing r gives
different sampling rates ( r

A ). The hash table is sent from each
ME to the PE when A packets have arrived or after a timeout
t. This time interval t is known as a bin and it limits the upper
bound for the live reporting interval. This permits to efficiently
control the resources and the applied sampling rate.

The challenge one must face when using distributed sam-
pling for live reporting is that estimating the packet loss
ratio is difficult. In such environments it is well known [21]
that the achieved accuracy (within a 95% confidence interval)
when classifying sampled traffic into categories is bounded by
Equation 1,

ε≤ 1.96

√
1
c

(1)

where c is the amount of sampled packets within the category
(packet losses in our case). The above equation assumes
normality in the distribution of the samples, but it is feasible
to use it if we assume randomness in the sampling process.

As a matter of fact, with the sampling methodology pre-
sented previously, the selected packets are unpredictable in
advance since the selection depends on packet contents, hence
the process complies with the restriction, as guarantied with
hash sampling [20].

Although, the only way of improving the accuracy is by
increasing c, which in its turn means increasing the sampling
rate ρ or by having a bigger bin size t. The problem with
increasing t is that delaying the reporting gives less respon-
siveness to the system. Hence in this paper we only consider
adjusting the sampling rate, leaving as an important part of
our future work the study of the bin size and its implications
on the results.

IV. PACKET LOSS ANALYSIS

Before designing a mechanism to improve PLR estimation,
first we must understand how packet losses behave in a
network.

Packet losses are an important metric when assessing net-
work performance. Most of the previous work [1], [10], [14]
proof that packet losses usually have a bursty nature, with a
non negligible amount of sporadic packet losses.

Bursty losses degrade the quality to a higher degree than
sporadic packet losses, since application’s correcting algo-
rithms do not work in such situations [9]. In [10] and in
RFC-3357 the authors define a loss burst as the sequence of
consecutive lost packets. With this strict definition it is possible
to detect lossy periods, but in a congested environment many
of those loss periods can be chained together, with few
successfully transmitted packets, forming a longer time period
with poor network conditions. It is advisable to take into
account such periods for improving the PLR estimation in
our algorithm. Hence we propose to generalise the concept of
bursty losses by using density thresholds as explained in this
section.

A. Definitions

In a congested link, when using a common drop tail queue,
the last packets arriving a node are discarded. But while
the queue is emptying there will be room for accepting new
packets, at least until the queue is full again. In this situation
there would be several packet loss bursts with few successfully
sent packets in-between. This situation is difficult to detect
with the classical burst definition because the loss bursts
are much shorter than the congestion period. For NPAS this
situation must be handled in order to react in time and improve
the packet loss estimation in such cases.

Therefore, in this work we extend the classical burst defini-
tion: A packet loss burst is the interval of time with a density
of packet losses higher than a threshold τ.

Formally, given a stream of numbered packets P =
{p1, . . . , pn} belonging to a flow f with sending timestamps
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Ttx = {t1tx , . . . , tntx}, a packet pi is considered as lost if it does
not reach its destination with a predefined time T ; that is when
T ≤ tirx− titx . Then �i = 1 if packet pi is lost and 0 otherwise.
Thus the flow stats regarding packet losses can be defined as
L = {�1, . . . , �n}.

Using the above nomenclature we propose the following
definitions:

Definition 1: Distance between a pair of packets pi, p j

d(i, j), is the amount of transmitted packets between pi and
p j. Where i < j, hence d(i, j) = j− i.

Definition 2: The density Λ(i, j) of packet losses between

packet pi and packet p j is Λ(i, j) =
∑ j

k=i �k

d(i, j)
.

Definition 3: A burst of packets β starting at packet i then
is defined by the tuple:

β =
〈
d(i, j),Λ(i, j)

〉
. Where ∀k | i < k ≤ j,Λ(i, j) ≥ τ and

� z | d(i,z) > d(i, j) with j < z≤ n and Λ(i,z) ≥ τ.
Hence, a burst is composed by the longest list of packets

starting at i where the loss density between i and j is higher
than τ.

Definition 4: A burst B for a flow ( f ) is defined as B f =
{β0, . . . ,βm} as the list of bursts in a flow.

With the constraint that any βi cannot overlap with any β j

for any j �= i.
Using the above definitions, we aim to study the behaviour

of packet losses in a real scenario. Moreover we analyse the
effects of packet losses in concurrent flows with the same
source and destination. This study will help later in our
adaptive sampling solution to estimate the packet loss ratio.

B. Testbed

In order to study the packet loss behaviour we performed a
set of more than 500 experimental tests during 2006 and 2007
using twelve different testbeds across Europe. The testbeds
were provided by EuQoS [12] partners, covering a total of
5 countries and 4 different access technologies (LAN, xDSL,
UMTS and WiFi) with an overlay architecture over the Géant
research network [22].

The packet losses were studied by actively generating UDP
traffic on the network with different properties. Specifically
we generated periodic flows, with varying packet rates, from
16 to 900 packets per second among all the involved nodes in
the testbed. We used different packet sizes ranging from 80 to
1500 bytes per packet.

With this broad range of tests we think that our results are
representative of typical network behaviour regarding packet
losses. Even if it could be improved by using real traffic in
our analysis, which we leave as an important part of our future
work.

C. Burst study

Since many tests do not have any packet loss, we removed
them from the analysis, keeping the 22% of tests with some
loss. In some of the performed tests we intentionally generated
more traffic than the available bandwidth, in order to obtain
some congested periods for our analysis.

Burst Sporadic
Bursts in lossy periods 43.3% 56.7%

Packets in burst 99.2% 0.8%

TABLE I
DETAILS OF BURST IN THE EXPERIMENTAL ANALYSIS

In the tests we identified all the bursts with Definition 4 and
we used τ = 0.45. In this section we do not aim to evaluate
the effects of changing τ, we will focus on this in Section VI.

As expected from the tests most of the losses belong to a
burst (around 99%), with an average distance of 182 packets,
which indicates an average burst duration of ∼ 180ms, but with
a large standard deviation (around 1100ms). The distance’s
99th percentile is around 6 seconds, this percentile is that high
because of the induced congestion described above.

Considering the total amount of lossy periods1 in all the
tests, just ∼ 43% were the beginning of a burst, while the
other ∼ 57% were only sporadic losses. This is detailed in
Table I. As it can be noted the periods with sporadic losses
are higher than those for bursts. Later we will use this property
in order to not overreact in the presence of sporadic losses.

But the most surprising outcome of this analysis is that
counting the total amount of packet losses as a whole these
∼ 43% in reality represent the ∼ 99% of the total lost packets.
Meaning that once in a burst, the probability of having lots of
losses is very high.

D. Loss behaviour among flows

As we discussed before in Equation 1 the more packets we
collect the better is our PLR estimation, but sometimes we can
be analysing low rate flows where after applying the sampling
rate maybe just one or two packets are considered per bin. In
this situation we can fail to estimate the PLR very easily.

In the following study we aim at proving experimentally
that packet losses spread regularly among all the flows in the
same congested path.

It is well known from queueing theory that the probability
of queueing of a packet depends only on the traffic load in the
network [23] and it is independent of the size of the packet or
cross-traffic packets. This means that the probability of losing
a packet does not depend on the flow to which it belongs
and thus, during congestion packets will be lost among all the
flows randomly. In this subsection we will analyse this theory
empirically.

Then we can use this reasoning to infer that when we detect
packet losses on one flow we should increase the sampling rate
of all the flows of the path since most probably they are also
experiencing losses.

To prove this regular spreading we selected three different
partners from the testbed presented before. They were located
in Warsaw University of Technology (WuT), University of
Bern (UoB) and Technical University of Catalonia (UPC), and
generated traffic with several flows simultaneously, from UPC

1A lossy period starts at the first packet lost after a period of no losses and
ends when the loss burst is finished (or immediately in the case of sporadic
losses).

127

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on May 13, 2009 at 11:40 from IEEE Xplore.  Restrictions apply.



(a) 10 flows
Min. Max.

Path 1 8 ·10−4 9 ·10−4

Path 2 1.5 ·10−3 1.7 ·10−3

Path 3 1.7 ·10−3 4 ·10−3

(b) 600 flows
Min. Max.

Path 1 13 ·10−2 17 ·10−2

Path 2 12 ·10−2 18 ·10−2

Path 3 2 ·10−4 5 ·10−4

TABLE II
MIN. MAX. PLR AMONG THE FLOWS

to UoB, from UoB to WuT and from WuT to UPC. Some
tests were performed with groups of 10 flows, for others we
used 600 flows, each group of flows were sent from the same
source to the same destination during a 5 minutes period. The
groups of 10 flows had a packet size of 315 bytes with a rate
of 200 packets per second. While the groups of 600 flows
used a packet rate of 20 pkt/sec and 60 bytes each. The tests
were performed at different hours with different cross traffic
conditions produced by the Géant network.

The comparison is performed by computing the PLR of
each flows and compare the minimum and maximum PLR as
detailed in Table II. As it can be noted the PLR bounds even
if not exact on each flow within each group are close, with a
bit more of variation for the 600 flows as expected due to the
bigger amount of flows.

From the results obtained in this section we conclude that
when we detect high density of packet losses in one or more
flows within a path, the probability that all the flows in the
path exprerience similar conditions is very high. Hence it is
worth increasing the sampling rate of all the flows sharing
that path. This is an important property to exploit in order to
improve the PLR estimation accuracy.

V. DISTRIBUTED ADAPTIVE SAMPLING

Using traffic sampling is usually a good way of controlling
the required resources to perform a task. But choosing the
optimal sampling rate with minimum loss of accuracy is not
straightforward.

Moreover, knowing that control traffic (the reported infor-
mation from MEs to PEs) can be limited on the network, might
force the per flow sampling rate to be further reduced. Hence,
selecting the right flows to reduce the sampling rate leads to
better results than just equally sharing the sampling rate among
the flows.

The methodology presented here permits to efficiently esti-
mate the PLR by using the knowledge acquired in Section IV.
In this paper we do not consider OWD, since its estimation
requires less resources to obtain accurate estimates as we
pointed out in [8].

A. Problem Formulation

Given a domain D with R = {r1, . . . ,rn} ingress and egress
points of the network, and FD = { f1, . . . , fm} the list of active
flows within the domain. Then R fi(t) (Ri from now on) is the
rate of the ith flow at time t, being n the number of ME and
m the number of flows.

For simplicity we consider, without loss of generality,
that the required resources for a ME express the bandwidth
requirements to send live information to the PE. Then the
resources required to monitor all the existing flows from ME
i to ME j are:

x′i j = S
m

∑
k=1

δi jkRk (2)

where S is a constant defining the amount of resources needed
to send a single control packet, for example the number of
bytes. Since it is a constant, for the ease of exposition, we
will assume S = 1. While δi jk = 1 if fk goes from ri to r j and
0 otherwise. From this we infer that the resources required for
each ME (X ′i ) are: X ′i = ∑n

j=1

(
x′i j + x′ji

)
. Hence, reporting in

a per packet basis implies that the total amount of resources
required for on-line monitoring in domain D is XD = ∑n

i=1 X ′i .
In general per packet reporting requires too many resources

to be feasible. We ease this requirement by applying adaptive
traffic sampling. We consider that X are the global resources
available to perform the collection and performance assess-
ment. We need a fair share of those resources among all the
ME, considering that the ME with more load (e.g. with more
number of monitored flows) deserve more of the resources.
Hence, we need to adapt the per flow sampling rate (ρ) in
order to comply with this restriction:

XD ≥ X ≥ S
m

∑
i=1

ρiRi (3)

where ρi is the sampling rate (0≤ ρi ≤ 1) for flow i, Ri is the
rate in packets per second and X is the maximum resources
reserved for the monitoring. Note that Ri (in packets/sec) is
known since the ME initially must collect all the traffic to
decide whether it falls within the specified threshold indicated
in the hash table or not as described in III-B.

We need a lower bound of the sampling rate, namely ρimin ,
which guaranties that it is adjusted depending on the rate in
a per flow basis, since low rate flows at small time scales are
very sensible to sampling rates. This lower bound determines
the minimum required resources for the whole monitoring task.
Thus,

Xmin =
m

∑
i=1

ρiminRi (4)

Being ρimin the minimum ρi for flow i. This works well if
the traffic has constant rates, but since traffic in general is
variable these values need to be updated periodically.

The minimum applicable sampling rate has to take into
account the rate of the flows, equation 5 limits such rate,

ρimin =
1
Ri
∀i \1≤ i≤ m (5)

where ρimin is the minimum applicable sampling rate for all fi.
This guaranties at least that one packet per flow is captured.
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If cmin is the number of samples per fi then,

ρimin = 1 ∀i \cmin ≥ Ri

ρimin =
cmin

Ri
,otherwise

(6)

when more precision is required or more resources are avail-
able, assuring that at least cmin packets per flow are considered.

In the same way we can define the maximum sampling rate
to

ρimax = 1 ∀i \cmax ≥ Ri

ρimax =
cmax

Ri
,otherwise

(7)

where cmax determines the maximum number of per flow
packets to be collected. Then Xmax = ∑m

i=1 ρimax Ri and Xmax ≤
X ≤ XD . Analogously to ximin , ximax refers to the maximum
resources for a particular flow.

B. Resource Sharing

With equations 3 and 4 we know that after Xmin are used
the available resources (∆X) in order to share among the flows
are ∆X = X−Xmin.

The goal now is to fairly share the ∆X resources among all
the flows. Let’s define ωi as the weight assigned to the flow
i where ∑m

i=1 ωi = 1, then the resources assigned to the flow
follow equation 8.

xi = min{�∆Xωi�+ ximin ,ximax} (8)

It can be noted that the resources assigned to the flow
are bounded by the Xmax as assigned previously. Now the
weights (ω) may be assigned in different ways, we propose
an approach, namely Path Driven, whose goal is to improve
the PLR estimation without exceeding the resources reserved
for the reporting process.

Path driven PLR estimation is based on the search for lossy
paths and adjust the sampling rate of all flows within the path
accordingly to its PLR.

The rationale behind this methodology becomes from the
fact shown in Section IV regarding the distribution of losses
among all the flows on a path. Once a burst is detected on one
flow between two ME, we must increase the resources used
on estimating the PLR on that path. This way we increase the
amount of samples, and thus the accuracy.

We define three different states for paths: i) Normal path,
ii) Path with sporadic losses, and iii) Congested path.

A path is normal when PLR≤ γ2. Sporadic losses is when
PLR > γ and Λ(i, j) ≤ τ. Where i and j are the first and the last
packets on the bin. Finally if Λ(i, j) > τ and PLR > γ then the
path is considered as congested.

This avoids overreacting if losses are sporadic (i.e. the
sampling rate is increased for the whole path while having
sporadic losses), and also underreacting in case of congestion.

2In QoS environments γ≤ 10−3 usually (See Rec. ITU-T Y-1541 for more
detail).

Algorithm 1 Pseudo-code for weight assignment

Input: MEpair[1..n], Flist {ME Pairs and flow list}
for all me ←MEpair do

plr← computeMEPLR(me,Flist ) {plr = n∗max(meplr)
in case of congestion}
if plr �= 0 then

5: density = computeDensity(me,Flist)
D← D ∪ 〈me,density, plr〉
totalPLR + = plr

end if
end for

10: for all d← D do
if d[density] > τ and d[plr] > γ then {We have a
congested path}

Ω← d[me]PLR
totalPLR {Ω is the total weight for the path}

for all flow ← allFlowsWithLosses(Flist ,d[me]) do
F [ f low]ωi ←Ω 1

numberFlows(d[me])
15: end for

else if d[plr] > γ then {We have sporadic losses}
for all flow ← allFlows(Flist ,d[me]) do

F [ f low]ωi ← F [ f low]PLR
totalPLR

end for
20: end if

end for
Output: Flist with all the ωi initialised

Here the most critical parameter to avoid under or overreacting
is τ as we will show later.

The detailed process for weight assignment is shown in
Algorithm 1. The algorithm’s input is the list of ME pairs
with the flow list. This list has the flow properties together
with each flow’s PLR.

For each ME pair we compute the total PLR in the ME
(computeMEPLR) as follows:

• If any flow has a Λ(i, j) > τ then all the flows set its PLR
to the maximum within the flow, hence the aggregated
PLR will be n ∗max(PLR) with n the number of flows
between the ME pair. Here we use the property of uniform
spreading of the PLR within a path.

• If the flows just have sporadic losses (i.e Λ(i, j) ≤ τ) the
returned PLR will be ∑n

i=1 �i ∗ fi[plr].
From line 10 to the end of the algorithm we share fairly the

weights ω proportionally to the PLR among all the flows on
the congested path. While we only give the proportional share
to the flows with sporadic losses, not to the whole path. Hence
optimising the resource utilisation where is more needed.

VI. EVALUATION

This section is devoted to the evaluation and validation
of the proposal, we describe the used methodology used for
validating the distributed adaptive sampling solution. This
validation is performed by using the testbed presented in
Section IV to show the accuracy of our solution in a real
environment.
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Moreover, we complete our validation showing the effects
on the accuracy obtained by tweaking the density threshold
(τ).

A. Experimental evaluation

The tests were performed by actively generating synthetic
periodic traffic as described before. In the validation we study
the accuracy in the estimation of PLR and we also compare
it with the one obtained by the distributed static sampling.

1) Methodology: To ease the test management, the tests
were performed independently one from the others, at different
hours, and we collected the full trace of the traffic for later
processing. With the obtained traces we emulated a system
with the flows entering randomly to the system. We also
combined the tests with the 600 simultaneous flows used in
Section IV.

We defined the maximum number of active flows to 100
plus the 600 parallel flows which were active during all the
experiment. Besides, new flows were entering the system
using an uniform random distribution with random duration.
With this set up we applied off-line the distributed adaptive
sampling. Hence we were able to evaluate the results for
different resource reservations (X) by taking as reference the
complete original trace. We chose for the experiments the
following X : 20000,15000,10000 and 5000 with S = 1. These
resources are treated as a global property of the tests, and given
the total generated traffic among the MEs these X correspond
to the following effective sampling rates (ρ): 26%,25%,22%
and 16% respectively.

Another important parameter to the system is the reporting
interval (bin), where we assume that a good upper bound is t =
175ms because it falls within typical QoS constraints (as stated
Rec. ITU-T 1540) without flooding the network with reporting
traffic. We used this time interval with success previously in
[7] and [8].

2) Accuracy of the solution: In order to quantify the accu-
racy obtained by our solution we performed two different sets
of comparisons. First we analyse the effects of the different
resources X detailed before, and second we compare the
accuracy of our solution with the equivalent ρ of applying
static sampling.

As expected, the more resources used for the reporting the
more accuracy we obtain on the results. In Figure 2 we can
see the empirical Cumulative Density Function (CDF) for the
different resources and a τ = 0.45. For clarification the figure
shows the effective sampling rate since it states the reduction
in resources more clearly.

In the figure it is possible to see that increasing the resources
brings a big boost to the accuracy, even if the final effective
sampling applied is similar. Just increasing a 1% the sampling
rate delivers a much higher accuracy. Table III details the most
important statistics for the study.

As the second study, we apply to the same traces the
uniform static sampling and compare the results with our
distributed adaptive solution. The differences can be observed
in Figure 3 where the results highlight the improvement in
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Fig. 2. PLR estimation error respect to the full trace. Empirical CDF per
sampling rate (τ = 0.45)

Mean StDev. 95th Prc.
ρ = 16% 0.13% 0.10 0.38
ρ = 22% 0.07% 0.07 0.21
ρ = 25% 0.04% 0.05 0.14
ρ = 26% 0.01% 0.04 0.11

TABLE III
STATISTIC VALUES FOR THE ERROR WITH REAL TESTS

accuracy of the absolute error, which is clearly noticeable for
equivalent sampling rates. The figure details only mean values
and in the case of our approach the 95% confidence interval is
shown. We do not show the confidence interval for the static
sampling because it is too large, which confirms the better
results obtained with our solution.

B. Density threshold

The density threshold parameter τ is very important in this
environment. It determines the sensibility of the reporting
system when detecting packet losses. The lower we set τ the
quicker we will reserve more resources to lossy flows or paths.
But on the other hand this can force an over-reservation of the
resources to flows with low loss ratio. The opposite is also true,
with very high values of τ we take too long to react, hence
we are underreacting to a potential congestion.

Figure 4 shows exactly this effect. In the figure the X-
axis has the different τ values while in the Y-axis we show
the absolute error, taking as reference the full trace. The
figure shows that both for low and high density values the
absolute error increases considerably. While the lowest values
are accomplished for middle thresholds.

On the contrary, if we had an scenario without congestion
and we wanted to detect shorter loss bursts or sporadic losses
we should lower the density threshold. But, in the case of
extreme congestion we should chose a higher value, just for
guaranteeing that we do not over-react in case of sporadic
losses. Hence τ is an input parameter which can be decided
depending on specific needs.

VII. DISCUSSION

As we discussed before, our distributed adaptive sampling
technique clearly outperforms static sampling. Although there
is one open issue to be discussed, it is analysing of the cost
of a real deployment of the architecture. All over the paper
we considered S = 1 which in a real scenario it is not true.
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Fig. 4. Density effect on PLR accuracy

The main goal of our proposal is that the final resource
utilisation is bounded by X while when using static sam-
pling, once we decide the sampling rate, the used resources
will grow or decrease dynamically following this equation:
XS = ρS S ∑m

k=1 Rk where m is the total amount of flows within
the domain, Rk as defined before is the rate of flow k. Which
depends linearly of the sampling rate.

For the testbed used in this paper, the total traffic generated
in average is ∼ 200Mbps counting all the flows among all the
12 testbeds. Thus, considering the S values obtained in [3],
the equivalent resources for the adaptive sampling solution are:
X = 5000 ∼ 470Kbps,X = 10000 ∼ 600Kbps,X = 15000 ∼
700Kbps and X = 20000 ∼ 800Kbps in average. While not
using traffic sampling the amount of required resources is
2.6Mbps.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a technique for on-line Packet
Loss Ratio estimation for SLA assessment. Our solution is
based on a distributed adaptive traffic sampling mechanism,
which dynamically adjusts the sampling rate in a per flow
basis in order to minimise the error, but always bounding the
maximum resources used for the task.

The proposal uses an enhanced definition of loss burst
which avoids overreacting to sporadic packet losses in a
configurable way. Moreover the algorithm permits to maintain
the sampling rate proportionally to the loss ratio on the path,
not underreacting when a packet is not lost during a congestion
period.

We applied this mechanism in a real scenario and the results
show reasonable accuracy. Moreover, the proposal outperforms
the static sampling solution in all the different experiments by

∼ 25%.
As work for further study we plan to study and effects of

dynamic bin sizes over the system’s accuracy, this problem is
not straightforward in a distributed environment since all the
ME must agree on the bin size policy.
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